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Abstract

For two-phase flow models, upwind schemes are most often difficult do derive, and
expensive to use. Centred schemes, on the other hand, are simple, but more dissipative.
The recently proposed multi-stage (MUSTA) method is aimed at coming close to the
accuracy of upwind schemes while retaining the simplicity of centred schemes. So far,
the MUSTA approach has been shown to work well for the Euler equations of inviscid,
compressible single-phase flow. In this work, we explore the MUSTA scheme for a more
complex system of equations: the drift-flux model, which describes one-dimensional
two-phase flow where the motions of the phases are strongly coupled. As the number
of stages is increased, the results of the MUSTA scheme approach those of the Roe
method. The good results of the MUSTA scheme are dependent on the use of a large-
enough local grid. Hence, the main benefit of the MUSTA scheme is its simplicity, rather
than CPU-time savings.
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1. Introduction

Multiphase flows are important in a large range of industrial applications, such
as in the oil and gas industry, in the chemical and process industry, including in
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heat-pumping systems, as well as in the safety analysis of nuclear power plants.

Depending on the problem at hand, the desired level of detail, and the compu-
tational resources available, a range of techniques are employed for the numer-
ical simulation of these flows. Here we consider a drift-flux model, which is a
two-phase model arising from averaging the equations for single-phase flow (see
Drew and Passman, 1999). It consists of a continuity equation for each phase,
and a momentum equation for the mixture, and it is employed to describe two-
phase flows where the motions of the phases are strongly coupled.

Since the momentum equation is for the two-phase mixture, a supplementary
hydrodynamic closure law, commonly denoted as the slip relation, is required to
determine the velocity of each phase. In addition, thermodynamic closure laws
are needed for each phase to relate the phasic density to the mixture pressure.
The drift-flux model can be written on conservation form, and it has shown
to be hyperbolic for a reasonable range of input parameters (Romate, 1998).
However, even for simple closure relations, the Jacobian of the model becomes
rather complicated.

1.1. Riemann solvers

A popular class of methods for solving systems of hyperbolic equations for flow
problems are the Godunov-type methods (see e.g. LeVeque, 2002; Toro, 1999,
for a review). The basic scheme involves the solution of the Riemann problem
at each cell interface. This solution is used to compute the intercell flux. Since
they employ wave-propagation information in the construction of the numerical
flux, these schemes are often called upwind or upstream schemes. The Riemann
problem can be exactly solved for models such as the Euler equations of inviscid,
compressible single-phase flow. However, an exact Riemann solution for the
drift-flux model may be derived only for some special cases, since the model is
sensitive to the formulation of the closure laws.

It is often adequate to employ an approximate Riemann solver. An attractive
candidate is that of Roe (1981), in which the original model is linearized at each
cell interface, and a representation of all the wave phenomena in the model is
provided. To that end, the Jacobian of the model is diagonalized.

As has been pointed out by several researchers (Baudin et al, 2005a,b; Evje
and Fjelde, 2002, 2003; Faille and Heintzé, 1999; Romate, 1998), the complex-
ity resulting from the closure laws employed in the drift-flux model severely
restricts the possibilities for constructing a Roe solver by purely algebraic ma-
nipulations. Nevertheless, Roe-type schemes have been proposed for this model.
Romate (1998) presented a method for constructing a Roe matrix using a fully
numerical approach, whereas Flatten and Munkejord (2005) derived an analyt-
ical Roe matrix for fairly general closure laws. Still, their approach relied on a
numerical diagonalization of the Roe matrix.



1.2. Centred schemes

A simpler method for calculating the intercell flux is to employ centred sten-
cils which do not explicitly make use of wave-propagation information in the
construction of the numerical flux. However, the centred schemes are generally
more dissipative than the upwind ones (see e.g. Toro, 1999).

The FORCE flux has been proposed by Toro as an interesting basic centred flux,
and it is known that the FORCE scheme possesses various good properties (Toro,
1999; Toro and Billett, 2000; Chen and Toro, 2004). It has been shown to be
monotone, to possess the optimal stability condition, and to have the smallest
numerical viscosity among centred schemes when it is considered for a scalar,
linear conservation law. Moreover, entropy consistence has also been shown for
a general nonlinear system of conservation laws, and convergence results have
been obtained for special systems like the isentropic Euler equations and the
shallow-water equations (Chen and Toro, 2004).

However, a main drawback of FORCE is clearly observed when considering its
truncation error for a linear advection equation with constant speed a; ou/ot +
aou/ox = 0. In this case, the truncation error is inversely proportional to the
Courant-Friedrichs-Lewy (CFL) number C = aAt/Ax (Titarev and Toro, 2005). In
particular, the FORCE scheme cannot resolve a stationary discontinuity exactly.

1.3. The multi-stage approach

The multi-stage (MUSTA) method proposed by Toro (2003); Titarev and Toro
(2005) is aimed at coming close to the accuracy of upwind schemes while re-
taining the simplicity of centred schemes. In this approach, the solution of the
Riemann problem at the cell interface is approximated numerically by employ-
ing a first-order centred scheme on a local grid. More precisely, by using 2N
spatial grid cells, M local time steps, and a local CFL number, Cijoc = aAtjoc/AX,
Titarev and Toro (2005) showed that the truncation error for the linear advection
equation with constant wave speed could be strongly reduced. In particular, this
MUSTA scheme was demonstrated to behave similarly to the upwind Godunov
scheme for the linear advection equation. Motivated by this, the authors applied
their scheme to the Euler equations and observed that the new MUSTA scheme
could effectively match the accuracy of the Godunov method with state-of-the-
art Riemann solvers.

An important motivation for the development of the MUSTA scheme was the
possibility to use it for more complex systems, such as those occuring in mul-
tiphase fluid dynamics. The main purpose of this work is to take one step in
this direction.

The analysis behind the construction of the MUSTA scheme proposed by Tit-
arev and Toro (2005) is based on the linear advection equation and monotonicity



considerations related to this simple equation. Therefore, it may not be obvious
that the good properties of the MUSTA scheme for the scalar case in fact carry
over to the case of more complicated systems of conservation laws. Titarev and
Toro demonstrated that the MUSTA scheme works well for the Euler equations.
However, in order to resolve the local Riemann problem, appropriate choices
are needed for the parameters M and N for the local grid. These depend on the
specific model under consideration. Therefore, there is a need for exploring the
MUSTA approach also for other models than the Euler equations. The aim of this
work is thus to explore the MUSTA approach for a two-phase model, the drift-
flux model, and reveal more insight into the potential of this approach when it
is applied to a relatively complicated system.

1.4. The drift-flux model

A main feature of the drift-flux model is that it possesses two fast waves (sound
waves) and one slowly moving wave (mass wave). In particular, if we have a
transition from two-phase to pure liquid flow, the speed of sound can change
from the order of 10m/s to the order of 1000 m/s. Consequently, for such flow
scenarios (which are highly relevant for the petroleum industry), one is forced
to take very small time steps according to the CFL condition. A main purpose
of this work is to demonstrate to what extent the improved MUSTA scheme of
Titarev and Toro (2005) is able to give an accurate resolution of the important
slowly moving mass waves. Due to the possible large gap between the smallest
and largest eigenvalues, the drift-flux model may represent a harder test for the
MUSTA scheme than the Euler equations. Specifically, we also want to explore
in what way the resolution properties of the MUSTA scheme depend on choices
related to the local grid represented by the parameters M and N.

The rest of this paper is organized as follows: In Section 2, the drift-flux
model is described. The numerical algorithm, including a second-order exten-
sion, is detailed in Section 3. Section 4 presents numerical simulations aimed at
demonstrating the accuracy and robustness properties of the MUSTA scheme, as
well as to highlight the importance of the involved parameters. Further, the sec-
tion shows the differences between the MUSTA scheme and the Roe scheme. The
main results are summarized in Section 5, and conclusions drawn in Section 6.

2. The drift-flux model

This section describes the employed drift-flux model along with its closure laws,
as well as wave-speed estimates.



2.1. Model formulation

The model under consideration may be written in the following vector form

oq  of@) _
ot 0x

s(q), (1)

where ¢ is the vector of conserved variables, f is the vector of fluxes, and s(q)
is the vector of sources. They are given by

Pgl&g

q= pPrcy , (2)
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0

stq) =] 0 |. (4)
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2.1.1. Nomenclature

In the following, we use the index k € {g,f} to denote either the gas (g) or
liquid (¢) phase. For each phase, the variables are defined as follows:

o, - density,

ur - velocity,

ok - volume fraction,

p - pressure common to both phases,
Fy - wall-friction momentum source.

The volume fractions satisfy
og + otp = 1. (5)

Mass transfer between the phases is not considered. Further, dynamic energy
transfers are neglected; we consider isentropic or isothermal flows. In particular,
this means that the pressure may be obtained as

p =ppg) =p(py). (6)



2.1.2. Thermodynamic submodels

For the numerical simulations presented in this work, we assume that both the
gas and liquid phases are compressible, described by the simplified thermody-

namic relations p—p
—FL0
pr=ppo+—s (7)
Cp
and p_p
— Pg,0
pg = pgo + 280, ®)
Cg
where

Pko = P(Pko),

and the reference density py o and speed of sound cy are constants for each
phase k.

2.1.3. Hydrodynamic submodels

By far the most important aspect of the model is the hydrodynamic closure law,
which is commonly expressed in the following general form

ug —uy = P(xg, p, ug). 9)
A special case of interest is the Zuber and Findlay (1965) relation
ug = K(oxgug + axpuyp) + S, (10)

where K and S are flow-dependent parameters. The validity of (10) has been
experimentally established for a broad range of parameters for both bubbly and
slug flows (Bendiksen, 1984; Franca and Lahey, 1992; Hibiki and Ishii, 2002).

In the following calculations, the wall-friction term, Fy, is set equal to zero
unless otherwise stated.

2.1.4. Wave-speed estimates

To obtain the local and global time-step lengths, it is necessary to employ the
CFL criterion. The CFL number is

_ IAlleAt

¢ AXx

(11)
where ||A]l» is the maximum eigenvalue of the Jacobian matrix of the model (1)
in the computational domain. This shows that even though no information of
the eigenstructure of the model is directly used in the calculation of the MUSTA
flux, an estimate of the maximum eigenvalue is still needed. The approximate



eigenvalues used here are given in Appendix A on page 31. It should be noted
that the computed results are not very sensitive to the eigenvalue estimate. For
instance, we have carried out some experiments using the simple estimate by
Evje and Fjelde (2003) based on a no-slip assumption, and only minor differences
were observed in the numerical results.

3. Numerical algorithm

The drift-flux model written in the form (1) can be integrated over a control
volume to yield the semi-discrete formulation

d 1
;&) = —E(Fiﬂ/z - Fi—1/2> + 5. (12)

A simple way of integrating (12) in time is to use the Forward Euler method:

Q" -aql = —i—i(ﬂﬂ/z - Fi—l/Z) + ALS;. (13)
Herein, Q{ denotes the numerical approximation to the cell average of the vector
of unknowns, q(x(i),t;), that is, in control volume i at time step j. Quantities
without a time index are evaluated at time step j.

A method for specifying the cell fluxes F;_1,7 is needed. In the Godunov
method, the solution of the local Riemann problem at the cell interfaces is em-
ployed. For two-phase flow models, an exact solution to the Riemann problem
is not easy to find. Even the derivation of approximate Riemann solvers, such as
those of the type of Roe (1981), involves a good deal of work.

3.1. FORCE flux

A simple method for calculating the numerical flux F;_1,»> is to use the first-
order centred (FORCE) scheme of Toro (1999, Section 14.5.1). We restate it here
for completeness. The FORCE flux is given by

L pir Ri
Fi1p2 = §<Fi—1/2 +Fi—11/2)’ (14)

where FiT, , is the Lax-Friedrichs flux

1 Ax

1
Fif ;= §(f(Qi—1) + £(Q))) - §§(Qi -Qi-1), (15)

and F, , is the Richtmyer flux. It is computed by first defining an intermediate

state 1 1 At
Qi1 = 5(Qi1 + Qi) — 51 (F(Q) - F(Qi)), (16)



and then setting _ _
FRy o = FQY ). (a7

The FORCE scheme is rather dissipative, as will be seen in the following.

3.2. The MUSTA approach

In the multi-stage (MUSTA) approach (Toro, 2003; Titarev and Toro, 2005), the
solution of the Riemann problem at the cell interface is approximated numer-
ically by employing a simple first-order centred method on a local grid. This
solution can then be used in (13) or (12).

Here we employ the improved MUSTA scheme of Titarev and Toro (2005) using
multiple cells on the local grid.

Note that the FORCE flux (14) can be written as

Fi 12 =F(Q;-1,Q;) = F(QL,Qgr). (18)

That is, it is only a function of the value to the left and to the right of the cell
interface, and it gives rise to a three-point scheme.

In the MUSTA approach, the numerical fluxes F;_1,> in (13) or (12) are found
by transforming the Riemann problem at x;_1,2 to a local grid:

Qi-1=QL if&<0,

Q 9F _, Q(§,0)=<: (19)

— 4+ f—
ot o0& Qi =0r if £ > 0.

Herein, the position & = 0 corresponds to x;_1,2. This local Riemann probem is
then solved approximately by employing the FORCE scheme. We index the local
grid by n, and, following Titarev and Toro (2005), we set AE = Ax. Hence the
FORCE flux F(Q;-1,Qy) is calculated using the formulae

1 A
F(Qu1,Qn) = g (Faot + 2F" 4 F = 37 (Qu = Qu-)),

Fp = f(Qn—l), F, = f(Qn), (20)

F = Q) Q" =5(Qn1+Qn) ~ 3% (F(Qn) ~ F(Qu 1)),

First, the fluxes are computed from (20), where At is the time-step length
calculated using the Courant-Friedrichs-Lewy (CFL) criterion on the local grid:
Cloch

)
max ( max |2\ﬁ|>
1<n<2N ‘M=<p=<d

Atloc =

(21)



Qi Xi-1/2 Q;

[
g

A
y

0 1 N N+1 2N 2N +1

Figure 1: Initial values and cell numbering for the local MUSTA grid.

where d is the dimension of the system (1), and the local CFL number, Ciy, is
a parameter in the method. Next, the local solution is advanced by use of the

formula At
1
Q= - A;C (Fn+1/2 - Fn—l/Z)- (22)
The local time-stepping is performed a fixed number of times, M, and the local
grid has 2N cells, in addition to two boundary cells. The initial conditions and
the numbering of the local grid are illustrated in Figure 1. The algorithm for the

MUSTA flux can be summarized as follows:

1. For eachlocal cell n = 1,...,2N, compute the fluxes on the data from stage
m using (20).

2. If m = M then return the FORCE flux F}/,, ,, else continue.
3. Apply extrapolation boundary conditions; Qj* = Q" and Q5. = Q5N-
4. Update the local solution using (22) for n = 1,...,2N. Repeat from 1.

Thus the MUSTA flux F;_1,> to be employed in (12) or (13) is the FORCE flux
FY, ., found on the local grid.

In the above notation, the original FORCE scheme is nearly recovered for M = 1
and 2N = 2. One notable difference, however, is that in the MUSTA approach,
the fluxes in (20) are calculated using a local CFL criterion, while in the FORCE
scheme, the global time-step length is used throughout. Here we follow Titarev
and Toro (2005) and set the local CFL number to Cjoc = 0.9 for all the calcula-
tions.

Note that the cell size of the local grid is without significance, since we are
only interested in the solution F¥, ;2 after a particular number of steps, and
not at a particular ‘time’.

The MUSTA scheme is constructed to have some of the advantages of up-
stream schemes. Indeed, for increasing M and N, the MUSTA flux is expected
to approach the Godunov flux using the exact Riemann solver (Titarev and Toro,
2005).



In the following, we will denote the M-stage MUSTA scheme with 2N local cells
by MUSTAM-2N-

3.3. Higher-order extension

Titarev and Toro (2004) suggested to employ weighted essentially non-oscillatory
(WENO) schemes in conjunction with MUSTA to produce higher spatial order.
Here we propose a different and simpler approach, namely to use a semi-discrete
version of the monotone upwind-centred scheme for conservation laws (MUSCL)
(van Leer, 1979; Osher, 1985).

In the MUSCL approach, we construct a piecewise linear function using the
data {Q;(t)}. Then at the interface x;_;,» we have values on the left and right
from the two linear approximations in each of the neighbouring cells. These are
denoted by

Ax Ax
QY | =Qi1+ — 0i-1 and QF=Q;- — 0ix (23)

where o7 is a slope calculated using a suitable slope-limiter function. Some are
listed by LeVeque (2002, Section 9.2). The minmod slope is

. Qi —Qi-1 Qi+1 —Q;
= mmmod( Ax ' Ax ), (24)
where the minmod function is defined by
0 ifab <0,
minmod(a,b) ={a if|al < |b| and ab > 0, (25)

b if |a| = |b| and ab > 0.

The monotonized central-difference (MC) slope (van Leer, 1977) is

O_izminmod((QiJrl_Qi—1>’2<Qi_§i—l>’2(M>>_ (26)

2AX A AXx

We also have the van Leer (1974) (see van Leer, 1977) limiter

2(Qi - Qi-1)(Qi+1 - Qi) .
f i—Qi-1) = iv1— Qi),
o;=1(Qi—Qi-1) + (Qi+1 — Qi) if sgn(Qi = Qi-1) = sgn(Qin1 ~ Q1) (27)

0 otherwise.

The slope limiting is applied component-wise to the vector of unknowns.
There are different possible choices regarding which variables to use in the
slope-limiting procedure, for instance; the composite variables, the primitive
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variables, or the characteristic variables. The latter would correspond more
closely to the scalar case, but would require the diagonalization of the Jacobian
matrix, thus defying the purpose of the MUSTA scheme, which is to be simple.
Here we use the primitive variables [xg, p, ug].

When the piecewise linear reconstruction has been performed, the MUSTA
flux Fi_1/2 = F (Q1§—1' QIL) is computed as described in the previous subsection.
To obtain a second-order solution in time, we employ the semi-discrete for-
mulation (12) in combination with the two-stage second-order strong-stability-
preserving (Ssp) Runge-Kutta (RK) method (see e.g. Ketcheson and Robinson,
2005).

With the semi-discrete formulation (12) of the form

dQ _
o =L@, (28)

the two-stage second-order ssP-RK method can be written as

QM = @/ + ZALLQ)
2
; 1 .1 1 (29)
QM =-Q + QW + -AtL(QW).
2 2 2
Herein, Q7 is the vector of unknowns from time step j, Q/*1! is the sought values
at the next time step, while Q1) represents intermediate values.

3.4. Reference method

It will be instructive to compare the results produced by the MUSTA scheme to
those obtained by using a completely independent numerical method. For that
purpose we will employ the wave-propagation (flux-difference splitting) form
of Godunov’s method presented by LeVeque (2002, Chapter 15). It is a ‘high-
resolution’ method, that is, approaching second order for smooth solutions. The
solutions of the Riemann problems at the cell interfaces were found by applying
the approximate Riemann solver of Roe (1981) to the drift-flux model (1)-(4).
The analytical Roe matrix was derived by Flatten and Munkejord (2005).

4. Numerical simulations

In this section, we will analyse the performance of the MUSTA scheme and its
MUSCLE extension by conducting basic numerical tests and by running bench-
mark cases from the literature. Comparisons with the Roe scheme and the
FORCE scheme will also be provided. The main aim of the section is to

e (Clarify the dependence of the MUSTA scheme on the parameters M and N,

11



Table 1: Initial states in the shock-tube problem.

Quantity symbol (unit) left right
Gas volume fraction Xg (-) 0.6 0.55
Pressure p (kPa) 522.825 803.959
Gas velocity Ug (m/s) 29.5138 2.5582
Liquid velocity Uy (m/s) 24.7741 1.7372

Table 2: Parameters employed in the shock-tube problem.

ck (m/s)  py (kg/m3)
gas (g) 300 0
liquid (/) 1000 999.916

e Explore the performance of the MUSTA scheme for cases where there is a
large difference between the largest and the smallest eigenvalue. In partic-
ular, we want do demonstrate the importance of the fact that the MUSTA
scheme is semi-discrete, which is an essential difference compared to the
FORCE scheme.

All the computations in this work have been performed using a local CFL num-
ber of Cioc = 0.9 in (21).

4.1. Shock tube

This subsection presents calculations of the shock-tube test case of Baudin et al.
(2005a). Baudin et al. took the liquid to have a constant density. Here, however,
both phases are treated as compressible. The considered horizontal tube is
100m long, and there is a jump in the initial state at x = 50m. The initial
states can be found in Table 1, and the equation-of-state parameters are given
in Table 2. Herein,

Pr =i (P = Pro)- (30)

The slip is given by the Zuber-Findlay relation (10) with K = 1.07 and S =
0.2162.

First, we will investigate the dependence upon the parameters M and N, that
is, the number of stages and the number of local cells. Thereafter, the conver-
gence of the basic MUSTA scheme and the MUSCL-MUSTA scheme will be tested.

4.1.1. Effect of number of stages and local cells

Figure 2 on the following page shows the volume fraction calculated on a 50-cell
grid using a CFL number of C = 0.9 in (11). The results are plotted at t = 0.5s.

12
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Figure 2: Gas volume fraction for the shock-tube test case. Dependency on the
number of stages, M, for the MUSTAj;—» scheme.

The reference solution was obtained on a 3200-cell grid with the Roe method
employing the MC limiter. The data in the figure have been calculated using
two local cells, or N = 1, and the number of local time steps, M, has been
varied. The difference between MUSTA;_»> and FORCE is that in FORCE, only the
global time-step length is employed, while MUSTA_» uses a local CFL criterion
for the calculation of the intercell fluxes. This is also the difference between the
MUSTApM—» scheme discussed here and the two-cell MUSTA scheme proposed by
Toro (2003). For the present case, there is only a small difference between the
results produced with MUSTA;_» and those from FORCE.

When M is increased from 1 to 2, the performance of the scheme is clearly
improved. However, as M is further increased, the monotonicity is lost and
grave oscillations occur. This is in contrast to what was reported by Toro (2003)
for the Euler equations. There, satisfactory results were shown for the four-stage
two-cell MUSTA scheme.

Figure 3 on the next page shows why MUSTA cannot be expected to give good
results in general when the number of stages, M, is greater than the number of
cells on each side of the discontinuity, N. The figure displays the gas velocity
as calculated in the local MUSTA procedure for a varying number of local cells,
2N. The right and left states are the same as in the shock-tube test case, and
the results are shown after M = 4 local time steps. Figure 3(a) shows the whole
domain, while Figure 3(b) highlights the results for the middle cells. It is the
values from these cells that are used to compute the intercell flux. As can be
seen in Figure 3(a), the calculation domain grows as the number of local cells is

13
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Figure 3: Gas velocity on the local MUSTA grid for the shock tube. Results after
four local MUSTA time steps for varying number of local cells.

increased.

Figure 3(b) shows a clear discrepancy between the values obtained with N = 1
(two local cells) and N = 2 (four local cells). On the left-hand side, a small
difference can also be seen between the values calculated for N = 2 and N = 3
(six local cells). The results for N = 3 and N = 4 are identical in the two middle
cells.

Due to the CFL criterion, a wave can travel one cell per time step. For N = 2,
that is, with two internal cells on each side of the Riemann discontinuity, a wave
may travel to the boundary, be (partially) reflected, and return to the origin in
four time steps. On the other hand, for N = 3, the wave has no longer the time
to return. This is why there is a difference between the N = 2 and N = 3 results,
while the results for N = 3 and N = 4 are equal.

As a conclusion, we may say that to be certain that boundary effects do not
interfere in the calculation of the MUSTA flux, one must choose M < N. However,
the results in Figure 3 indicate that M = N may also give good results.

The bad results for M > N may be due to the rather simplified boundary
treatment in the local MUSTA procedure, which has as a consequence that when
N is set too low, information disappears from the calculation domain in an
unmotivated way. This is because every variable at the boundaries is found from
the inner domain by zeroth-order extrapolation. Hence the boundary conditions
are not set according to the number of positive and negative characteristics, as

14
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Figure 4: Gas volume fraction for the shock-tube test case. Effect of varying
number of stages and local cells in the MUSTAp;—2n scheme.

they ought to be. However, instead of enforcing a rigorous boundary treatment
in the local MUSTA procedure, it is adequate simply to choose a sufficiently large
local grid.

The effect of the simultaneous increase of the number of stages, M, and the
number of local cells, 2N, is shown in Figure 4. As can be seen from the plot,
it is primarily the resolution of the contact discontuity that is improved for an
increased number of stages. However, the difference between four and eight
stages is small. In the graph we have also plotted data obtained with the first-
order Roe method on the same grid and using the same CFL number. It is no-
ticeable that the MUSTA results approach those of the Roe scheme when the
number of stages is increased. For eight stages, the results obtained with the
MUSTA scheme are very similar to those calculated using the Roe method.

4.1.2. Some comparisons with the FORCE scheme

Figure 5 on the next page shows volume-fraction profiles for computations per-
formed on a 50-cell grid using various time-step lengths (CFL numbers). Results
for MUSTA - are displayed in Figure 5(a), while Figure 5(b) gives profiles for
the FORCE scheme. It can be seen that the FORCE scheme becomes increasingly
diffusive as the time-step length is decreased. This is due to the Ax /At term
of the Lax-Friedrichs flux, and it reflects the fact that the FORCE scheme has no
semi-discrete form. The results of the MUSTA1_» scheme, on the other hand,
converge for decreasing time-step lengths, and there is only a small difference
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Figure 5: Gas volume fraction for the shock-tube test case. Comparison of the
MUSTA;_> scheme and the FORCE scheme for varying CFL number
(time-step length). 50 grid cells.

between the results for C = 0.1 and those for C = 0.01. This behaviour is ex-
pected from a semi-discrete scheme, even though it does not prove in itself that
the scheme is semi-discrete.

There are two main reasons for the differences between MUSTA and FORCE. In
MUSTA, as opposed to in FORCE, the intercell fluxes are calculated using a local
CFL criterion. Furthermore, in MUSTA, when more local time-steps are taken, the
neighbouring global cells do not interfere in the calculation. In FORCE, when the
global grid is refined, more time steps are performed due to the CFL criterion.
Therefore, more neighbouring cells are affected, since information propagates
one cell per time step.

4.1.3. Convergence of basic scheme

Figure 6 on the following page displays data obtained on various grids with the
MUSTA4-4 Scheme, that is, the four-stage MUSTA scheme with four local cells.
The CFL number was C = 0.9. As can be seen, the results are non-oscillatory,
and both the shocks and the contact discontinuity are quite sharply resolved. In
fact, the results are similar to those of the first-order Roe scheme, except that
the contact discontinuity is slightly more smeared.
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4.1.4. Higher-order scheme

Figure 7 shows a comparison between the first-order MUSTA4_4 scheme and its
MUSCL extension. The employed grid had 50 cells and the CFL number was
C = 0.5. Results obtained with the McC-limited Roe method are also shown
for comparison. Employing MUSCL-MUSTA4_4 with the minmod limiter gave a
sharper resolution of both the shocks and the contact discontinuity, compared
to the first-order MUSTA4_4 scheme. However, as can be observed, the Roe-MC
scheme gave a still better resolution, particularly for the right-hand-side shock.
Unfortunately, using less diffusive limiters than the minmod limiter gave oscil-
lations with the MUSCL-MUSTA4_4 scheme. This is shown in the figure for the
van Leer limiter. Henceforth we therefore only consider the minmod limiter.
The convergence for MUSCL-MUSTA4—4 using the minmod limiter is displayed
in Figure 8 on the following page for C = 0.5. The results are non-oscillatory,
and both the shocks and the discontinuity are well resolved. Nevertheless, the
McC-limited Roe scheme gave a sharper resolution (Flatten and Munkejord, 2005).
It should be noted that for the drift-flux model, the main advantage of the
MUSCL-MUSTA scheme compared to the Roe scheme, is its simplicity. No savings
in crU time were achieved in the present implementation. Regarding computa-
tional cost, the numerical diagonalization and matrix manipulations performed
in the Roe scheme are roughly balanced by the extra computations performed
on the local MUSTA grid. This includes extra evaluations of the equation of state
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Table 3: Initial states in the pure rarefaction test problem.

Quantity symbol (unit) left right
Gas volume fraction Xg (-) 0.6 0.68
Pressure p (MPa) 1.66667 1.17647

Gas velocity Ug (m/s) 34.4233 50.0
Liquid velocity Uy (m/s) 34.4233 50.0

Table 4: Parameters employed in the rarefaction test problems.

ck (m/s) py (kg/m?3)
gas (g) 100 0
liquid (¥) 1000 998.924

and the slip relation.

4.2. Pure rarefaction

We now study the pure-rarefaction problem of Baudin et al. (2005a), where the
initial values are given in Table 3, and the equation-of-state parameters are re-
ported in Table 4. In the present problem, the no-slip law is used, that is, ¢ = 0.

Pressure profiles at t = 0.8 s are presented in Figure 9 on the next page for
various grid sizes. The employed CFL number was C = 0.5. Figure 9(a) shows the
results for the basic four-stage MUSTA scheme with four local cells. Data for the
first-order Roe scheme on a 50-cell grid are shown for comparison, and it can be
observed that the results are very similar. As can be seen from Figure 9(b), the
MUSCL extension using the minmod limiter represents an improvement over the
standard MUSTA scheme. However, the resolution is not quite as good as that
obtained using the McC-limited Roe scheme.

4.3. Transonic rarefaction

Transonic rarefactions, that is, when an eigenvalue A” is negative to the left of
the pth wave, and positive to the right, are not automatically handled by the
Roe scheme if an entropy fix is not implemented. It is therefore interesting to
compare the performance of the Roe and MUSTA schemes in such a case.

A transonic rarefaction (and some other waves) can be produced by decreasing
the pressure and increasing the velocities on the right-hand side of the pure-
rarefaction test case. The initial states are listed in Table 5, and the equation-of-
state parameters are given in Table 4.

The plot in Figure 10 on page 22 shows pressure profiles obtained after t =
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Figure 9: Pressure for the pure rarefaction test problem. Convergence of the
MUSTA4_4 scheme and its MUSCL extension.

Table 5: Initial states in the transonic-rarefaction test problem.

Quantity symbol (unit) left right
Gas volume fraction Xg (-) 0.6 0.68
Pressure p (MPa) 1.66667 0.7

Gas velocity Ug (m/s) 34.4233 70.0
Liquid velocity Uy (m/s) 34.4233 70.0

0.3s on a 100-cell grid, using a CFL number of C = 0.5. The Mc-limited Roe
scheme produced a rarefaction shock, something which is unphysical. As shown,
this can be remedied by employing the entropy fix of Harten (1983). Here we
took the parameter € = 10, following the notation of Harten. It can also be
seen from the figure that both the MUSTA4_4 scheme and the MUSCL-MUSTA4_4
scheme using the minmod limiter gave physically plausible solutions.

4.4. Static discontinuity

We next consider a static discontinuity. This test case clearly reveals differences
between upwind and central schemes. Upwind schemes are known to preserve
a static discontinuity, whereas central schemes will gradually smear it out.

This test consists of a discontinuity in the volume fraction, while the other
variables are uniform. The velocities are zero. The initial states are given in

21



— — — - MUSTA4-4

16F N M-MUSTA 4-4 (minmod)

F \ Roe (MC)
i \ Roe (MC), 520

1.4}

1.2}
s

0.8F

0 6 : L L I I T L I IR N L |
0 20 40 60 80 100

x (m)

Figure 10: Pressure for the transonic-rarefaction problem. Comparison of the
MUSTA4_4 scheme, the MUSCL-MUSTA4_4 scheme using the min-
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Harten’s entropy fix with 6 = 20. 100 grid cells.

Table 6: Initial states in the static discontinuity test problem.

Quantity symbol (unit) left right
Gas volume fraction Xg (-) 0.2 0.8
Pressure p (kPa) 100 100
Gas velocity ug (m/s) 0 0
Liquid velocity up (m/s) 0 0

Table 6, and Table 7 shows the parameters employed in the equation of state.
Figure 11 on the next page shows gas-volume-fraction profiles after t = 10s
calculated on a 100-cell grid using C = 0.9. As expected, the performance of
the MUSTA schemes improved as the number of stages was increased. The curve
labelled M-MUSTA is for the MUSCL extension using the minmod limiter, and it
shows that the MUSCL approach provided some improvement. The figure also
shows that the FORCE scheme is the most diffusive, whereas the first-order Roe

Table 7: Parameters employed in the static discontinuity test problem.

ck (m/s) py (kg/m?3)

gas (g) V105 0
liquid (¥) 1000 999.9
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MUSTA4_4 scheme with the minmod limiter. 100 grid cells.

scheme perfectly preserves the discontinuity.
It should be noted that the MUSTA scheme keeps smearing the discontinuity
even when both the local and global CFL numbers are set equal to 1.

4.5. Moving discontinuity

Now we let the discontinuity move. The initial conditions are similar to those
of the static-discontinuity case, except that both phases have a velocity of u =
10m/s. There is no slip between the phases. Instead of a single jump in the
volume fraction, there is now a ‘hat’. Periodic boundary conditions are em-
ployed.

Figure 12 on the following page displays volume-fraction profiles after t =
10 s, that is, the volume fraction ‘hat’ has traversed the calculation domain once.
As for the static-discontinuity case, the grid had 100 cells and the CFL number
was C = 0.9. The initial profile is plotted for reference. For this case, the first-
order Roe scheme (labelled ‘upw’) has no particular advantage compared to the
MUSTA4_4 scheme. Results for MUSTAg_g are not shown, since they were very
similar to those of MUSTA4_4. The Roe scheme employing the MC limiter gave
the best resolution, while the MUSCL-MUSTA4_4 scheme lay in between that and
the first-order schemes. Nevertheless, the most interesting point is that the
performance of the MUSTA4_4 scheme is rather close to that of the Roe scheme.
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and the MC-limited Roe scheme are also shown. 100 grid cells.

Table 8: Parameters employed in the pipe-flow problem.

ck (m/s) py (kg/m?3)

gas (g) V10° 0
liquid (£) 1000 999.9

4.6. Pipe-flow problem

We finally turn to the pipe-flow problem which was introduced as Example 4 by
Evje and Fjelde (2003). This is a demanding test, particularly regarding mass
transport, and it includes such challenges as a more complex, non-linear slip
relation and near-single-phase flow. Moreover, the near-single-phase flow causes
a large difference between the eigenvalues.

The equation-of-state parameters are given by Table 8. In the slip relation (10),
K =1 is constant, but S is now a non-linear function of the volume fraction:

Further, a wall-friction model is included:

_32umnm
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where un, is the mixture velocity,
Um = KglUg + XpUy, (33)
and the dynamic mixture viscosity, nm, is taken to be

Nm = Kghg + Xpny, (34)

with ng =5-10"%Pas and ny =5 - 107 Pas.

The problem consists of a horizontal pipe of length [ = 1000m and inner
diameter d = 0.1 m. Initially, it is filled with stagnant, almost-pure liquid, with
Xg =1- 10~>. Furthermore, the details of the simulation are specified as follows:

e The simulation lasts for 175s.

e Betweent = 0 and t = 10s, the gas and liquid inlet mass-flow rates are
linearly increased from zero to 0.08 kg/s and 12.0kg/s, respectively.

e Fromt = 10s tot = 175, the inlet liquid mass-flow rate is kept constant.
e The inlet gas mass-flow rate is kept constant between t = 10s and t = 50s.

e Between t = 50s and t = 70s, the inlet gas mass-flow rate is linearly
decreased from 0.08kg/s to 1 - 10~8kg/s, after which it is kept constant.

« At the outlet, the pressure is kept constant at p = 1 - 10° Pa.

A comparison of different MUSTA variants, the FORCE scheme and the Roe
scheme is given in Figure 13 on the next page. The computations were per-
formed on a 200-cell grid using C = 0.5. The solution obtained with the McC-
limited Roe scheme on a fine grid is shown for reference. First, it is obvious that
the FORCE scheme is useless for this kind of calculation due to its smearing of
volume-fraction waves. The time-steps calculated according to (11) became very
small because of the transition to single-phase flow, and we observe a behaviour
which is similar to the one seen in Figure 5 on page 16. Next, it is somewhat
surprising that already MUSTA;_» provided a noticeable improvement, the only
difference between the two schemes being that the latter employs a local CFL
number of 0.9 in the calculation of the intercell fluxes. For an increasing num-
ber of stages, the MUSTA scheme gave better results, but even MUSTAg_g did not
quite attain the volume-fraction profile of the first-order Roe scheme. Similarly
to what has been seen in the previous test problems, MUSCL-MUSTA4_4 with the
minmod limiter gave quite good results, but not as sharp as those of the Roe
scheme using the MC limiter.

It is interesting that the difference between the volume-fraction profile of
MUSTA1_» and that of MUSCL-MUSTA_» is significantly larger than the differ-
ence betwen MUSTA4_4 and MUSCL-MUSTA4_4. Furthermore, the volume-fraction
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Figure 13: Gas volume fraction for the pipe-flow test problem. Comparison of
the FORCE scheme, MUSTAp_2n schemes and the MUSCL-MUSTA4_4
scheme with the minmod limiter. The first-order (upwind) Roe scheme
and the MC-limited Roe scheme are also shown. 200 grid cells.

profile of MUSCL-MUSTA]_» is not far from that of MUSCL-MUSTA4_4. Hence the
former scheme may be of interest for practical calculations, since it is less CPU-
intensive.

Calculations performed with the MUSCL-MUSTA4_4 scheme for various grids
using C = 0.5 are plotted in Figure 14 on the next page. The results are non-
oscillatory, and it can be observed that the near-single-phase flow is handled
well. The results are comparable to those presented for the second-order AUMSD
scheme in Evje and Fjelde (2003). Still, the resolution is not quite as good as the
one obtained using the Mc-limited Roe method.

5. Summary

The multi-stage (MUSTA) centred scheme has been analysed for the drift-flux
model. In this scheme, an approximate solution to the Riemann problem at
the cell interfaces is found by running the first-order centred (FORCE) scheme a
given number of time-steps (M) on a 2N-cell local grid. The scheme is of special
interest, since it uses no explicit information of the eigenstructure of the model,
while giving a significantly improved solution compared to the FORCE scheme.
Still, the scheme is dependent on an estimate of the maximum eigenvalue to be
able to employ the CFL criterion.

To avoid interference from the boundaries in the local MUSTA procedure, it is
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necessary to choose M > N. However, in the present computations, M = N also
gave good results. Choosing M < N may vyield oscillatory solutions and should
be avoided.

The four-stage MUSTA scheme with four local cells (M = 4 and N = 2) gave
results quite close to those of the first-order Roe scheme. In contrast to the Roe
scheme, however, MUSTA did not preserve a static discontinuity. On the other
hand, MUSTA handled a transonic rarefaction without producing an entropy-
condition violation.

To achieve higher order in time and space, we have proposed to use the MUSTA
flux in a semi-discrete MUSCL formulation. The resulting MUSCL-MUSTA scheme
employing the minmod limiter produced improved and non-oscillatory results.
A pipe-flow problem emphasizing volume-fraction waves and near-single-phase
flow was well resolved, albeit with a less sharp resolution than the one obtained
with the Mc-limited Roe scheme. Unfortunately, MUSCL-MUSTA could not in gen-
eral be used with less-diffusive limiters, since they produced oscillatory solu-
tions for the tested shock tube.

Since its computational cost increases quite quickly with the number of stages
and local cells, the main advantage of the MUSTA scheme is its simplicity.

6. Conclusions

e The MUSTA scheme has been successfully applied to the drift-flux model,
which is relatively complicated compared to the Euler equations. In partic-
ular, the scheme worked well for a test problem with a large gap between
the eigenvalues.

e The results of the basic MUSTA scheme approached those of the first-order
Roe scheme. However, the MUSCL-MUSTA scheme did not quite attain the
results of the second-order Roe scheme based on wave decomposition.
This is mainly since it was necessary to employ a more diffusive limiter
function in MUSCL-MUSTA.

e The computational cost of the MUSTA scheme is comparable to that of the
Roe scheme.

e Using the MUSTA scheme is recommended if

1. It is desired to employ closure laws for which the Roe scheme is not
valid,

2. One wishes to avoid programming the numerical diagonalization per-
formed in the Roe scheme,

3. One wants to avoid possible problems due to transonic rarefactions.
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A. Approximate eigenvalues

In this work, we employed the approximate eigenvalues derived by Evje and
Flatten (2005) using a perturbation technique under the assumption that the
slip relation ¢ satisfies the differential equation

0(8(8_‘1”) +& =0. (35)
o, »
In the following, we employ the definitions
Mg = XkPk, (36)
oP
Uk = (a—> kif’ (37)
mk mf,uf
ou,
C = <8—W> , (38)
Ug mg,my
0 = mg + Cmy, (39)
K= 1 (40)

(0pg/op)ogpp + (0p¢/Op)xypg”
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With the perturbation parameter

Amzug_

and the eigenvalues corresponding to the sonic waves were calculated as

where
MglUg + TMpuy Pr— Pg KgXp
Uy = +xpm
p mg + Cmy ¢Meke™5, og + Loty He
and the mixture sonic velocity is
1 Llfzp,e[ (ma—pgﬂ
Cm = = 3+ ——|2-Cup|——) |(ug —up)
m =S¥y Ws o Coy g — Uy
with
Y1 = Ko(ag + Tayp),
QUZ (Ijl IJg,
2
Py —pP pep
ws = Jw%(—” ) g Bl

E =

Jro(og — Cap)’

the eigenvalue corresponding to the material wave was found to be

(ug — up)?

g+ Coy

g

K

Ap = up iCm,
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