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described in terms of the gas velocity. However, the mixture 
momentum equation contains a generalized pressure law 
composed of the standard pressure function combined with 
three new terms that depend on parameters characterizing 
the difference between gas and liquid velocity. These new 
terms make the analysis challenging. By carefully exploiting 
the positive external pressure p∗ we are able to obtain uniform 
lower and upper bounds on a pressure-related quantity. This 
in turn allows for various higher order regularity estimates 
which imply that global existence and uniqueness of weak 
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1. Introduction

The drift-flux model is one of the commonly used models nowadays for the prediction 
of various two-phase flows. It was first developed by Zuber and Findlay [25]. It is used in 
chemical engineering to predict flow in bubble column reactors, in petroleum applications 
to model various wellbore operations related to drilling, production of oil and gas, and for 
the study of geothermal energy related problems and injection of CO2. A one-dimensional 
transient drift-flux model can be written in the following form:

∂t[αgρg] + ∂x[αgρgug] = 0,

∂t[αlρl] + ∂x[αlρlul] = 0,

∂t[αgρgug + αlρlul] + ∂x
[
αgρgu

2
g + αlρlu

2
l + P

]
= −q + ∂x[ε∂xuM ], uM = αgug + αlul, (1.1)

where ε ≥ 0. The model is supposed under isothermal conditions. The unknowns are 
ρl(P ), ρg(P ) the liquid and gas densities; αl, αg volume fractions of liquid and gas 
satisfying αg + αl = 1; ul, ug velocities of liquid and gas; P common pressure for liquid 
and gas; and q representing external forces like gravity and friction. In the following 
we assume that the liquid is incompressible whereas the gas phase is described by the 
polytropic gas law

P = Cργg , γ > 1, (1.2)

where, without loss of generality, we choose C = 1. Since the momentum is given only for 
the mixture, we need an additional closure law, a so-called hydrodynamical closure law, 
which connects the two phase velocities. Generally, this law should be able to take into 
account different flow regimes. A commonly used slip relation is in the form [25,8,1,15]

ug = ĉ0uM + ĉ1. (1.3)

Here ĉ0 and ĉ1 are flow dependent coefficients. ĉ0 is referred to as the distribution pa-
rameter and ĉ1 to as the drift velocity. Various discrete schemes have been developed 
for computing numerical solutions of the compressible two-phase model (1.1)–(1.3). It 
is well known that it is difficult to solve this model efficiently due to strong nonlinear 
coupling mechanisms and challenges associated with transition to single-phase regions. 
Therefore it is of interest to deepen the insight into the finer mechanism of this model, 
also from a mathematical point of view. In particular, it is desirable to obtain a better 
understanding of the effect from the slip law (1.3).

Motivated by applications in the context of wellbore flow systems [1] we consider 
a flow scenario as indicated in Fig. 1. In this flow system there is a mixture of gas 
and liquid which is separated by a gas-dominated region through a free interface. The 



S. Evje, H.Y. Wen / Journal of Functional Analysis 268 (2015) 93–139 95
Fig. 1. Top: Schematic figure showing a gas–liquid mixture separated by a strongly gas-dominated region 
to the right with a free boundary at the interface and a positive pressure p∗ associated with the right 
gas region. Bottom: Description of the above gas–liquid scenario in terms of the liquid volume fraction 
αl(x, ·) in Lagrangian coordinates where x ∈ [0, 1] and the free interface corresponds to x = 1. Note that 
αl(x, ·) ∼ (1 −x)α+α∗

l , i.e., there is a decay rate α > 0 associated with the liquid mass at the free interface.

gas-dominated region holds a positive pressure p∗ > 0 which plays an essential role in the 
analysis presented in this work. This situation is typical for certain drilling operations 
where the possibility to adjust the position of the free interface is used to control the 
pressure in the mixture region.

1.1. The model

We set n = αgρg and m = αlρl in (1.1) and consider the model

∂tn + ∂x[nug] = 0,

∂tm + ∂x[mul] = 0,

∂t[nug + mul] + ∂x
[
nu2

g + mu2
l + P (n,m)

]
= ∂x

[
ε(n,m)∂xuM

]
, uM =

(
1 − m

ρl

)
ug + m

ρl
ul. (1.4)

Note that external forces q have been ignored. The pressure law P (n, m) and viscosity 
term ε(n, m) are given by

P (n,m) =
(

n

ρl −m

)γ

, ε(n,m) = μ
(m− k∗)

(n + m− k∗) , γ > 1, μ > 0, (1.5)

together with the constitutive relations

αl + αg = 1, ug − ĉ0uM − ĉ1 = 0, ρl = ρl,0, ρg = ρg(P ), (1.6)
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where ĉ0, ĉ1, and ρl,0 are assumed to be constants. As will be explained in the following 
the slip law ug − ĉ0uM − ĉ1 = 0 requires that the liquid mass is above a critical lower 
limit k∗, i.e., m ≥ k∗. More precisely, we assume that ĉ0 ≥ 1 and ĉ1 ≥ 0 and introduce 
α∗
g, α∗

l given by

α∗
g = 1

ĉ0
, α∗

l = 1 − α∗
g, (1.7)

implying that 0 < α∗
g ≤ 1. From the slip law, we get

mul = ρlug

(
αl − α∗

l

)
− ρl

(
1 − α∗

l

)
ĉ1 = ug

(
m− k∗

)
− ρl

(
1 − α∗

l

)
ĉ1, (1.8)

where the constant k∗ is defined by

k∗ = ρlα
∗
l . (1.9)

Now, we introduce the notation

ρ = n + m− k∗, c = m− k∗

ρ
. (1.10)

We then can show that the model (1.4) can be written in the form

∂t[cρ] + ∂x[cρu] = 0,

∂t[ρ] + ∂x[ρu] = 0,

∂t[ρu] + ∂x
[
ρu2] + ∂x

[
P (c, ρ) − u2g(cρ) − uh(cρ) + j(cρ)

]
= 1

ĉ0
∂x

[
ε(c)∂xu

]
, (1.11)

where we use u := ug. We refer to the recent work [4] for details of this derivation (see 
also [5]). We may absorb the constant 1/ĉ0 into the viscosity constant μ in (1.5) without 
loss of any generality. Moreover, the pressure law P (n, m) takes the form

P (n,m) =
(

n

ρl −m

)γ

=
(

[1 − c]ρ
[ρl − k∗] − cρ

)γ

=
(

[1 − c]ρ
a∗ − cρ

)γ

:= P (c, ρ), (1.12)

where a∗ = ρl − k∗ = ρlα
∗
g. The functions g(·), h(·), and j(·) are defined as follows:

g(cρ) = k∗
cρ

k∗ + cρ
,

h(cρ) = 2ρl
(
ĉ1
ĉ0

)
cρ

k∗ + cρ
,

j(cρ) = ρ2
l

(
ĉ1

)2 1
∗ . (1.13)
ĉ0 k + cρ
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For the viscosity term ε(n, m) we have

ε(n,m) = μc = ε(c). (1.14)

In this reformulation the slip law (1.3) has been incorporated directly in the PDE for-
mulation and leads to the model (1.11). This allows to describe the flow by means of the 
gas velocity u only, however the mixture momentum equation now contains a generalized 
pressure function which depends on the standard pressure function P and the three new 
terms g, h, and j that correct for the difference in gas and liquid fluid velocity.

Remark 1.1. The basic feature of the viscosity term (1.14) is that it will vanish when the 
mass of the liquid phase reaches its lower limit k∗, which happens at the free interface 
which separates the gas–liquid mixture from the strongly gas dominated region which 
holds a positive pressure p∗, see Fig. 1. Moreover, if gas vanishes, then ε takes the 
constant value μ. This seems to be a very natural property since the viscosity of the 
liquid phase is typically several orders higher than for the gas phase.

1.2. Lagrangian coordinates

In view of the flow system as indicated in Fig. 1 the conduit is closed at the left 
boundary x = a whereas a free boundary at x = b(t) separates the gas–liquid mix-
ture region from the strongly gas-dominated region associated with a specified pressure 
p∗ > 0. Hence, we introduce a free boundary formulation given by

∂t[cρ] + ∂x[cρu] = 0,

∂t[ρ] + ∂x[ρu] = 0,

∂t[ρu] + ∂x
[
ρu2] + ∂x

[
P (c, ρ) − u2g(cρ) − uh(cρ) + j(cρ)

]
= ∂x

[
ε(c)∂xu

]
, (1.2.1)

with x ∈ (a, b(t)) and t > 0. Initial data are

ρ(x, t = 0) = ρ0(x),

c(x, t = 0) = c0(x) = m0(x) − k∗

ρ0(x) ,

u(x, t = 0) = u0(x), (1.2.2)

for x ∈ [a, b0] where b0 = b(t = 0). Boundary conditions are set to be as follows:

u(a, t) = 0, ρ
(
b(t), t

)
= n∗, c

(
b(t), t

)
= 0, (1.2.3)

where p∗ = P (ρ = n∗, c = 0) = (n∗/a∗)γ . Here b(t), which separates the gas–liquid 
mixture and the gas region corresponding to ρ = n∗ and c = 0, satisfies

db = u
(
b(t), t

)
, b(0) = b0. (1.2.4)
dt
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We can introduce Lagrangian coordinates by using the transformation (x, t) → (ξ, τ)
given by

ξ =
x∫

a

ρ(z, t) dz, τ = t, (1.2.5)

observing that

b(t)∫
a

ρ(z, t) dz =
b0∫
a

ρ(z, t = 0) dz = constant (= 1, without loss of generality).

This implies that [a, b(t)] is converted into the fixed interval [0, 1]. Since ∂
∂t + u ∂

∂x = ∂
∂τ

and ∂
∂x = ρ ∂

∂ξ , we can transform (1.2.1) into the following form (after replacing (ξ, τ) by 
(x, t)):

∂tc = 0,

∂tρ + ρ2∂xu = 0,

∂tu + ∂x
[
P (c, ρ) − u2g(cρ) − uh(cρ) + j(cρ)

]
= μ∂x

[
E(cρ)∂xu

]
, in 0 < x < 1, (1.2.6)

with boundary conditions

u(0, t) = 0, ρ(1, t) = n∗, c(1, t) = 0, (1.2.7)

and with initial conditions

c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1], (1.2.8)

where c(x, t) = c0(x) = m0(x)−k∗

ρ0(x) . Moreover, we have that

P (c, ρ) =
(

[1 − c]ρ
a∗ − cρ

)γ

, E(cρ) = cρ,

g(cρ) = k∗
cρ

k∗ + cρ
, h(cρ) = 2ρl

(
ĉ1
ĉ0

)
cρ

k∗ + cρ
,

j(cρ) = ρ2
l

(
ĉ1
ĉ0

)2 1
k∗ + cρ

. (1.2.9)

1.3. Previous work

The drift-flux model (1.1) with zero slip, i.e. ug = ul which corresponds to ĉ0 = 1
and ĉ1 = 0 in (1.3), has been studied before in Eulerian coordinates. A first work of 
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the one-dimensional model is represented by [3] where existence of weak solutions was 
investigated. A 2D version of the model was studied in [21] where existence of weak 
solutions was proved. Some blow-up results have been obtained in [22] and [16]. In [6]
global existence and uniqueness of the strong solution of a multidimensional version of 
the model was obtained for initial data close to a stable equilibrium. Moreover, the local-
in-time existence and uniqueness of the solution with general initial data was studied in 
the framework of Besov spaces. In all these works the liquid is treated as a compressible 
fluid. This gives rise to a nonlinear pressure function which is more difficult to handle 
than for the classical Navier–Stokes equations. For previous studies of the 1D model 
(1.1) combined with a simplified slip law (1.3) with ĉ0 > 1 and ĉ1 = 0 considered in a 
free boundary setting similar to (1.2.6)–(1.2.9), we refer to [2,4,20]. Note that in these 
works the liquid has been assumed to be incompressible. In [2,20] local in time results 
were presented whereas [4] gives a local in time existence result for a general slip (ĉ0 > 1
and ĉ1 > 0) and a global in time result for the special case where ĉ1 = 0 which implies 
that h = j = 0, see (1.2.9). The more general case ĉ1 > 0 is important because it allows 
the model to describe e.g. counter-current flow where ul and ug possibly have different 
sign. This can be seen from (1.8).

The current work, to the authors knowledge, represents a first global existence result 
for the free boundary problem of the drift-flux model with a general slip of the form 
(1.3) where ĉ0 > 1 and ĉ1 > 0. We first perform a variable transformation where the set 
(c, ρ, u) is replaced by (c, Q, u) where Q = ρ

a∗−cρ . This implies that the model (1.2.6)
is converted into the model (2.1.2). Some essential points and relations reflected by the 
analysis that we would like to highlight are:

• The basic energy estimate can be obtained subject to appropriate smallness condi-
tions on the initial energy and the slip parameters ĉ0 and ĉ1 versus the strength of 
the viscosity term, see Lemma 3.1. These conditions are employed to control the new 
terms appearing in the mixture momentum equation.

• Uniform upper and lower bounds on the pressure-related quantity Q defined in (2.1.1)
can be obtained as expressed by Corollary 3.1 and Lemma 3.4. These estimates 
involve an interplay between the strength of the viscosity term, the slip parameters 
ĉ0 and ĉ1, and the initial energy and masses. In particular, the pressure p∗ > 0
associated with the strongly gas dominated region at the free interface is essential 
for the lower limit. As a consequence, it follows that the gas mass will not vanish 
at any point nor the liquid mass apart from at the free interface located at x = 1
where the decay rate is of the order (1 − x)α (for an appropriate choice of α), see 
Remark 3.1. Neither will there be any accumulation of masses at any point in the 
domain.

• In order to obtain an estimate of Qx in L1 as given by Lemma 3.9 we study the 
L2 estimate of the related quantity [c ln( Q

Q∗(1+cQ) )]x combined with an appropriate 
weighting function. Here Q∗ corresponds to the pressure p∗. This is the purpose 
of Lemma 3.8. However, we then need an estimate ut ∈ L2([0, T ] × [0, 1]) which is 
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provided by Lemma 3.6. This last lemma also provides an H1 estimate as well as a 
uniform bound on the gas velocity u which turns out to be useful for the following 
reason: In order to extract the L1 estimate of Qx from [c ln( Q

Q∗(1+cQ) )]x we need more 
precise information about the decay rate of Q −Q∗ (which controls the decay rate 
of gas n −n∗) at the free interface. In other words, we must make use of information 
about the decay rate of the gas phase (in addition to the liquid phase) at the free 
interface. This is the purpose of Lemma 3.5 and Lemma 3.7. The uniform estimate 
of u plays a key role in Lemma 3.7.

• Other estimates needed for applying standard compactness arguments then follow 
directly, see Corollary 3.5, from which existence of weak solutions can be obtained 
as expressed by Theorem 2.1. For the uniqueness result of Theorem 2.2 it turns out 
to be essential that the decay rate of liquid and gas at the free interface is the same. 
This is required in order to control the behavior of ux at the free interface.

The positive pressure p∗ in the gas-dominated region is crucial for the above analysis. 
From a physical point of view this is perhaps not so surprising since the case where p∗

tends to zero (i.e. a vacuum state) amounts to an extreme situation where the expansion 
of the gas phase will be dramatic. The lower bound of the pressure-related quantity Q
is no longer guaranteed by the approach used in this paper, neither the uniform bound 
on the velocity at the free interface.

Finally, we would also like to point out two open problems related to the study of the 
model (1.1). First, the interesting case where an initial vacuum state exists within the 
domain (0, 1), i.e., gas density ρg (hence pressure) becomes zero at some point, is excluded 
from our analysis since we rely on the assumption that sup c0 < 1. See [10] for a study 
of this situation in the context of the classical Navier–Stokes equations. Secondly, the 
model (1.2.6) where the slip law (1.3) has been accounted for with constant parameters 
ĉ0 > 1 and ĉ1 > 0 obviously predicts that the fraction of liquid mass relatively total mass 
remains constant, i.e., c = c0. This does not seem so reasonable from a physical point 
of view, for example for a vertical wellbore where an initial mixture of gas and liquid 
(i.e. 0 < c0 < 1) ultimately should be separated into a liquid region and a gas region 
corresponding to c = 1 and c = 0. This limitation of the model seems to be related to 
the assumption that ĉ0 and ĉ1 are assumed to be constant and motivates for studies 
where ĉ0 and ĉ1 are functions. As a final comment it should be noted that the techniques 
employed for the current study of genuine gas–liquid flow behavior (in the sense that gas 
and liquid move with different fluid velocities and involve gas–liquid transition zones), 
are inspired by previous works on the classical Navier–Stokes equations [7,13,11,12,17,
14,18,19,9,23].

The paper is organized as follows: In the next section we first present the reformulated 
model and then state the main result as expressed by Theorem 2.1. Section 3 contains 
a number of a priori estimates that are sufficient to guarantee existence of global weak 
solutions. Section 4 sketches the uniqueness part of Theorem 2.1.
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2. Main results

2.1. Reformulation

For the analysis of the model (1.2.6), it will be convenient to introduce the function 
Q(c, ρ) given by

Q(c, ρ) = ρ

a∗ − cρ
, which corresponds to ρ = a∗

Q

1 + cQ
. (2.1.1)

The following relation holds for Q(c, ρ):

Q(c, ρ)t = Qcct + Qρρt = Qρρt

=
(

1
a∗ − cρ

+ cρ

(a∗ − cρ)2

)
ρt

= a∗

(a∗ − cρ)2 ρt = − a∗ρ2

(a∗ − cρ)2ux = −a∗Q(c, ρ)2ux.

Hence, the system (1.2.6) can be replaced by⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tc = 0,
∂tQ + a∗Q2∂xu = 0,
∂tu + ∂x

[
P (c,Q) − u2g(cQ) − uh(cQ) + j(cQ)

]
= μ∂x

[
E(cQ)∂xu

]
, x ∈ (0, 1), t > 0,

(2.1.2)

with

P (c,Q) =
[
(1 − c)Q

]γ
, E(cρ) = cρ = a∗

cQ

1 + cQ
:= E(cQ),

g(cρ) = k∗
cρ

cρ + k∗
= a∗α∗

l

(
cQ

α∗
l + cQ

)
:= g(cQ),

h(cρ) = 2ρl
(
ĉ1
ĉ0

)
cρ

cρ + k∗
= 2a∗

(
ĉ1
ĉ0

)(
cQ

α∗
l + cQ

)
:= h(cQ),

j(cρ) = ρ2
l

(
ĉ1
ĉ0

)2 1
k∗ + cρ

= ρl

(
ĉ1
ĉ0

)2( 1 + cQ

α∗
l + cQ

)
:= j(cQ), (2.1.3)

since

cρ = a∗
cQ

1 + cQ
, a∗ = ρlα

∗
g, k∗ = ρlα

∗
l .

Boundary conditions for our system (2.1.2)–(2.1.3) are (in view of (2.1.1) and (1.2.7)):

u(0, t) = 0, c(1, t) = 0, Q(1, t) = n∗
:= Q∗, (2.1.4)
a∗
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where Q∗ is a constant. Initial conditions are (in view of (2.1.1) and (1.2.8)):

c(x, 0) = c0(x), Q(x, 0) = Q0(x) = ρ0

a∗ − c0ρ0
,

u(x, 0) = u0(x), x ∈ [0, 1]. (2.1.5)

Remark 2.1. For later use we note the following relations:

g(cQ) = a∗α∗
l

( 1
α∗

l
cQ

1 + 1
α∗

l
cQ

)
≤ a∗

(
cQ

1 + cQ

)
= E(cQ) ≤ a∗

h(cQ) = 2a∗
(
ĉ1
ĉ0

)(
cQ

α∗
l + cQ

)
≤ 2

α∗
l

(
ĉ1
ĉ0

)
E(cQ)

j(cQ) = ρl

(
ĉ1
ĉ0

)2( 1 + cQ

α∗
l + cQ

)
, j∗(cQ) = −ρl

(
ĉ1
ĉ0

)2
a∗

k∗

(
cQ

α∗
l + cQ

)
(2.1.6)

where

j∗(cQ) + ρl
α∗
l

(
ĉ1
ĉ0

)2

= j(cQ). (2.1.7)

Hence, we may replace j by j∗ in (2.1.2)3.

Throughout the rest of the paper, we denote Lp = Lp([0, 1]), 
∫ 1
0 f =

∫ 1
0 f dx when it 

will not cause any confuse.

2.2. Global weak solution

Assumptions: The following assumptions are made on the parameters α and γ:

0 < α <
1
2 , γ > 1, (2.2.1)

where φ(x) = 1 − x. Initial data is then specified as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃1φ
α ≤ c0 ≤ c̃2φ

α, with 0 < c̃1 ≤ c̃2, sup c0 < 1, A1 ≤ Q0 ≤ B1,∣∣∣∣ln( Q0

Q∗(1 + c0Q0)

)∣∣∣∣ ≤ C̃φβ1 , β1 ∈ (0, α] ∩
(

0, 1
2 − α

]
,

1∫
0

G0(x) dx ≤ M,

φ(x)
1−α1

2

[
c0 ln

(
Q0

Q∗(1 + c0Q0)

)]
x

∈ L2, α1 ∈ (2α, 1) such that

φ
1−α1−α+2β1

2 c0,x ∈ L2√
2

(2.2.2)
E(c0Q0)u0,x ∈ L ,
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with positive constants c̃1, c̃2, A1, B1, C̃ where G0 represents the initial energy and is 
given by

G0(x) = 1
2u

2
0 +

Q∫
Q∗

P (c, s) − P (c,Q∗)
a∗s2 ds

+ p∗ − P (c,Q∗)
a∗Q

− ρl
k∗a∗

(
ĉ1
ĉ0

)2

c0 ln
(

c0Q0

α∗
l + c0Q0

)
,

where p∗ = [Q∗]γ . Here M > 0 is a (sufficiently small) constant determined by different 
relations that depend on the upper and lower bounds A and B appearing in (2.2.8).

More precisely, the lower bound A of Q and the bound on the initial energy M must 
be chosen such that they obey the following relations:

⎧⎪⎪⎨⎪⎪⎩
[

2
α∗
l

(
ĉ1
ĉ0

)]2

≤ μ2c̃1A

8 , M ≤ μ2c̃1A

32 ,

A <
A1

4 , e(4/c̃1)
√

M
μ <

4
3 , e(4/c̃1)

√
M
μ <

1
6A + 1.

(2.2.3)

Moreover, the following relation must be obeyed by the external pressure p∗

(
p∗
)1/γ ≥ max

{
B1(1 − sup c0), 4A

}
. (2.2.4)

This is necessary in order to obtain the lower limit of Q as expressed by Lemma 3.3.
Similarly, the upper bound B of Q and initial energy bounded by M must be chosen 

such that the following relations are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − sup c0)γ
(
B

2

)γ

≥ C
(
p∗, ĉ0, ĉ1

)
= p∗ +

(
ĉ1
ĉ0

)
a∗ + ρl

(
ĉ1
ĉ0

)2
a∗

k∗
,

B1 ≤ B

2 , B ≤ 2 − 4δ
3δ ,

2
μc̃1

(2M)1/2 + 12
μ2

[
2

c̃1A
+ 1

][
1 +

(
ĉ1
ĉ0

)
1
α∗
l

]
BM ≤ ln(1 + δ),

(2.2.5)

for some δ > 0 and subject to the condition that

sup c0 < 1, (2.2.6)

which follows from (2.2.2)1. In addition, we ensure that A and B are chosen such that

2A ≤ Q0 ≤ 3
B,
4
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which follows from (2.2.3)2, (2.2.5)2 and (2.2.2)1. This is employed in the classical con-
tinuity arguments that allow us to derive the bounds A ≤ Q ≤ B. Finally, we must also 
ensure that M obeys the smallness condition of Lemma 3.6 given by

2M
μ2

[
2

c̃1A
+ 1

]
≤ 1

64 . (2.2.7)

For the boundary condition (2.1.4), we require the compatibility condition u0(0) = 0.

Remark 2.2. Note that the assumption (2.2.2)3 puts a constraint on the choice of α1. 
For example, if c0,x ∼ φ(x)α−1 then α1 < α + 2β1. From (2.2.2)3 it follows that 2α <

α1 < 1. Clearly, these conditions are realized for example by the choice α = β1 = 1
4 and 

α1 = 3
5 .

Remark 2.3. It is interesting to note that the external pressure p∗ cannot become 
zero. According to (2.2.4) this pressure must be related to either the initial upper 
limit B1 of the mass related term Q or its time independent lower limit A obtained 
in Lemma 3.3.

Remark 2.4. Note that α represents the decay rate of c at x = 1, i.e., how fast the 
liquid mass m decays towards its lower limit k∗, see Remark 2.8. On the other hand, 
β1 represents the decay rate associated with Q towards its limit Q∗, i.e., how fast the gas 
mass n decays to its limit n∗ at the free interface at x = 1, see Corollaries 3.3 and 3.4. 
Higher order regularity estimates like Lemma 3.9 require information about both these 
decay rates.

Remark 2.5. Note that (2.2.5) is realized by first choosing δ > 0 small enough to ensure 
that the upper limit B ≤ 2−4δ

3δ represents no hinderance for choosing a B satisfying 
(2.2.5)1. Finally, the last estimate of (2.2.5)2 will then enforce a smallness condition on 
the choice of Mμ2 .

Note that the restriction on the slip parameters ĉ0 > 1 and ĉ1 > 0 is related to the 
choice of initial data Q0, initial energy represented by M , and the lower bound A. If A
is made small, then we either have to choose the slip parameter ĉ1 sufficiently small, see 
(2.2.3)1, or we could make the strength of the viscosity term represented by μ larger. 
Similarly, the choice of the upper limit B is also sensitive for the slip parameters as 
expressed by (2.2.5).

We now state the main result of this paper:

Theorem 2.1 (Existence). Under the assumptions of (2.2.1)–(2.2.7), there exists a con-
stant M0 > 0 such that (2.1.2)–(2.1.5) admits a global weak solution (c, Q, u) on 
[0, 1] × [0, T ] for any time T > 0 for all M ≤ M0 in the sense that
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(A) we have the following regularity:

c,Q ∈ L∞(
[0, T ];L∞)

∩ C
3
4
(
[0, T ];L2), E(cQ)ux ∈ L∞(

[0, T ];L2),
u ∈ L∞(

[0, T ];L∞)
∩ C

1
2
(
[0, T ];L2).

Moreover, the following estimates hold:

A ≤ Q ≤ B,

1∫
0

Eu2
x dx +

t∫
0

1∫
0

u2
s dx ds ≤ C2, (2.2.8)

and

‖ux‖L4(0,T ;L2) +
1∫

0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2 ≤ C2, (2.2.9)

for (x, t) ∈ [0, 1] × [0, T ], where C2 depends on A, B, M , c̃1, c̃2, α, β, γ, T and the 
initial data.

(B) The following equations hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tc = 0, ∂tQ + a∗Q2∂xu = 0, for a.e. (x, t) ∈ (0, 1) × (0, T ],
(c,Q)(x, 0) =

(
c0(x), Q0(x)

)
, for a.e. x ∈ [0, 1],

T∫
0

1∫
0

[
uϕt +

(
P (c,Q) − u2g(cQ) − uh(cQ) + j(cQ)

−
[
ρl
α∗
l

(
ĉ1
ĉ0

)2

+ p∗
]
− μE(cQ)ux

)
ϕx

]
dx dt +

1∫
0

u0ϕ(x, 0) dx = 0,

for any test function ϕ ∈ C∞
0 ((0, 1] × [0, T )).

(C) Interface behaviors:

∣∣u(x, t)
∣∣ ≤ C2x

r−1
r (2.2.10)

for some r ∈ (1, 2) such that r(α + 1) < 2, and∣∣Q(x, t) −Q∗∣∣ ≤ C2|x− 1|β1 (2.2.11)

for β1 ∈ (0, α] ∩ (0, 12 − α]. Here (x, t) ∈ [0, 1] × [0, T ].

Theorem 2.2 (Uniqueness). Under the conditions of Theorem 2.1 and by requiring that 
β1 = α, where 0 < α ≤ 1

4 , the weak solution is unique.
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Remark 2.6. Denote ρ = a∗ Q
1+cQ , then from Theorem 2.1, we get a global weak solution 

(c, ρ, u) on [0, 1] × [0, T ] to (1.2.6), (1.2.7), and (1.2.8).

Remark 2.7. Regarding Theorem 2.2, the additional assumption β1 = α is needed to get 
an estimate of ux at the free interface x = 1, see (4.2), which plays a very important 
role in the proof of uniqueness. As seen from (4.2) this requires that the decay rate of 
gas and liquid is the same.

Remark 2.8. Note that the interface behavior of the liquid phase is characterized by

a∗c̃1A

1 + B
φα ≤ m− k∗ = cρ ≤ a∗c̃2Bφα,

in view of (2.2.2)1, (2.1.1), and (2.2.8). The interface behavior of the gas phase is char-
acterized by

∣∣n− n∗∣∣ =
∣∣(1 − c)ρ− n∗∣∣ =

∣∣[(1 − c) − 1
]
ρ + ρ− n∗∣∣ ≤ cρ + a∗

∣∣∣∣ Q

1 + cQ
−Q∗

∣∣∣∣
≤ cρ + a∗

∣∣Q−Q∗∣∣ + a∗Q∗cQ ≤ C2
(
φα + φβ1

)
≤ C2φ

β1 ,

in view of (2.1.1), (2.2.8), and (2.2.11).

3. Global existence of weak solutions

3.1. A priori estimates

We assume the following a priori estimate on the liquid mass related quantity 
Q = ρ

a∗−cρ

A ≤ Q, (3.1.1)

for an appropriate constant A > 0 that will be specified later. The aim is to show that 
then

2A ≤ Q. (3.1.2)

This is proved in Lemma 3.3.
We use C to denote a generic positive constant dependent on initial data and some 

known constants but independent of A and T . We use C1 to denote a generic positive 
constant that depends on A, initial data and some known constants but independent 
of T .
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Lemma 3.1. Under the assumptions of Theorem 2.1 and (3.1.1), it holds that

1∫
0

G(x, t) dx + μ

12

t∫
0

1∫
0

Eu2
x dxds ≤

1∫
0

G0(x) dx, (3.1.3)

where

G = 1
2u

2 +
Q∫

Q∗

P (c, s) − P (c,Q∗)
a∗s2 ds

+ p∗ − P (c,Q∗)
a∗Q

− ρl
k∗a∗

(
ĉ1
ĉ0

)2

c ln
(

cQ

α∗
l + cQ

)
, (3.1.4)

subject to the following two conditions on initial state:

[
2
α∗
l

(
ĉ1
ĉ0

)]2

≤ μ2

4C1(A) ≤ μ2c̃1A

8 , M ≤ μ2

16C1(A) ≤ μ2c̃1A

32 , (3.1.5)

with C1(A) = 2
c̃1A

+ 1.

Proof. We have

d

dt

1∫
0

1
2u

2 + d

dt

1∫
0

[ Q∫
Q∗

P (c, s) − P (c,Q∗)
a∗s2 ds + p∗ − P (c,Q∗)

a∗Q

]
+ μ

1∫
0

E(cQ)u2
x

= −
1∫

0

g(cQ)u2ux −
1∫

0

h(cQ)uux +
1∫

0

j∗(cQ)ux. (3.1.6)

Here we have used that

−
1∫

0

[
P (c,Q)

]
x
u = − d

dt

1∫
0

[ Q∫
Q∗

P (c, s) − P (c,Q∗)
a∗s2 ds + p∗ − P (c,Q∗)

a∗Q

]
.

Moreover,

−
1∫

0

g(cQ)u2ux ≤ μ

4

1∫
0

g(cQ)u2
x + 1

μ

1∫
0

u4g(cQ)

≤ μ

4

1∫
Eu2

x + ‖u‖2
L∞‖g‖L∞

1
μ

1∫
u2
0 0
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≤ μ

4

1∫
0

Eu2
x + 1

μ

1∫
0

(
1
cQ

+ 1
) 1∫

0

u2
1∫

0

Eu2
x

≤ μ

4

1∫
0

Eu2
x + C1(A)

μ

1∫
0

u2
1∫

0

Eu2
x. (3.1.7)

We have used that

∣∣u(x, t)
∣∣2 =

∣∣u(x, t) − u(0, t)
∣∣2 =

∣∣∣∣∣
x∫

0

E− 1
2 · E 1

2uy(y, t) dy

∣∣∣∣∣
2

≤
1∫

0

E−1
1∫

0

Eu2
x = 1

a∗

1∫
0

(
1
cQ

+ 1
) 1∫

0

Eu2
x

≤ 1
a∗

[
2

c̃1A
+ 1

] 1∫
0

Eu2
x

= 1
a∗

C1(A)
1∫

0

Eu2
x, (3.1.8)

by Hölder’s inequality, (2.1.2)1, (2.2.1), (2.2.2)1 and (3.1.1). Moreover, using (2.1.6) and 
Hölder’s inequality we get

−
1∫

0

h(cQ)uux ≤ 2
α∗
l

(
ĉ1
ĉ0

) 1∫
0

|Euux|

≤ ε1

4
2
α∗
l

(
ĉ1
ĉ0

) 1∫
0

Eu2
x + 1

ε1

2
α∗
l

(
ĉ1
ĉ0

)
‖u‖2

L∞

1∫
0

E

≤ μ

4

1∫
0

Eu2
x + 1

μ

[
2
α∗
l

(
ĉ1
ĉ0

)]2

C1(A)
1∫

0

Eu2
x, (3.1.9)

by an appropriate choice of ε1 corresponding to ε1 = μ
α∗

l

2 ( ĉ0ĉ1 ). Here we also have used 

that E(cQ) = a∗ cQ
1+cQ ≤ a∗. Finally, we note that

1∫
j∗(cQ)ux = ρl

k∗α∗
l

(
ĉ1
ĉ0

)2
d

dt

1∫
c ln

(
cQ

α∗
l + cQ

)
(3.1.10)
0 0
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where we have used that

−c
ρl

k∗α∗
l

(
ĉ1
ĉ0

)2[
ln
(

cQ

α∗
l + cQ

)]
t

+ j∗ux = 0, x ∈ (0, 1),

which is obtained from (2.1.2)2. Clearly, ln( cQ
α∗

l +cQ ) is non-positive for cQ > 0.
Combining (3.1.6) with (3.1.7), (3.1.9), and (3.1.10) we get

d

dt

1∫
0

1
2u

2 + d

dt

1∫
0

[ Q∫
Q∗

P (c, s) − P (c,Q∗)
a∗s2 ds + p∗ − P (c,Q∗)

a∗Q

]

− ρl
k∗α∗

l

(
ĉ1
ĉ0

)2
d

dt

1∫
0

c ln
(

cQ

α∗
l + cQ

)
+ μ

1∫
0

E(cQ)u2
x

= −
1∫

0

g(cQ)u2ux −
1∫

0

h(cQ)uux

≤ μ

4

1∫
0

Eu2
x + C1(A)

μ

1∫
0

u2
1∫

0

Eu2
x + μ

4

1∫
0

Eu2
x

+ 1
μ

[
2
α∗
l

(
ĉ1
ĉ0

)]2

C1(A)
1∫

0

Eu2
x. (3.1.11)

That is,

d

dt

1∫
0

1
2u

2 + d

dt

1∫
0

[ Q∫
Q∗

P (c, s) − P (c,Q∗)
a∗s2 ds + p∗ − P (c,Q∗)

a∗Q

]

− ρl
k∗α∗

l

(
ĉ1
ĉ0

)2
d

dt

1∫
0

c ln
(

cQ

α∗
l + cQ

)
+ μ

2

1∫
0

Eu2
x

≤ C1(A)
μ

1∫
0

u2
1∫

0

Eu2
x + 1

μ

[
2
α∗
l

(
ĉ1
ĉ0

)]2

C1(A)
1∫

0

Eu2
x.

By the following smallness assumption

[
2
α∗
l

(
ĉ1
ĉ0

)]2

C1(A) ≤ μ2

4 , C1(A) = 2
c̃1A

+ 1, (3.1.12)

we conclude that
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d

dt

1∫
0

[
1
2u

2 +
Q∫

Q∗

P (c, s) − P (c,Q∗)
a∗s2 ds + p∗ − P (c,Q∗)

a∗Q
− ρl

k∗α∗
l

(
ĉ1
ĉ0

)2

c ln
(

cQ

α∗
l + cQ

)]

+ μ

4

1∫
0

Eu2
x ≤ C1(A)

μ

1∫
0

u2
1∫

0

Eu2
x.

Hence, for appropriate choices of f , g and a constant K = 8C1
μ2 we have

df

dt
+ g ≤ Kfg. (3.1.13)

Claim. If

f0 ≤ 1
2K = μ2

16C1(A) , (3.1.14)

then it follows that

f(t) + 1
3

t∫
0

g ≤ f0, t > 0. (3.1.15)

This corresponds to (3.1.3).
To prove (3.1.15) we may argue as follows: In view of (3.1.14) and by continuity of 

f(t) there is a time T̃ > 0 such that

f(t) ≤ 2
3K , t ∈ [0, T̃ ]. (3.1.16)

Let T̃ ∗ be the maximal time for (3.1.16). I.e., (3.1.16) holds for t ∈ [0, T̃ ∗). If T̃ ∗ = ∞
there is nothing to prove. If T̃ ∗ < ∞ we use (3.1.13) and calculate as follows for t ∈ [0, T̃ ∗)

f(t) − f(0) +
t∫

0

g ≤ K

t∫
0

fg ≤ 2
3

t∫
0

g,

employing (3.1.16). That is,

f(t) + 1
3

t∫
0

g ≤ f0 ≤ 1
2K <

2
3K .

The continuity of f(t) implies then that (3.1.16) must hold at time T̃ ∗. This contradiction 
leads us to conclude that T̃ ∗ = ∞ and (3.1.15) has been proved. �
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Next, we seek to obtain pointwise control on masses. For that purpose we recall the 
following lemma based on a work by Zlotnik [24].

Lemma 3.2. Let f ∈ C(R) and y, b ∈ W 1,1(0, T ). Let y(t) satisfy the following equation

dy

dt
= f(y) + db

dt
, t ∈ R

+ (3.1.17)

and |b(t2) − b(t1)| ≤ N0 for any 0 ≤ t1 < t2. Then

(1) if f(z) ≥ 0, for z ≤ M1,

min
{
y(0),M1

}
−N0 ≤ y(t), t ∈ R

+; (3.1.18)

(2) if f(z) ≤ 0, for z ≥ M2,

max
{
y(0),M2

}
+ N0 ≥ y(t), t ∈ R

+; (3.1.19)

Lemma 3.3. Under the assumptions of Theorem 2.1 and (3.1.1), it holds that

2A ≤ Q, (3.1.20)

for an appropriate choice of A > 0 and M > 0 (independent of time) dictated by the 
relations (3.1.27) and (3.1.29) and under the condition (3.1.28) or (3.1.31) on the external 
pressure p∗ > 0.

Proof. First, we observe that

1∫
x

ut + p∗ −
(
P − u2g − uh + j∗

)
= −μEux (3.1.21)

and

−Eux = c
∂

∂t

(
ln cQ

1 + cQ

)
= c

∂

∂t

(
ln c + ln Q

1 + cQ

)
= −c

∂

∂t

(
ln 1 + cQ

Q

)
. (3.1.22)

We consider a fixed x ∈ (0, 1), hence c(x) > 0, and introduce the variable Y (t) =
ln(1+cQ

Q ) = ln( 1
Q + c) for Q ∈ (0, ∞) and observe that

Q = 1
Y

, Y > ln c (3.1.23)

e − c
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since Q > 0 corresponds to eY − c > 0 or Y > ln c. Moreover,

P (c,Q) =
[
(1 − c)Q

]γ =
(

1 − c

eY − c

)γ

= P (c, Y ).

Clearly, P is a decreasing function relatively Y and tends to zero as Y goes to infinity. 
We may combine (3.1.21) and (3.1.22) and get

Y ′(t) = d

dt

(
− 1
cμ

1∫
x

u

)
+ 1

cμ

[
−p∗ + P − u2g − uh + j∗

]
= db

dt
+ f(Y ).

First we claim that

−u2g − uh + j∗ ≤ 0, (3.1.24)

or

−uh ≤ u2g − j∗.

Clearly,

|uh| = |u|
(
a∗α∗

l

)1/2 · (a∗α∗
l

)−1/22
(
ĉ1
ĉ0

)
a∗
(

cQ

α∗
l + cQ

)

≤ u2(a∗α∗
l

)( cQ

α∗
l + cQ

)
+ 1

4

(
cQ

α∗
l + cQ

)
4(a∗)2

(a∗α∗
l )

(
ĉ1
ĉ0

)2

= u2g +
(

cQ

α∗
l + cQ

)
a∗

α∗
l

(
ĉ1
ĉ0

)2

= u2g − j∗.

Then we can claim that

f(Y ) = 1
cμ

[
−p∗ + P − u2g − uh + j∗

]
≤ 1

cμ

[
P − p∗

]
≤ 0, (3.1.25)

for P ≤ p∗. Clearly,

P (c, Y ) =
(

1 − c

eY − c

)γ

=
(

1 − c0
eY − c0

)γ

≤ p∗

for Y large enough. More precisely,

Y ≥ ln
(

1 − c

(p∗)1/γ
+ c

)
def:= M2 (3.1.26)

will ensure that (3.1.25) holds. For the b function we have
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∣∣b(t2) − b(t1)
∣∣ ≤ 1

c0μ

∣∣∣∣∣
1∫

x

[
u(y, t2) − u(y, t1)

]
dy

∣∣∣∣∣
≤ 2

c0μ
sup
t

1∫
x

|u| dy ≤ 2
c0μ

φ(x)1/2 sup
t

( 1∫
0

u2 dy

)1/2

≤ 2
μc̃1

(2M)1/2 def:= N0,

subject to the condition that A, M are chosen such

M ≤ μ2c̃1A

32 ,

[
2
α∗
l

(
ĉ1
ĉ0

)]2

≤ μ2c̃1A

8 . (3.1.27)

Hence, the conclusion is that

Y (t) ≤ max
{
Y (0),M2

}
+ N0.

Since Y0 = ln(1/Q0 + c0), comparison with M2 defined by (3.1.26) shows that if

(p∗)1/γ

1 − c0
≥ B1 ≥ Q0, (3.1.28)

then M2 ≤ Y0. Consequently, Y (t) ≤ Y (0) + N0 = ln(1/Q0 + c0) + (4/c̃1)
√
M
μ . That is

1
Q

≤
(

1
Q0

+ c0

)
e(4/c̃1)

√
M
μ − c0 ≤ e(4/c̃1)

√
M
μ

A1
+ c0

[
e(4/c̃1)

√
M
μ − 1

]
<

e(4/c̃1)
√

M
μ

4A + 1
6A <

1
3A + 1

6A = 1
2A.

Here we have chosen A and M sufficiently small such that

A <
A1

4 , e(4/c̃1)
√

M
μ <

4
3 , e(4/c̃1)

√
M
μ <

1
6A + 1. (3.1.29)

Hence, we have shown that

2A ≤ Q, (3.1.30)

subject to the condition that A and M are chosen in accordance with both (3.1.27)
and (3.1.29). On the other hand, if (3.1.28) is not satisfied than we may have that 
Y (t) ≤ ln( 1−c

∗ 1/γ + c) + (4/c̃1)M1/2. From this we can show that (3.1.30) holds if
(p )



114 S. Evje, H.Y. Wen / Journal of Functional Analysis 268 (2015) 93–139
A ≤ (p∗)1/γ

4 , (3.1.31)

in addition to (3.1.29). �
Corollary 3.1. Under the assumptions of Theorem 2.1, it holds that

A ≤ Q. (3.1.32)

Proof. In view of Lemma 3.3 and classical continuity arguments, the estimate (3.1.32)
follows. �
Lemma 3.4. Under the assumptions of Theorem 2.1, it holds that

Q ≤ B, (3.1.33)

for an appropriate choice of B > 0 and M > 0 (independent of time) as dictated by the 
relations (3.1.41), (3.1.46), (3.1.48), (3.1.45), and for sup c0 < 1, in addition to the two 
relations in (3.1.27).

Proof. Let us make the following a priori estimate

Q ≤ B. (3.1.34)

We will show that we can obtain the estimate

Q ≤ 3B
4 , (3.1.35)

for an appropriate choice of B > 0 and for a sufficiently small M . We have

1∫
x

ut + p∗ −
(
P − u2g − uh + j∗

)
= −μEux = cμ

∂

∂t

(
ln cQ

1 + cQ

)
= cμ

∂

∂t

(
ln Q

1 + cQ

)
.

We consider a fixed x ∈ (0, 1) and introduce the variable Y (t) = ln( Q
1+cQ ) = ln(1

c
Q

1
c+Q

) <
ln(1

c ) for Q ∈ (0, ∞) for c(x) > 0 (but possibly arbitrary near 0) and observe that

Q = eY

1 − ceY
= 1

c

(
eY

1/c− eY

)
, Y ∈

(
−∞, ln(1/c)

)
. (3.1.36)

We have

P = (1 − c)γQγ = (1 − c)γ
(

eY

Y

)γ

= P (c, Y ). (3.1.37)
1 − ce
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Clearly, P is an increasing function relatively Y (here we use that sup c = sup c0 < 1). 
By letting Y approach ln(1/c) from below, we can get 1 − ceY P as close to 0 as we 
desire. Hence, we can get P (c, Y ) as large as we want. In particular,

P (c, Y ) ≥ (1 − c)γ
(
B

2

)γ

= (1 − c0)γ
(
B

2

)γ

,

if Y ≥ M2 = ln
(

B/2
1 + cB/2

)
∈
(
−∞, ln(1/c)

)
(3.1.38)

for some B ∈ (0, ∞).

Y ′(t) = d

dt

(
1
cμ

1∫
x

u

)
+ 1

cμ

[
p∗ − P + u2g + uh− j∗

]

= d

dt

(
1
cμ

1∫
x

u

)
+ d

dt

(
1
cμ

t∫
0

[
u2g + 1

2u
2h

])
+ 1

cμ

[
p∗ − P + uh− 1

2u
2h− j∗

]

= db

dt
+ f(Y ),

where

f(Y ) = 1
cμ

[
p∗ − j∗ − P + uh− 1

2u
2h

]
,

b(t) = 1
cμ

1∫
x

u + 1
cμ

t∫
0

[
u2g + 1

2u
2h

]
.

We have that

uh ≤ 1
2h + 1

2hu
2,

hence

f(Y ) ≤ 1
cμ

[
p∗ − j∗ + 1

2h− P

]
. (3.1.39)

Moreover, for Q ∈ (0, ∞) (or Y ∈ (−∞, ln(1/c))) we have

h = 2
(
ĉ1
ĉ0

)
a∗
(

cQ

α∗
l + cQ

)
≤ 2

(
ĉ1
ĉ0

)
a∗

−j∗ = ρl

(
ĉ1

)2
a∗

∗

(
cQ

∗

)
≤ ρl

(
ĉ1

)2
a∗

∗ . (3.1.40)

ĉ0 k αl + cQ ĉ0 k
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Clearly, in view of (3.1.39) and (3.1.40) we can estimate as follows

f(Y ) ≤ 1
cμ

[
p∗ − j∗ + 1

2
h− P

]
≤ 1

cμ

[
p∗ +

(
ĉ1
ĉ0

)
a∗ + ρl

(
ĉ1
ĉ0

)2
a∗

k∗
− P

]
= 1

cμ

[
C
(
p∗, ĉ0, ĉ1

)
− P

]
≤ 0

for

Y ≥ M2 = ln
(

B/2
1 + cB/2

)
,

if (compare with (3.1.38))

(1 − c0)γ
(
B

2

)γ

≥ C
(
p∗, ĉ0, ĉ1

)
. (3.1.41)

Next, we have to estimate b and see that it can be bounded as a function of time. 
Clearly, in view of (3.1.34) we have

Q

α∗
l + cQ

≤ B

α∗
l

. (3.1.42)

Thus, we conclude that

h

c
= 2

(
ĉ1
ĉ0

)
a∗
(

Q

α∗
l + cQ

)
≤ 2

(
ĉ1
ĉ0

)
a∗

B

α∗
l

g

c
= a∗α∗

l

(
Q

α∗
l + cQ

)
≤ a∗B. (3.1.43)

These estimates will be used to bound b(t) as follows:

∣∣b(t2) − b(t1)
∣∣ ≤ 2

cμ
sup
t

∣∣∣∣∣
1∫

x

u

∣∣∣∣∣ + 1
cμ

t2∫
t1

[
u2g + 1

2u
2h

]

≤ 2
cμ

φ(x)1/2 sup
t

( 1∫
0

u2 dy

)1/2

+ 1
cμ

t2∫
t1

u2
[
g + 1

2h
]

≤ 2
μc̃1

(2M)1/2 + C1(A) 1
μa∗

t2∫
t1

[
g

c
+ 1

2
h

c

] 1∫
0

Eu2
x

≤ 2 (2M)1/2 + 12C1(A) 1
2

[
1 +

(
ĉ1

)
1
∗

]
BM := N0. (3.1.44)
μc̃1 μ ĉ0 αl
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Here we have used the estimate (3.1.8) of u2, (3.1.3), as well as estimates (3.1.43) to 
ensure that gc and hc are bounded, independent of c. For the chosen B, we can choose M
small enough to ensure that

N0 ≤ ln(1 + δ), (3.1.45)

for some δ > 0 which is specified below. Consequently,

Y (t) ≤ max
{
Y (0),M2

}
+ ln(1 + δ).

Hence, we can choose initial data such that Y (0) ≤ M2, that is,

Q0 ≤ B1 ≤ B

2 , (3.1.46)

which gives

Y (t) ≤ ln
(

B/2
1 + cB/2

)
+ ln(1 + δ) = ln

(
[1 + δ]B/2
1 + cB/2

)
.

Thus, since Q = eY

1−ceY
we get

Q ≤
1+δ
2 B

1 − cB δ
2
≤

1+δ
2 B

1 −B δ
2
. (3.1.47)

According to (3.1.35), we want to show that Q ≤ 3
4B. In light of (3.1.47), this is obtained 

subject to the condition that

1 ≤ 3
4

(
2

1 + δ

)(
1 −B

δ

2

)
,

that is

B ≤ 2
δ
− 4

3
1 + δ

δ
= 2 − 4δ

3δ . (3.1.48)

(3.1.48) will guarantee that (3.1.35) holds. Consequently, we choose δ > 0 small enough 
such that the upper bound of B given by the right hand side of (3.1.48) allows us to 
choose a B such that (3.1.41) holds. This choice of δ and B will then define a smallness 
condition on M by the condition (3.1.45) where N0 is defined in last line of (3.1.44).

Combining (3.1.34) and (3.1.35) with the classical continuation argument, we can 
conclude that the estimate (3.1.33) has been proved. �
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Remark 3.1. Clearly, we have that since sup c < 1, then inf n > 0. Consequently,

0 < inf n ≤ n = (1 − c)ρ ≤ ρ

a∗
A

1 + B
≤ ρ = a∗

Q

1 + cQ
≤ a∗B

a∗
A

1 + B
c̃1φ

α ≤ m− k∗ = cρ ≤ a∗Bc̃2φ
α, (3.1.49)

in view of (3.1.32) and (3.1.33) and the definitions of c and Q. These estimates ensure 
that the initial mixture of gas and liquid will remain a mixture of both phases at any 
point in [0, 1) in the sense that the gas mass will not vanish at any point nor the liquid 
mass. The liquid mass will vanish at the free interface and the decay rate is φ(x)α.

Remark 3.2. In light of Lemma 3.3 and Lemma 3.4 we have found positive uniform 
bounds on the quantity Q. However, it turns out that more detailed information about 
the interface behavior of Q is required for obtaining estimates of Qx in L1, see Lemma 3.9. 
More precisely, we will search for estimates of the decay rate of Q towards Q∗ at the free 
interface. This is the purpose of Lemma 3.5 and Lemma 3.7 where an estimate of the 
quantity |ln(Q∗(1 + cQ)) − ln(Q)| is obtained in two steps. In particular, we will need 
the uniform bound on the fluid velocity as given in (3.1.72) of Corollary 3.2 in order to 
obtain the estimate of the quantity ln Q

Q∗(1+cQ) .

Lemma 3.5. Under the assumptions of Theorem 2.1, it holds that

ln Q∗(1 + cQ)
Q

≤ C1φ
β1 , (3.1.50)

where β1 ∈ (0, α] ∩ (0, 12 − α].

Proof.

−Eux = −c
∂

∂t

(
ln 1 + cQ

Q

)
= −c

∂

∂t

(
ln Q∗(1 + cQ)

Q

)
. (3.1.51)

We fix x ∈ (0, 1) and introduce the variable Y (t) = ln(Q
∗(1+cQ)

Q ) = ln(Q
∗

Q + cQ∗) for 
Q ∈ (0, ∞) and observe that

Q = Q∗

eY − cQ∗ , (3.1.52)

where Y > ln(cQ∗) since Q > 0. Moreover,

P (c,Q) =
[
(1 − c)Q

]γ =
(
Q∗(1 − c)
Y ∗

)γ

= P (c, Y ).

e − cQ
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Clearly, P is a decreasing function relatively Y and tends to zero as Y goes to infinity. 
We may combine (3.1.21) and (3.1.51) and get

Y ′(t) = d

dt

(
− 1
cμ

1∫
x

u

)
+ 1

cμ

[
−p∗ + P − u2g − uh + j∗

]
= db

dt
+ f(Y ).

From (3.1.25), we obtain

f(Y ) ≤ 1
cμ

[
P − p∗

]
. (3.1.53)

Furthermore,

f(Y ) ≤ 0, (3.1.54)

provided that

P ≤ p∗,

i.e.,

Y ≥ ln
(
1 +

(
Q∗ − 1

)
c0
)

:= M2.

For the b function we have

∣∣b(t2) − b(t1)
∣∣ ≤ 2

cμ
φ(x)1/2 sup

t

( 1∫
0

u2 dy

)1/2

≤ 2φ 1
2−α

μc̃1
(2M)1/2 def:= N0,

subject to the condition that A, M are chosen according to (3.1.27). Hence, by 
Lemma 3.2, we get

Y (t) ≤ max
{
Y (0),M2

}
+ N0,

i.e.,

ln
(
Q∗(1 + cQ)

Q

)
≤ max

{
ln
(
Q∗(1 + c0Q0)

Q0

)
, ln

(
1 +

(
Q∗ − 1

)
c0
)}

+ 2φ 1
2−α

μc̃1
(2M)1/2

≤ C1φ
β1 ,

provided that
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ln
(
Q∗(1 + c0Q0)

Q0

)
≤ C̃φβ1

and β1 ∈ (0, α] ∩ (0, 12 − α]. �
Throughout the rest of the paper, we use C2 to denote a generic positive constant that 

depends on A, B, T , initial data and some other known constants. Moreover, C2 < ∞
for any given T < ∞.

Lemma 3.6. Under the assumptions of Theorem 2.1, it holds that

1∫
0

Eu2
x +

t∫
0

1∫
0

u2
t ≤ C2, (3.1.55)

for M satisfying the assumption (3.1.70).

Proof. Multiplying (2.1.2)3 (j replaced by j∗) by ut, integrating by parts over [0, 1], and 
using (2.1.2)1, we have

1∫
0

u2
t + μ

2
d

dt

1∫
0

Eu2
x

= d

dt

1∫
0

[
P (c,Q) − p∗ − u2g(cQ) − uh(cQ) + j∗(cQ)

]
ux + I, (3.1.56)

where we have used that ut(1, t) = d
dt

∫ 1
0 ux and

I = −
1∫

0

[
P (c,Q) − u2g(cQ) − uh(cQ) + j∗(cQ)

]
t
ux + 1

2

1∫
0

Etu
2
x

= −
1∫

0

[
P (c,Q)

]
t
ux +

1∫
0

[
u2g(cQ)

]
t
ux +

1∫
0

[
uh(cQ)

]
t
ux −

1∫
0

[
j∗(cQ)

]
t
ux + 1

2

1∫
0

Etu
2
x

= I1 + I2 + I3 + I4 + I5.

For I1, we have

I1 = −
1∫

0

∂P (c,Q)
∂Q

Qtux = a∗
1∫

0

∂P (c,Q)
∂Q

Q2u2
x ≤ C1

1∫
0

u2
x, (3.1.57)

where we have used (2.1.2)2 and (3.1.33). By (3.1.21), (3.1.32), (3.1.8), Hölder’s inequal-
ity and c = c0, we have
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|ux| ≤
1

μa∗

(
1
cA

+ 1
) 1∫

x

|ut| +
1

μa∗

(
1
cA

+ 1
)∣∣p∗ − P

∣∣ + C1c

(
1
cA

+ 1
)(

u2 + |u| + 1
)

≤ C1φ
1
2−α

( 1∫
0

u2
t

) 1
2

+ C1

c
+ C1

(
u2 + |u| + 1

)

≤ C1

( 1∫
0

u2
t

) 1
2

+ C1φ
−α + C1|u|

( 1∫
0

Eu2
x

) 1
2

+ C1|u| + C1. (3.1.58)

To estimate I1 further, we need to control 
∫ 1
0 u2

x with the help of (3.1.58), i.e.,

1∫
0

u2
x ≤ C1

( 1∫
0

u2
t

) 1
2 1∫

0

|ux| + C1

1∫
0

|ux|φ(x)−α + C1

( 1∫
0

Eu2
x

) 1
2 1∫

0

|ux||u|

+ C1

1∫
0

|ux|
(
|u| + 1

)

≤ C1

( 1∫
0

u2
t

) 1
2
( 1∫

0

Eu2
x

) 1
2

+ 1
4

1∫
0

u2
x + C1

1∫
0

φ(x)−2α

+ C1

( 1∫
0

Eu2
x

) 1
2
( 1∫

0

u2
x

) 1
2
( 1∫

0

u2

) 1
2

+ C1

1∫
0

(
u2 + 1

)

≤ C1

( 1∫
0

u2
t

) 1
2
( 1∫

0

Eu2
x

) 1
2

+ 1
2

1∫
0

u2
x + C1

1∫
0

Eu2
x + C1, (3.1.59)

where we have used the Cauchy inequality, Hölder inequality and (3.1.3). (3.1.59) implies 
that

1∫
0

u2
x ≤ C1

( 1∫
0

u2
t

) 1
2
( 1∫

0

Eu2
x

) 1
2

+ C1

1∫
0

Eu2
x + C1. (3.1.60)

Putting (3.1.60) into (3.1.57), and using Cauchy’s inequality again, we have

I1 ≤ 1
8

1∫
u2
t + C1

1∫
Eu2

x + C1. (3.1.61)

0 0
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For I2, we have

I2 =
1∫

0

[
2uutg(cQ) + u2g′(cQ)cQt

]
ux

≤ 1
8

1∫
0

u2
t + C1

1∫
0

(cQ)2u2u2
x − a∗

1∫
0

u2g′(cQ)cQ2u2
x

≤ 1
8

1∫
0

u2
t + C1‖u‖2

L∞

1∫
0

Eu2
x

≤ 1
8

1∫
0

u2
t + C1

( 1∫
0

Eu2
x

)2

, (3.1.62)

where we have used the Cauchy inequality, (2.1.2)2, (3.1.33) and (3.1.8).
Similar to I2, we have

I3 + I4 =
1∫

0

[
uth(cQ) + uh′(cQ)cQt

]
ux −

1∫
0

[
j∗(cQ)

]′
cQtux

≤ 1
8

1∫
0

u2
t + C1

1∫
0

Eu2
x + C1‖u‖L∞

1∫
0

Eu2
x

≤ 1
8

1∫
0

u2
t + C1

1∫
0

Eu2
x + C1

( 1∫
0

Eu2
x

)2

. (3.1.63)

Note that E = E(cQ) and that c = c0. Then

I5 = 1
2

1∫
0

E′cQtu
2
x

= −a∗

2

1∫
0

E′cQ2uxu
2
x ≤ C1

1∫
0

E|ux|u2
x. (3.1.64)

(3.1.58), (3.1.8) and the Cauchy inequality give that

|ux| ≤ C1

( 1∫
u2
t

) 1
2

+ C1φ
−α + C1

1∫
Eu2

x + C1. (3.1.65)

0 0
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Putting (3.1.65) into (3.1.64), and using Cauchy’s inequality and (3.1.60), we have

I5 ≤ C1

( 1∫
0

u2
t

) 1
2 1∫

0

Eu2
x + C1

1∫
0

u2
x + C1

( 1∫
0

Eu2
x

)2

≤ C1

( 1∫
0

u2
t

) 1
2 1∫

0

Eu2
x + C1

( 1∫
0

u2
t

) 1
2
( 1∫

0

Eu2
x

) 1
2

+ C1

( 1∫
0

Eu2
x

)2

+ C1

≤ 1
8

1∫
0

u2
t + C1

( 1∫
0

Eu2
x

)2

+ C1. (3.1.66)

With (3.1.61), (3.1.62), (3.1.63) and (3.1.66), we can deduce (3.1.56) combined with the
Cauchy inequality as follows.

1
2

1∫
0

u2
t + μ

2
d

dt

1∫
0

Eu2
x ≤ d

dt

1∫
0

[
P (c,Q) − p∗ − u2g(cQ) − uh(cQ) + j∗(cQ)

]
ux

+ C1

(
μ

1∫
0

Eu2
x

)2

+ C1. (3.1.67)

Integrating (3.1.67) over [0, t], and using (3.1.33), we have

t∫
0

1∫
0

u2
t + μ

1∫
0

Eu2
x ≤ 2

1∫
0

[
P (c,Q) − p∗ − u2g(cQ) − uh(cQ) + j∗(cQ)

]
ux

+ C1

t∫
0

(
μ

1∫
0

Eu2
x

)2

+ C1(t + 1)

≤ C1

1∫
0

|ux| + 2
1∫

0

u2E|ux| + C1

1∫
0

E|u||ux|

+ C1

t∫
0

(
μ

1∫
0

Eu2
x

)2

+ C2. (3.1.68)

Note that

C1

1∫
|ux| ≤ C1

( 1∫
Eu2

x

) 1
2
( 1∫ 1

E

) 1
2

≤ C1

( 1∫
Eu2

x

) 1
2

≤ C1 + μ

4

1∫
Eu2

x,
0 0 0 0 0
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2
1∫

0

u2E|ux| ≤ 2‖u‖L∞

( 1∫
0

Eu2
x

) 1
2
( 1∫

0

Eu2

) 1
2

≤ 2
μ

[
C1(A)

] 1
2

( 1∫
0

u2

) 1
2

μ

1∫
0

Eu2
x ≤ 2

μ

[
2

c̃1A
+ 1

] 1
2

(2M) 1
2μ

1∫
0

Eu2
x

and

C1

1∫
0

E|u||ux| ≤ C1

( 1∫
0

Eu2
x

) 1
2
( 1∫

0

Eu2

) 1
2

≤ C1

( 1∫
0

Eu2
x

) 1
2

≤ C1 + μ

4

1∫
0

Eu2
x.

These combined with (3.1.68) and Cauchy inequality conclude

t∫
0

1∫
0

u2
t + μ

2

1∫
0

Eu2
x ≤ C1

t∫
0

(
μ

1∫
0

Eu2
x

)2

+ 2
μ

[
2

c̃1A
+ 1

] 1
2√

2Mμ

1∫
0

Eu2
x + C2. (3.1.69)

If we take M small enough such that

2
μ

[
2

c̃1A
+ 1

] 1
2√

2M ≤ 1
4 , (3.1.70)

then the second term on the right side can absorb the second one on the right side. After 
that, we apply Gronwall’s inequality and get (3.1.55). �
Corollary 3.2. Under the assumptions of Theorem 2.1, it holds that

1∫
0

|ux|r ≤ C2 (3.1.71)

for some r ∈ (1, 2) such that r(α + 1) < 2, and

‖u‖L∞ ≤ C2, (3.1.72)

and

‖ux‖L4(0,T ;L2) ≤ C2. (3.1.73)
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Proof.

1∫
0

|ux|r =
1∫

0

E
r
2 |ux|rE− r

2

≤
( 1∫

0

Eu2
x

) r
2
( 1∫

0

E− r
2−r

) 2−r
2

≤ C2

( 1∫
0

[
1
cQ

+ 1
] r

2−r

) 2−r
2

≤ C2(c̃1, A)
( 1∫

0

φ(x)
αr
r−2

) 2−r
2

≤ C2,

for some r ∈ (1, 2) such that r(α + 1) < 2.
(3.1.72) can be obtained by using (3.1.55) and (3.1.8). With (3.1.60) and (3.1.55), we 

get (3.1.73). �
Armed with the uniform bound of the fluid velocity (3.1.72) we can proceed and get 

a bound that characterizes the decay rate of Q towards Q∗ in terms of the quantity 
ln Q

Q∗(1+cQ) .

Lemma 3.7. Under the assumptions of Theorem 2.1, it holds that

ln Q

Q∗(1 + cQ) ≤ C2φ
β1 , (3.1.74)

where β1 ∈ (0, α] ∩ (0, 12 − α].

Proof. We consider a fixed x ∈ (0, 1), hence, c(x) = c0(x) > 0. Next, introduce the 
variable Y (t) = ln( Q

Q∗(1+cQ) ) < ln( 1
c0Q∗ ) for Q ∈ (0, ∞) and observe that

Q = Q∗eY

1 − cQ∗eY
, Y ∈

(
−∞, ln

(
1/c0Q∗)). (3.1.75)

We have

P = (1 − c)γQγ = (1 − c)γ
(

Q∗eY

1 − cQ∗eY

)γ

= P (c, Y ). (3.1.76)

Then

Y ′(t) = d

dt

(
1
cμ

1∫
x

u

)
+ 1

cμ

[
p∗ − P + u2g + uh− j∗

]
= db + f(Y ),
dt
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where

f(Y ) = 1
cμ

[
p∗ − P − j∗ + u2g + uh

]
,

b(t) = 1
cμ

1∫
x

u.

For Q ∈ (0, ∞) (or Y ∈ (−∞, ln 1
cQ∗ )), we have

g = a∗α∗
l

(
cQ

α∗
l + cQ

)
≤ a∗Bc̃2φ

α

h = 2
(
ĉ1
ĉ0

)
a∗
(

cQ

α∗
l + cQ

)
≤ 2ĉ1a∗c̃2B

ĉ0α∗
l

φα

−j∗ = ρl

(
ĉ1
ĉ0

)2
a∗

k∗

(
cQ

α∗
l + cQ

)
≤ ρl

(
ĉ1
ĉ0

)2
a∗c̃2B

k∗α∗
l

φα. (3.1.77)

Using (3.1.72) and (3.1.77), we get

f(Y ) ≤ 1
cμ

[
p∗ − P +

(
ρl

(
ĉ1
ĉ0

)2
a∗c̃2B

k∗α∗
l

+ C2(C2 + 1)
(
a∗Bc̃2 + 2ĉ1a∗c̃2B

ĉ0α∗
l

))
φα

]
= 1

cμ

[
p∗ + B̃φα − P

]
≤ 0, (3.1.78)

where B̃ = ρl( ĉ1ĉ0 )2 a∗c̃2B
k∗α∗

l
+ C2(C2 + 1)(a∗Bc̃2 + 2ĉ1a∗c̃2B

ĉ0α∗
l

), for

Y ≥ M2 := ln (p∗ + B̃φα)
1
γ

(1 − c0)Q∗ + c0Q∗(p∗ + B̃φα)
1
γ

.

Next, we have to estimate b and see that it can be bounded as a function of time. Clearly, 
we have that

∣∣b(t2) − b(t1)
∣∣ ≤ 2

cμ
φ(x)1/2 sup

t

( 1∫
0

u2 dy

)1/2

≤ C1φ
1/2−α := N0. (3.1.79)

Consequently, we apply Lemma 3.2 to get

Y (t) ≤ max
{
Y (0),M2

}
+ N0 ≤ max

{
Y (0),M2

}
+ C1φ

1/2−α. (3.1.80)
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Note that

• 1
2 ≤ c0 ≤ 1. For this case, φα ≥ 1

2c̃2 . Then

M2 = ln (p∗ + B̃φα)
1
γ

(1 − c0)Q∗ + c0Q∗(p∗ + B̃φα)
1
γ

≤ ln (p∗ + B̃φα)
1
γ

c0Q∗(p∗ + B̃φα)
1
γ

= ln 1
c0Q∗ ≤ ln 2

Q∗ ≤ 2c̃2 max
{

ln 2
Q∗ , 0

}
φα.

• 0 ≤ c0 < 1
2 . For this case, we get

M2 = ln (p∗ + B̃φα)
1
γ

(1 − c0)Q∗ + c0Q∗(p∗ + B̃φα)
1
γ

≤ ln (p∗ + B̃φα)
1
γ

(1 − c0)Q∗ ≤ ln
(p∗ + B̃

c̃1
c0)

1
γ

(1 − c0)Q∗

=
c0∫

0

d

dx
ln

(p∗ + B̃
c̃1
x)

1
γ

(1 − x)Q∗ dx

=
c0∫

0

(1 − x)Q∗

(p∗ + B̃
c̃1
x)

1
γ

1
γ

B̃
c̃1

(p∗ + B̃
c̃1
x)

1
γ −1(1 − x) + (p∗ + B̃

c̃1
x)

1
γ

(1 − x)2Q∗ dx

=
c0∫

0

1
γ

B̃
c̃1

(p∗ + B̃
c̃1
x)−1(1 − x) + 1

1 − x
dx ≤ 1

γp∗
B̃

c̃1
c0 + c0

1 − c0

≤
(

1
γp∗

B̃

c̃1
+ 2

)
c̃2φ

α.

Consequently, for any c0 ∈ [0, 1], we have

M2 ≤ max
{

2c̃2 max
{

ln 2
Q∗ , 0

}
,

(
1

γp∗
B̃

c̃1
+ 2

)
c̃2

}
φα. (3.1.81)

By (3.1.80), (3.1.81) and the initial assumption

Y (0) = ln
(

Q0

Q∗(1 + c0Q0)

)
≤ C̃φβ1 ,

we have

Y (t) ≤ C2φ
β1

for β1 ∈ (0, α] ∩ (0, 1 − α]. �
2
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Combining Lemma 3.5 with Lemma 3.7, we get a corollary as follows:

Corollary 3.3. Under the assumptions of Theorem 2.1, it holds that∣∣∣∣ln( Q

Q∗(1 + cQ)

)∣∣∣∣ ≤ C2φ
β1 (3.1.82)

for β1 ∈ (0, α] ∩ (0, 12 − α].

Based on (3.1.82), the behavior of |Q − Q∗| as x goes to 1 will be obtained. This is 
the purpose of the next corollary.

Corollary 3.4. Under the assumptions of Theorem 2.1, it holds that∣∣u(x, t)
∣∣ ≤ C2x

r−1
r (3.1.83)

for some r ∈ (1, 2) such that r(α + 1) < 2, and∣∣Q−Q∗∣∣ ≤ C2φ
β1 (3.1.84)

for β1 ∈ (0, α] ∩ (0, 12 − α].

Proof. (3.1.83) can be obtained as follows:

∣∣u(x, t)
∣∣ =

∣∣u(x, t) − u(0, t)
∣∣ =

∣∣∣∣∣
x∫

0

uy(y, t) dy

∣∣∣∣∣ ≤ x
r−1
r

( x∫
0

|uy|r dy
) 1

r

≤ C2x
r−1
r ,

where we have used the boundary condition, Hölder’s inequality and (3.1.71).
By (3.1.82), we get

exp
{
−C2φ

β1
}
≤ Q

Q∗(1 + cQ) ≤ exp
{
C2φ

β1
}
.

This concludes

Q∗ exp
{
−C2φ

β1
}
≤ Q ≤ Q∗(1 + c̃2Bφα

)
exp

{
C2φ

β1
}
, (3.1.85)

where we have used (3.1.33). With (3.1.85), we easily get

Q∗(exp
{
−C2φ

β1
}
− 1

)
≤ Q−Q∗ ≤

(
exp

{
C2φ

β1
}
− 1

)
Q∗ + Q∗c̃2Bφα exp

{
C2φ

β1
}
,

which combined with the fact that

−B1y ≤ exp{−y} − 1, exp{y} − 1 ≤ B2y
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for y in a bounded interval [0, C2] and some positive constants B1(C2) and B2(C2), 
deduces (3.1.84). �
Lemma 3.8. Under the assumptions of Theorem 2.1, it holds that

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2 ≤ C2, (3.1.86)

for some α1 ∈ (0, 1) such that φ
1−α1−α+2β1

2 c0,x ∈ L2 and

φ(x)
1−α1

2

[
c0 ln

(
Q0

Q∗(1 + c0Q0)

)]
x

∈ L2.

Proof. We have from (3.1.21) and (3.1.22) that(
u + μ

[
c ln

(
cQ

1 + cQ

)]
x

)
t

+
(
P − u2g − uh + j∗

)
x

= 0.

This also corresponds to(
u + μ

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

)
t

+
(
P − u2g − uh + j∗

)
x

= 0, (3.1.87)

where we have used c = c0 due to (1.2.6)1.
Multiplying (3.1.87) by φ(x)1−α1 [c ln( Q

Q∗(1+cQ) )]x, and integrating by parts over [0, 1], 
we have

μ

2
d

dt

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2

= −
1∫

0

φ(x)1−α1ut

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

−
1∫

0

φ(x)1−α1

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

[
P (c,Q)

]
x

+
1∫

0

φ(x)1−α1

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

[
u2g(cQ)

]
x

+
1∫
φ(x)1−α1

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

[
uh(cQ)

]
x

0
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−
1∫

0

φ(x)1−α1

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

[
j∗(cQ)

]
x

=
5∑

i=1
II i. (3.1.88)

For II 1, using the Cauchy inequality, we have

II 1 ≤ C2

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2 + C2

1∫
0

u2
t . (3.1.89)

For II 2, we have

II 2 = −γ

1∫
0

φ(x)1−α1

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

[
(1 − c)Q

]γ−1[
Qx(1 − c) − cxQ

]

= −γ

1∫
0

φ(x)1−α1(1 − c)γQγ−1Qx

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

+ γ

1∫
0

φ(x)1−α1

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

[
(1 − c)Q

]γ−1
cxQ. (3.1.90)

One can easily figure out how Qx is linked to [c ln( Q
Q∗(1+cQ) )]x by using some direct 

calculations, i.e.,[
c ln

(
Q

Q∗(1 + cQ)

)]
x

=
[
ln
(

Q

Q∗(1 + cQ)

)
− cQ

1 + cQ

]
cx + c

Q(1 + cQ)Qx.

Hence

Qx = (1 + cQ)Q
c

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

−
[
1
c
(1 + cQ) ln

(
Q

Q∗(1 + cQ)

)
−Q

]
cxQ. (3.1.91)

Putting (3.1.91) into (3.1.90), we have

II 2 = −γ

1∫
0

φ(x)1−α1
1 + cQ

c

[
(1 − c)Q

]γ∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2

+ γ

1∫
φ(x)1−α1

[
(1 − c)Q

]γ

0
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×
[
1
c
(1 + cQ) ln

(
Q

Q∗(1 + cQ)

)
−Q

]
cx

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

+ γ

1∫
0

φ(x)1−α1

[
c ln

(
Q

Q∗(1 + cQ)

)]
x

[
(1 − c)Q

]γ−1
cxQ

= −II 2,0 + II 2,1 + II 2,2, (3.1.92)

where II 2,1 and II 2,2 can be handled by using Cauchy’s inequality combined with the 
first term of the right side of (3.1.92), i.e.,

II 2,1 ≤ II 2,0

8

+ C2

1∫
0

φ(x)1−α1
[
(1 − c)Q

]γ c

1 + cQ

[
1
c
(1 + cQ) ln

(
Q

Q∗(1 + cQ)

)
−Q

]2

|cx|2

≤ II 2,0

8 + C2

1∫
0

φ(x)1−α1+α
[
φβ1−α + 1

]2|c0,x|2

≤ II 2,0

8 + C2

1∫
0

φ(x)1−α1−α+2β1 |c0,x|2, (3.1.93)

and

II 2,2 ≤ II 2,0

8 + C2

1∫
0

φ(x)1−α1
[
(1 − c)Q

]γ−2|c0,x|2Q2 c

1 + cQ

≤ II 2,0

8 + C2

1∫
0

φ(x)1−α1+α|c0,x|2

≤ II 2,0

8 + C2

1∫
0

φ(x)1−α1−α+2β1 |c0,x|2, (3.1.94)

where we have used α ≥ β1. Putting (3.1.93) and (3.1.94) into (3.1.92), we have

II 2 ≤ −3II 2,0

4 + C2

1∫
φ(x)1−α1−α+2β1 |c0,x|2. (3.1.95)
0



132 S. Evje, H.Y. Wen / Journal of Functional Analysis 268 (2015) 93–139
For II 3, we have

II 3 ≤ C2

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣[cQ|ux| + |cx| + |cQx|
]
, (3.1.96)

where we have used (3.1.72) and (3.1.33). (3.1.91) implies that

|cQx| ≤ C2

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣ + C2|c0,x|. (3.1.97)

Putting (3.1.97) into (3.1.96), we have

II 3 ≤ C2

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2 + C2

1∫
0

Eu2
x + II 2,0

8

+ C2

1∫
0

φ(x)1−α1
c

1 + cQ

[
(1 − c)Q

]−γ
c2x

≤ C2

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2 + II 2,0

8

+ C2

1∫
0

φ(x)1−α1+αc20,x + C2, (3.1.98)

where we have used the Cauchy inequality, (3.1.55), (3.1.33), (3.1.20) and c = c0. Similar 
to II 3, for II 4 and II 5, we have

II 4 + II 5 ≤ C2

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2

+ II 2,0

8 + C2

1∫
0

φ(x)1−α1+αc20,x + C2. (3.1.99)

Putting (3.1.89), (3.1.95), (3.1.98) and (3.1.99) into (3.1.88), we have

1
2
d

dt

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2

≤ C2

1∫
φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2

0
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+ C2

1∫
0

u2
t + C2

1∫
0

φ(x)1−α1−α+2β1c20,x + C2

≤ C2

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2 + C2

1∫
0

u2
t + C2,

where we have used

φ(x)
1−α1−α+2β1

2 c0,x ∈ L2.

This combined with (3.1.55) and Gronwall inequality concludes (3.1.86). �
Lemma 3.9. Under the assumptions of Theorem 2.1, it holds that

1∫
0

|Qx| ≤ C2. (3.1.100)

Proof. Based on (3.1.91) which is combined with (3.1.33), (3.1.82), (3.1.86) and Cauchy 
inequality, (3.1.100) can be obtained as follows.

1∫
0

|Qx| ≤ C2

1∫
0

φ
1−α1

2 φ−α− 1−α1
2

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣ + C2

1∫
0

[
φβ1−α + 1

]
|c0,x|

≤ C2

1∫
0

φ(x)1−α1

∣∣∣∣[c ln
(

Q

Q∗(1 + cQ)

)]
x

∣∣∣∣2

+ C2

1∫
0

φ−2α−1+α1 + C2

1∫
0

φβ1−α|c0,x|

≤ C2 + C2

1∫
0

φ(x)1−α1−α+2β1 |c0,x|2 + C2

1∫
0

φ−1+α1−α ≤ C2,

where we have additionally used α ≥ β1, α1 > 2α and

φ(x)
1−α1−α+2β1

2 c0,x ∈ L2. �
Corollary 3.5. Under the assumptions of Theorem 2.1, it holds that

t∫ ( 1∫
Q2

t

)2

≤ C2, (3.1.101)

0 0
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1∫
0

∣∣Q(x, t) −Q(x, s)
∣∣2 ≤ C2|t− s| 32 , (3.1.102)

1∫
0

∣∣u(x, t) − u(x, s)
∣∣2 ≤ C2|t− s|. (3.1.103)

Proof. To obtain (3.1.101)–(3.1.103), we use (2.1.2)2, (3.1.33), (3.1.73), Hölder’s inequal-
ity and (3.1.55). Specifically, we have

t∫
0

( 1∫
0

Q2
t dx

)2

dτ ≤ C2

t∫
0

( 1∫
0

u2
x dx

)2

dτ ≤ C2,

1∫
0

∣∣Q(x, t) −Q(x, s)
∣∣2 dx =

1∫
0

∣∣∣∣∣
t∫

s

[
Q(x, τ)

]
τ
dτ

∣∣∣∣∣
2

dx ≤ (t− s)
t∫

s

1∫
0

∣∣[Q(x, τ)
]
τ

∣∣2 dx dτ
≤ (t− s) 3

2

[ t∫
s

( 1∫
0

∣∣[Q(x, τ)
]
τ

∣∣2 dx)2

dτ

] 1
2

≤ C2|t− s| 32 ,

and

1∫
0

∣∣u(x, t) − u(x, s)
∣∣2 dx =

1∫
0

∣∣∣∣∣
t∫

s

[
u(x, t)

]
τ
dτ

∣∣∣∣∣
2

dx

≤ (t− s)
t∫

s

1∫
0

∣∣[u(x, t)
]
τ

∣∣2 dx dτ ≤ C2|t− s|. �

The existence part of Theorem 2.1. Based on Lemmas 3.1, 3.4–3.9 and Corollar-
ies 3.1–3.5, we can construct a weak solution to the initial boundary value problem 
(2.1.2)–(2.1.5) by using the finite difference approximation similar to that in [4]. Then 
we complete the proof of Theorem 2.1 except the uniqueness.

4. Uniqueness

Next, we seek to prove the uniqueness. A new challenge here is to handle the pressure 
function such that we can produce an estimate of the form 

√
cQ̄ūx (see (4.8)–(4.11)). As 

a first step, we need

T∫
‖ux‖2

L∞ ≤ C2. (4.1)

0
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In fact, using (3.1.58) and (3.1.72), we have

|ux|2 ≤ C2

1∫
0

u2
t + |p∗ − P |2

c2
+ C2 ≤ C2

1∫
0

u2
t + C2φ

2β1−2α + C2, (4.2)

where we have used the conclusion due to (3.1.84)

∣∣P − p∗
∣∣ =

∣∣(1 − c)γQγ −
(
Q∗)γ∣∣

≤
∣∣[(1 − c)γ − 1

]
Qγ

∣∣ +
∣∣Qγ −

(
Q∗)γ∣∣

≤ C2
(
φα + φβ1

)
.

To ensure (4.1), we need to assume β1 = α (we cannot assume β1 > α due to β1 ∈
(0, α] ∩ (0, 12 − α]). Then (4.1) follows from (4.2) and (3.1.55).

As far as the proof of the uniqueness is concerned, suppose that (c1, Q1, u1) and 
(c2, Q2, u2) are two solutions to (2.1.2) with the same initial-boundary conditions. To 
prove the uniqueness, it suffices to get

(c1, Q1, u1) = (c2, Q2, u2). (4.3)

Since c1 = c0 and c2 = c0 due to (2.1.2)1 and (2.1.5), we get c1 = c2 (denoted by c). 
Denote Q̄ = Q1 − Q2 and ū = u1 − u2 which satisfy the following system due to 
(2.1.2)–(2.1.5):

{
Q̄t + a∗Q̄(Q1 + Q2)(u1)x + a∗Q2

2ūx = 0, x ∈ (0, 1), t > 0,
ūt + L1 + L2 + L3 + L4 = μ

[
E(cQ1)ūx

]
x

+ μ
[(
E(cQ1) − E(cQ2)

)
(u2)x

]
x
,

(4.4)

where

L1 =
[
P (c,Q1) − P (c,Q2)

]
x
,

L2 = −
[
u2

1g(cQ1) − u2
2g(cQ2)

]
x

= −
[
ū(u1 + u2)g(cQ1)

]
x
−
[(
g(cQ1) − g(cQ2)

)
u2

2
]
x
,

L3 = −
[
u1h(cQ1) − u2h(cQ2)

]
x

= −
[
ūh(cQ1)

]
x
−
[(
h(cQ1) − h(cQ2)

)
u2

]
x
,

L4 =
[
j(cQ1) − j(cQ2)

]
x
.

The initial-boundary conditions are stated as follows:

Q̄(x, 0) = 0, ū(x, 0) = 0, x ∈ [0, 1],

ū(0, t) = 0, Q̃(1, t) = 0, t ≥ 0. (4.5)
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Multiplying (4.4)2 by ū, and integrating by parts over [0, 1], we have

1
2
d

dt

1∫
0

ū2 + μ

1∫
0

E(cQ1)ū2
x

= −μ

1∫
0

[
E(cQ1) − E(cQ2)

]
(u2)xūx −

1∫
0

L1ū−
1∫

0

L2ū−
1∫

0

L3ū−
1∫

0

L4ū

= R1 + R2 + R3 + R4 + R5. (4.6)

For R1, using the Cauchy inequality and (3.1.32), we have

R1 ≤ C2

1∫
0

c
∣∣Q̄(u2)xūx

∣∣ ≤ μ

8

1∫
0

E(cQ1)ū2
x + C2

1∫
0

c|Q̄|2
∣∣(u2)x

∣∣2

≤ μ

8

1∫
0

E(cQ1)ū2
x + C2

∥∥(u2)x
∥∥2
L∞

1∫
0

|Q̄|2. (4.7)

For R2, we have

R2 =
1∫

0

(1 − c)γ
[
Qγ

1 −Qγ
2
]
ūx dx

=
1∫

0

(1 − c)γ ūx(Q1 −Q2)
1∫

0

γ
[
ξQ1 + (1 − ξ)Q2

]γ−1
dξ dx

=
1∫

0

(1 − c0)γ ūxQ̄

( 1∫
0

γ
[
ξQ1 + (1 − ξ)Q2

]γ−1
dξ

−
1∫

0

γ
[
ξQ∗ + (1 − ξ)Q∗]γ−1

dξ

)
dx

+ γ
[
Q∗]γ−1

1∫
0

(1 − c0)γ ūxQ̄ dx

≤ C2

1∫
0

|ūx||Q̄|
(∣∣Q1 −Q∗∣∣ +

∣∣Q2 −Q∗∣∣) dx + γ

a∗
[
Q∗]γ−3

1∫
0

(1 − c0)γa∗Q2
2ūxQ̄ dx

+ γ

a∗
[
Q∗]γ−3

1∫
(1 − c0)γa∗

([
Q∗]2 −Q2

2
)
ūxQ̄ dx
0
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≤ C2

1∫
0

φβ1 |ūx||Q̄| dx + γ

a∗
[
Q∗]γ−3

1∫
0

(1 − c0)γa∗Q2
2ūxQ̄ dx

= R2,1 + R2,2, (4.8)

where we have used (3.1.33), (3.1.32) and (3.1.84).
For R2,1, using the Cauchy inequality and (3.1.32), we have

R2,1 ≤ μ

8

1∫
0

E(cQ1)ū2
x + C2

1∫
0

φ2β1−α|Q̄|2 ≤ μ

8

1∫
0

E(cQ1)ū2
x + C2

1∫
0

|Q̄|2, (4.9)

since β1 = α. For R2,2, using (4.4), we have

R2,2 = − γ

2a∗
[
Q∗]γ−3 d

dt

1∫
0

(1 − c0)γQ̄2 − γ

a∗
[
Q∗]γ−3

1∫
0

(1 − c0)γa∗(Q1 + Q2)(u1)xQ̄2

≤ − γ

2a∗
[
Q∗]γ−3 d

dt

1∫
0

(1 − c0)γQ̄2 + C2
∥∥(u1)x

∥∥
L∞

1∫
0

Q̄2. (4.10)

Putting (4.9) and (4.10) into (4.8), we have

R2 ≤ μ

8

1∫
0

E(cQ1)ū2
x

− γ

2a∗
[
Q∗]γ−3 d

dt

1∫
0

(1 − c0)γQ̄2 + C2
(∥∥(u1)x

∥∥
L∞ + 1

) 1∫
0

Q̄2. (4.11)

For R3, we have

R3 = −
1∫

0

(
ū(u1 + u2)g(cQ1) +

[
g(cQ1) − g(cQ2)

]
u2

2
)
ūx ≤ C2

1∫
0

c
(
|ū| + |Q̄|

)
|ūx|

≤ μ

8

1∫
0

E(cQ1)ū2
x + C2

1∫
0

ū2 + C2

1∫
0

Q̄2. (4.12)

Similar to R3, we have

R4 + R5 ≤ μ

8

1∫
E(cQ1)ū2

x + C2

1∫
ū2 + C2

1∫
Q̄2. (4.13)
0 0 0
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Putting (4.7), (4.11), (4.12) and (4.13) into (4.6), we have

d

dt

1∫
0

(
ū2 + γ

a∗
[
Q∗]γ−3(1 − c0)γQ̄2

)
+ μ

1∫
0

E(cQ1)ū2
x

≤ C2
(∥∥(u2)x

∥∥2
L∞ +

∥∥(u1)x
∥∥
L∞ + 1

) 1∫
0

Q̄2 + C2

1∫
0

ū2

≤ C2
(∥∥(u2)x

∥∥2
L∞ +

∥∥(u1)x
∥∥
L∞ + 1

) 1∫
0

(
ū2 + γ

a∗
[
Q∗]γ−3(1 − c0)γQ̄2

)
, (4.14)

where we have used sup c0 < 1. (4.14) combined with (4.1), Gronwall inequality and 
(4.5) turns out that

1∫
0

(
ū2 + γ

a∗
[
Q∗]γ−3(1 − c0)γQ̄2

)
= 0.

This combined with the fact c1 = c2 = c0 gives (4.3).
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