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Abstract. The purpose of this paper is to explain in more detail some ideas used recently by the authors
to construct a class of hybrid explicit-implicit schemes for solving the two-fluid model relevant for well and pipe
flow simulations [6, 7, 8]. We here propose a framework which allows us to implement these ideas for a general
system of hyperbolic conservation laws ut + f(u)x = 0. Main ingredients in this construction are (i) a splitting
f(u) = g(u) + h(u) of the given flux function f ; (ii) a corresponding decomposition of the original set of equations
into two subsystems, one set of equations associated with the g flux, another with the h flux; (iii) inclusion of a set
of flux evolution equations associated with the flux component h.

We demonstrate that a sound and consistent discretization of this extended system gives rise to a class of central
schemes which contains as a special case, corresponding to the splitting g = h = 1

2
f , the FORCE scheme studied

by Toro [20]. This justifies referring to the proposed class as eXtended FORCE (X-FORCE). We discuss basic
properties of the X-FORCE class for nonlinear scalar conservation laws. By exploiting that the X-FORCE schemes
can be interpreted through Riemann solutions, we construct higher order X-FORCE schemes by closely following
along the line of the non-staggered NT scheme presented in [14]. Characteristic behavior of various X-FORCE
schemes is demonstrated through calculation of numerical examples.
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1. Introduction. We focus on a general system of conservation laws in the form

ut + f(u)x = 0, u(x, 0) = u0(x). (1.1)

We are concerned with methods for numerical computation of solutions of hyperbolic conservation
laws. One simple, but important special case of (1.1), is the isothermal Euler model given by

∂tρ + ∂xm = 0,

∂tm + ∂x

(
m2/ρ + p(ρ)

)
= 0,

(1.2)

where ρ is density, v fluid velocity, ρv = m momentum, and p = p(ρ) scalar pressure. Multiplying
the continuity equation by p′(ρ) we get the pressure evolution equation

∂tp + p′(ρ)∂xm = 0. (1.3)

A natural approach could then be to work directly with the pressure variable p and the corre-
sponding pressure evolution equation (1.3), instead of the continuity equation (first equation) of
(1.2) and the density variable ρ. A major difficulty with this approach is that the resulting model
is written in a non-conservative form. Combined with use of donor-cell techniques a discretization
of the model in this form typically leads to loss of masses as well as incorrect shock speed when the
solution involves shocks [13]. Nevertheless, many simulators currently in use for studying complex
phenomena involving equations similar to (1.2), rely on precisely such a donor-cell pressure-based
discretization. Examples include for instance the OLGA [1] and PeTra [16] two-phase computer
codes developed for the petroleum industry. A motivation for the pressure-based approach in the
context of two-phase flow seems to be (i) a desire to more directly apply a discretization that is
implicit enough to ensure stability for larger timesteps than those dictated by the highest wave
speed (classical CFL condition); (ii) complicated source terms as well as additional equations,
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typically needed for modeling of complex phenomena, can more easily be incorporated in this
approach.

The questions we deal with in this paper are:
(i) How can we generalize the above pressure-based approach, often used for models involving

equations of the generic form (1.3), to a general conservation law (1.1)?
(ii) Can we relate such a ”generalized” pressure-based approach to the theory for conservative

and non-oscillatory methods as developed in the 80s?
Hence, our main aim is not to develop new schemes, but, in view of existing theory for conservative
methods for general conservation laws, to try to shed some light on the classical idea of using a
pressure evolution equation. Before we focus more on the implementation of this programme, we
review briefly one class of such classical conservative schemes, so-called centred schemes.

1.1. Centred schemes. The most accurate methods for solving hyperbolic equations are
upwind schemes. However, these require the explicit provision of wave propagation information,
which is normally achieved via local solutions of the Riemann problem, approximate or exact.

For more complicated hyperbolic systems it may not be desirable or possible to rely on the
solutions of corresponding Riemann problems. In this case we have no option but to use a centred
type of scheme in which no explicit information regarding wave propagation is used in the scheme,
apart from a more or less rough estimate of the maximal wave speed needed for determining the
stability criteria associated with an explicit time discretization.

Toro and coworkers have proposed the so-called FORCE scheme as a basic centred scheme. It
is known that this scheme possesses various good properties [20, 19, 2, 4]. It has been shown to be
monotone, to possess the optimal stability condition, and to have the smallest numerical viscosity
when it is considered for a scalar linear conservation law. Moreover, entropy consistence has
also been shown for a general nonlinear system of conservation laws and convergence results have
been obtained for special systems like the isentropic Euler equations and shallow water equations
[4]. In [19] the FORCE flux was used to construct simple and general upwind numerical fluxes
in a multi-stage predictor-corrector fashion for a general nonlinear hyperbolic conservation law.
Numerical results were provided for the Euler equations demonstrating that the resulting scheme
gave results similar to the best of upwind schemes, using a reasonable number of stages. Second-
order extensions of FORCE have also been explored for the one-dimensional Euler equations
[2] and FORCE-based schemes can also be extended to solve multi-dimensional problems in a
straightforward way following established approaches [4, 19].

1.2. X-FORCE. In a series of papers [6, 7, 8] we derived explicit as well as hybrid explicit-
implicit schemes for solving the 4-equation isothermal two-fluid model relevant to well and pipe
flow simulations. The main ingredients in this construction are

(i) a splitting of the flux into a convective flux component and a pressure flux component;
(ii) development and inclusion of a pressure evolution equation;
(iii) consistent discretization of the convective flux and the pressure flux;
(iv) development of hybrid central-upwind mass fluxes for accurate resolution of mass fronts.

The points (i)–(iii) lead to central type schemes which are stable and robust (both explicit and im-
plicit variants are considered), but they might give an inaccurate resolution of the slow mass waves.
Point (iv) gives a recipe for improving the resolution of these waves by carefully incorporating an
upwind component in the convective flux without affecting the robustness.

The aim of this paper is to see how the points (i)–(iii) can be put into a general framework
where we consider an arbitrary conservation law (1.1). Main ingredients in this framework are

(i) a splitting of the flux f into two components g and h such that f(u) = g(u) + h(u), and
a corresponding decomposition of the original model into two sub-systems where one of
them is associated with the g flux, the other with the h flux;

(ii) development and inclusion of flux evolution equations associated with the h flux;
(iii) consistent discretization of this extended model.
It turns out, as a somewhat surprising result, that the proposed class of schemes based on the

above steps (i)–(iii), is closely linked to the FORCE scheme. More precisely, the special choice of
flux splitting where g = h = 1/2f reproduces the FORCE scheme, whose numerical flux is the sum
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of a half Lax-Friedrich flux component and a half Lax-Wendroff flux component. Consequently,
we propose to refer to this class as eXtended FORCE (X-FORCE).

This relation is then used to give an interpretation of the X-FORCE schemes through Riemann
solutions, similar to what has been done for the FORCE scheme [4]. For a nonlinear scalar
conservation law basic properties of the X-FORCE schemes are verified. In particular, we show
that these schemes are TVD under natural CFL conditions and we identify conditions which ensure
that the schemes are monotone. Entropy consistency is verified by making use of the interpretation
via Riemann solutions. Equipped with the Riemann-based formulation of X-FORCE we describe
an extension to higher order spatial accuracy by using linear interpolants in the evaluation of
integrals, similar to what is done in the construction of the non-staggered NT scheme presented
in [14]. In particular, the second-order X-FORCE class reproduces the non-staggered NT scheme
by using the special splitting g = f and h = 0. We also obtain a second-order type of FORCE
scheme, different from the one presented in [2], by using the splitting g = h = 1

2f . We demonstrate
numerically that the TVD property possessed by the first order X-FORCE class seems to carry
over to the second order class (under appropriate CFL conditions).

We also demonstrate the possibility which the X-FORCE class offers regarding construction
of simple semi-implicit central schemes for some special (but important) systems of conservation
laws, without making use of any Jacobian matrix calculation. For complicated systems where some
of the eigenvalues may take very large values, it sometimes is desirable to avoid the strict CFL
stability criterion associated with an explicit time discretization. In order to achieve this goal one
must employ a partial or full implicit treatment of the fluxes. Typically, this requires information
about the Jacobian of the flux. However, this information may not be so easy to obtain for the
models we have in mind - complicated models where the explicit FORCE scheme potentially is
an interesting candidate. The proposed X-FORCE class seems to offer some flexibility in that
respect.

This aspect is illustrated by considering two concrete models. In particular, we explore X-
FORCE schemes for two systems of conservation laws, the single phase isothermal Euler equations
and the 4-equations isothermal two-fluid model. For the isothermal Euler model we compare the
performance of the FORCE scheme with that of an X-FORCE scheme whose splitting is such that
the g component is associated with the convective part whereas the h component is associated
with the pressure part. We consider both an explicit and a semi-implicit variant of this X-FORCE
scheme. We also identify corresponding X-FORCE schemes for the isothermal two-fluid model
and thereby place the central schemes studied in [6, 7, 8] into our current framework.

The rest of this paper is organized as follows. In Section 2 we construct the X-FORCE class.
Section 3 describes how the X-FORCE class can be interpreted through Riemann solutions. Sec-
tion 4 contains analysis of basic properties of the X-FORCE schemes as well as construction of
higher order X-FORCE schemes. In Section 5 we focus on X-FORCE for two concrete systems,
the isothermal Euler model and the 4-equations isothermal two-fluid model. Explicit and hybrid
explicit-implicit variants are discussed. Section 6 is devoted to some simple numerical investiga-
tions where the performance of various X-FORCE schemes is explored. Section 7 contains a brief
summary of the content of this paper and some concluding remarks are also given.

2. X-FORCE: a class of centred schemes. In this section we describe a framework for
constructing discrete approximations to a general conservation law (1.1). The proposed approach
represents a generalization of ideas used in [6, 7, 8] for construction of certain numerical schemes
for the 4-equations two-fluid model. A main ingredient in this construction is the use of a flux
evolution equation.

To illustrate the idea, let us recall that the Godunov scheme is defined as

uk+1
j = uk

j − λ
(
fj+1/2 − fj−1/2

)
, λ =

∆t

∆x
,

where the numerical flux fj+1/2 is defined by

fj+1/2 = f(uj+1/2), uj+1/2 = uR
(
xj+1/2, t; uj , uj+1

)
,
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where uR
(
xj+1/2, t; uj , uj+1

)
represents the solution of the Riemann problem for (1.1) in the time

period [tk, tk+1] with respect to the initial data

u(x, tk) =

{
uj , if x < xj+1/2,

uj+1, if x > xj+1/2.

Alternatively, we may try to find an evolution equation for f(u), that is, a flux evolution equation.
Armed with this, we can seek to directly obtain an expression for the flux f(u)j+1/2 at the cell-
interface xj+1/2 without solving any Riemann problem. First, we describe how this approach can
be used to reproduce the classical Lax-Wendroff scheme. Although the presentation in this section
is given for a scalar conservation law, its extension to systems of conservation laws is direct and
straightforward. Two examples are discussed in Section 5.

2.1. Lax-Wendroff scheme obtained via a flux evolution equation. Assume that we
are given an approximation uk(x) ≈ u(x, tk) where u is the solution of (1.1). We now want to
calculate an approximation uk+1(x) ≈ u(x, tk+1). For that purpose, locally in the time period
[tk, tk+1], we want to approximate

vt + f(v)x = 0, v(·, 0) = uk(·), (2.1)

by making use of a flux evolution equation for f . Multiplying (2.1) by f ′(v) we obtain the following
equation for f̃(x, t) = f(v(x, t))

f̃t + a(x, t)f(v)x = 0, a(x, t) = f ′(v(x, t)). (2.2)

Thus, we may approximate (2.1) by the following extended model with v(x, t) and f̃(x, t) as
unknown variables.

vt + f̃x = 0, v(·, 0) = uk(·), t ∈ (0,∆t]

f̃t + a(x, t)f(v)x = 0, f̃(·, 0) = f(uk)(·), t ∈ (0, ∆t].
(2.3)

Finally, we set uk+1(x) = v(x, ∆t).

Method of lines. We want to construct an approximation to the original model (2.1) by
defining an approximation to the extended model (2.3). As a first step to build an approximation
we apply a ”method of lines” approach where we assume that the computational domain is divided
into N cells of grid size ∆x, indexed by j = {1, . . . , N} and then approximate (2.3) with a system
of 2N ODEs. More precisely, we propose to consider a semi-discrete version of (2.3) where the
first equation is discretized at the cell center xj whereas the second equation is discretized at the
cell interface xj+1/2. That is,

.
vj +

1
∆x

(
f̃j+1/2 − f̃j−1/2

)
= 0, vj(0) = uk

j ,

.

f̃ j+1/2 +aj+1/2
1

∆x

(
f(vj+1)− f(vj)

)
= 0, f̃j+1/2(0) =

f(uk
j ) + f(uk

j+1)
2

,

(2.4)

for t ∈ (0,∆t] where aj+1/2 is an appropriate defined average. In particular, the second equation
provides a flux f̃j+1/2 to be used in the first equation. Then, we set uk+1

j = vj(∆t)

Fully discrete form. Finally, we propose to consider a fully discrete approximation of (2.4).
For the first equation in (2.4) we consider a discrete scheme of the form

v1
j − v0

j

∆t
+

1
∆x

(
F

1/2
j+1/2 − F

1/2
j−1/2

)
= 0, v0

j = uk
j , (2.5)
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where the flux F
1/2
j+1/2 ≈ f̃(xj+1/2,∆t/2) is obtained by solving the second equation of (2.4) a half

timestep ∆t/2 forward in time. More precisely, by applying a Lax-Friedrichs discretization for
this equation at the cell interface j + 1/2, we get

F
1/2
j+1/2 −

f0
j +f0

j+1
2

∆t/2
+

a0
j+1/2

∆x

(
f0

j+1 − f0
j

)
= 0, f0

j = f(v0
j ) = f(uk

j ), (2.6)

where a0
j+1/2 is either the derivative of f evaluated at some average state, for instance

a0
j+1/2 = f ′

(
v0

j + v0
j+1

2

)
, or a0

j+1/2 =
f ′(v0

j ) + f ′(v0
j+1)

2
, (2.7)

or

a0
j+1/2 = a(v0

j , v0
j+1), (2.8)

where a(u, v) is a function satisfying
{

f(v)− f(u) = a(u, v)(v − u),
a(u, u) = f ′(u). (2.9)

Finally, we set uk+1
j = v1

j . From (2.6) we observe that the flux evolution equation directly gives
us a numerical flux Fj+1/2

Fj+1/2(uk
j , uk

j+1) =
f(uk

j ) + f(uk
j+1)

2
− ak

j+1/2

∆t

2∆x

(
f(uk

j+1)− f(uk
j )

)

which is consistent with the physical flux f in the usual sense, i.e., F (u, u) = f(u). Combining
(2.5) and (2.6) we get the scheme

uk+1
j − uk

j +
λ

2

(
fk

j+1 − fk
j−1

)
=

λ2

2

(
ak

j+1/2[f
k
j+1 − fk

j ]− ak
j−1/2[f

k
j − fk

j−1]
)

, (2.10)

where fk
j = f(uk

j ) and ak
j+1/2 is defined by (2.7) or (2.8)–(2.9) (note that uk

j = v0
j ). This scheme

is recognized as the classical Lax-Wendroff scheme, see for instance [11]. This scheme is known to
be second order accurate, however, it is not TVD since its viscosity coefficient λ2ak

j+1/2 does not
satisfy Harten’s criteria.

Remark 1. A slightly different approach (which avoids the use of the flux evolution equation)
consists of replacing the above choice of F

1/2
j+1/2 by the following: Define

F
1/2
j+1/2 = f(v1/2

j+1/2),

where v
1/2
j+1/2 is obtained by applying a Lax-Friedrich discretization of the equation (2.1) at the cell

interface j + 1/2, i.e.,

v
1/2
j+1/2 −

v0
j +v0

j+1
2

∆t/2
+

1
∆x

(
f(v0

j+1)− f(v0
j )

)
= 0, v0

j = uk
j . (2.11)

The resulting scheme, which reads

u
k+1/2
j+1/2 = v

1/2
j+1/2 =

1
2
(uk

j+1 + uk
j )− λ

2

(
f(uk

j+1)− f(uk
j )

)
,

uk+1
j = uk

j − λ
(
f(uk+1/2

j+1/2 )− f(uk+1/2
j−1/2)

)
,



6 EVJE, FLÅTTEN, FRIIS

is nothing but the two-step Richtmyer’s version [11]. Note that this scheme avoids the computation
of ”a” and the product ”af” which might be of particular interest when we study system of equations
and the quantity ”a” is the Jacobian matrix associated with the flux vector ”f”.

Remark 2. At the discrete level, we have demonstrated that a sound discretization of the
extended model (2.3) produces the Lax-Wendroff scheme associated with the original model (2.1).
Convergence and consistency of the LW scheme were established for nonlinear scalar conservation
laws in [3]. This may serve to justify the relevance of applying the extended model (2.3) for
construction of approximate solutions to the original model (2.1). In particular, at the continuous
level we might expect that for an appropriate viscous approximation to (2.3), one could demonstrate
convergence to the entropy solution of (2.1).

2.2. A family of schemes based on a generalized ”pressure-based” approach. In
this section we want to derive a family of schemes by building upon and refining the above approach
which reproduced the classical Lax-Wendroff scheme. More precisely, we decompose the flux f
into two components, let’s denote them g and h, such that

f(u) = g(u) + h(u), ∀u. (2.12)

Assume that we have given an approximation uk(x) ≈ u(x, tk). We now want to calculate an
approximation uk+1(x) ≈ u(x, tk+1). For that purpose, locally in the time period [tk, tk+1], we
consider a decomposition of (1.1) into the two subsystems

vt + g(v + w)x = 0, v(·, 0) = uk(·),
wt + h(v + w)x = 0, w(·, 0) = 0,

(2.13)

where v and w now are the unknown variables. Setting

u = v + w, (2.14)

adding the two equations in (2.13), and invoking (2.12), we see that u is a solution of ut+f(u)x = 0
with initial data u(·, 0) = uk(·). Thus, (2.13) represents a reformulation of the original model (1.1).
We also observe that the eigenstructure of the original model (1.1) is preserved in a certain sense
since the Jacobian associated with (2.13) is

J =
(

g′(u) g′(u)
h′(u) h′(u)

)
,

whose eigenvalues are λ1 = 0 and λ2 = f ′(u).
Now, we follow along the line of the previous section and propose to approximate (2.13) by

making use of a flux evolution equation. First, we introduce the notation

h̃ = h(v + w)|w=const, (2.15)

and define

a :=
∂h̃

∂v
= h′(u). (2.16)

Multiplying the first equation of (2.13) by a, we obtain the following equation for h̃(x, t)

h̃t + a(x, t)g(v + w)x = 0, a(x, t) = ∂vh̃(x, t) = h′(u). (2.17)

Thus, we approximate (2.13) by the following extended model with v(x, t), w(x, t), and h̃(x, t) as
unknown variables.

vt + g(v + w)x = 0, v(·, 0) = uk(·),
wt + h̃x = 0, w(·, 0) = 0,

h̃t + a(x, t)g(v + w)x = 0, h̃(·, 0) = h(uk)(·),
(2.18)

for t ∈ (0, ∆t]. Finally, in view of (2.14), we set uk+1(x) = v(x, ∆t) + w(x, ∆t).
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Method of lines. Now, we want to construct an approximation to the model (2.13), which
in turn is a reformulation of (1.1), by defining an approximation to the extended model (2.18).
Again we consider a ”method of lines” approach and approximate (2.18) with a system of 3N
ODEs. More precisely, we consider a semi-discrete version of (2.18) where we solve via a two-step
procedure as follows.

Step 1: Since v and h̃ are closely inter-related (the equation for h̃ was derived from equation for v)
we solve the first and third equation of (2.18) at the cell-interfaces xj+1/2 by the standard
Lax-Friedrichs type discretization:

.
vj+1/2 +

1
∆x

(
gj+1 − gj

)
= 0, vj+1/2(0) =

uk
j + uk

j+1

2
,

.

h̃j+1/2 +
aj+1/2

∆x

(
gj+1 − gj

)
= 0, h̃j+1/2(0) =

h(uk
j ) + h(uk

j+1)
2

,

(2.19)

for t ∈ (0, ∆t] where gj = g(vj + wj) and aj+1/2 is an appropriate defined average.
Step 2: Equipped with vj+1/2 and h̃j+1/2, we find wj through an evolution via the second equation

of (2.18), whereas vj is determined through a projection. That is,

.
wj +

1
∆x

(
h̃j+1/2 − h̃j−1/2

)
= 0, wj(0) = 0,

.
vj=

.
vj−1/2 +

.
vj+1/2

2
,

(2.20)

for t ∈ (0, ∆t]. Finally, in light of (2.14), we set

uk+1
j = vj(∆t) + wj(∆t). (2.21)

Fully discrete form. First, we rewrite as follows. Combining (2.19) and (2.20), we have a
semi-discrete scheme of the form

.
vj +

1
∆x

(
gj+1/2 − gj−1/2

)
= 0, vj(0) =

1
4
uk

j−1 +
1
2
uk

j +
1
4
uk

j+1,

with gj+1/2 =
g(vj + wj) + g(vj+1 + wj+1)

2
,

(2.22)

.
wj +

1
∆x

(
h̃j+1/2 − h̃j−1/2

)
= 0, wj(0) = 0,

with
.

h̃j+1/2 +
aj+1/2

∆x

(
gj+1 − gj

)
= 0, h̃j+1/2(0) =

h(uk
j ) + h(uk

j+1)
2

.

(2.23)

Finally, we apply a forward Euler discretization in time in (2.22). In order to obtain a numerical
flux h̃j+1/2 for the first equation of (2.23), we solve the second equation in (2.23) forward in time
a timestep ∆t, again, by applying a forward Euler discretization. This yields the following fully
discrete approximation.

v1
j − v0

j

∆t
+

1
∆x

(
g0

j+1/2 − g0
j−1/2

)
= 0, v0

j =
1
4
uk

j−1 +
1
2
uk

j +
1
4
uk

j+1,

with g0
j+1/2 =

g(uk
j ) + g(uk

j+1)
2

,

(2.24)

w1
j − w0

j

∆t
+

1
∆x

(
h̃1

j+1/2 − h̃1
j−1/2

)
= 0, w0

j = 0,

with
h̃1

j+1/2 − h̃0
j+1/2

∆t
+

a0
j+1/2

∆x

(
g0

j+1 − g0
j

)
= 0, h̃0

j+1/2 =
h(uk

j ) + h(uk
j+1)

2
,

(2.25)

where g0
j = g(v0

j ) = g(uk
j ) and a0

j+1/2 is either the derivative of h evaluated at some average state,
for instance

a0
j+1/2 = h′

(
v0

j + v0
j+1

2

)
, or a0

j+1/2 =
h′(v0

j ) + h′(v0
j+1)

2
, (2.26)
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or

a0
j+1/2 = a(v0

j , v0
j+1), (2.27)

where a(u, v) is a function similar to the one defined by (2.9) (f is replaced by h). Finally, in light
of (2.21), uk+1

j is obtained by setting

uk+1
j = v1

j + w1
j . (2.28)

The class of X-FORCE schemes. Combining (2.24), (2.25), and (2.28) we obtain the
following scheme for an arbitrary splitting (2.12):

uk+1
j =uk

j − λ
(
Gk

j+1/2 −Gk
j−1/2

)
− λ

(
Hk+1

j+1/2 −Hk+1
j−1/2

)

=uk
j −

λ

2

(
fk

j+1 − fk
j−1

)
+

1
4
[uk

j+1 − uk
j ]− 1

4
[uk

j − uk
j−1]

+ ak
j+1/2λ

2
[
gk

j+1 − gk
j

]
− ak

j−1/2λ
2
[
gk

j − gk
j−1

]
,

(2.29)

where

Gk
j+1/2 =

gk
j + gk

j+1

2
− ∆x

4∆t
(uk

j+1 − uk
j ), gk

j = g(uk
j )

Hk+1
j+1/2 = h̃1

j+1/2 =
hk

j + hk
j+1

2
− λak

j+1/2

(
gk

j+1 − gk
j

)
, hk

j = h(uk
j ),

(2.30)

where fk
j = f(uk

j ) and ak
j+1/2 is defined by (2.26) or (2.27) (note that uk

j = v0
j ). Note that the G

flux corresponds to the modified Lax-Friedrich scheme [18].

Remark 3. A slightly different approach, as far as the discretization of (2.13) is concerned,
would be to replace the above choice of h̃1

j+1/2 appearing in (2.25) by the following: Define

h̃1
j+1/2 = h(v1

j+1/2), (2.31)

where v1
j+1/2 is obtained by applying a Lax-Friedrich discretization to the equation vt+g(v+w)x = 0

at the cell interface j + 1/2, i.e.,

v1
j+1/2 −

v0
j +v0

j+1
2

∆t
+

1
∆x

(
g(v0

j+1)− g(v0
j )

)
= 0, v0

j = uk
j . (2.32)

The resulting scheme now reads

uk+1
j+1/2 = v1

j+1/2 =
1
2
(uk

j+1 + uk
j )− λ(g(uk

j+1)− g(uk
j )),

uk+1
j = uk

j − λ
(
Gk

j+1/2 −Gk
j−1/2

)
− λ

(
h(uk+1

j+1/2)− h(uk+1
j−1/2)

)
,

(2.33)

where Gk
j+1/2 is given by (2.30). This way of obtaining a flux h̃1

j+1/2 for the second equation
of (2.13) corresponds to a two-step Richtmyer’s approach as described for the pure Lax-Wendroff
scheme, see Remark 1. Note again that the resulting scheme avoids the computation of ”a” and
the product ”ag” which might be of particular interest when we study system of equations and the
quantity ”a” is the Jacobian matrix associated with the flux vector ”h”.

We have the following proposition:

Proposition 2.1. The class of schemes given by (2.29) and (2.30) or the alternative formu-
lation given by (2.33), for an arbitrary splitting f(u) = g(u) + h(u), contains the FORCE scheme
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as a special case corresponding to the splitting g = h = 1
2f .

Proof. For the special choice that g = h = 1
2f , the scheme (2.29) takes the form

uk+1
j =uk

j − λ
(
Gk

j+1/2 −Gk
j−1/2

)
− λ

(
Hk+1

j+1/2 −Hk+1
j−1/2

)

=uk
j −

λ

2

(
fk

j+1 − fk
j−1

)
+

1
4
[uk

j+1 − uk
j ]− 1

4
[uk

j − uk
j−1]

+ ak
j+1/2

λ2

4

[
fk

j+1 − fk
j

]
− ak

j−1/2

λ2

4

[
fk

j − fk
j−1

]
,

(2.34)

where

ak
j+1/2 = f ′

(
uk

j + uk
j+1

2

)
,

or

ak
j+1/2 = a(uk

j , uk
j+1),

where a(u, v) is a function satisfying
{

f(v)− f(u) = a(u, v)(v − u),
a(u, u) = f ′(u).

This corresponds to a scheme of the form

uk+1
j = uk

j − λ
(
F k

j+1/2 − F k
j−1/2

)
,

where

F k
j+1/2 =

1
2
F k,LF

j+1/2 +
1
2
F k,LW

j+1/2, (2.35)

i.e., the flux is composed of a half component from the classical Lax-Friedrich flux and a half
component of the Lax-Wendroff flux as given by (2.10). This is precisely the FORCE scheme.

Similarly, the same result holds when we consider the two-step Richtmyers variant of the
scheme given by (2.33). For that case, we see that (2.33) takes the form

uk+1
j+1/2 =

1
2
(uk

j+1 + uk
j )− λ

2
(f(uk

j+1)− f(uk
j )),

uk+1
j = uk

j − λ
(
Gk

j+1/2 −Gk
j−1/2

)
− λ

(
h(uk+1

j+1/2)− h(uk+1
j−1/2)

)
,

= uk
j −

λ

2

(
FLF,k

j+1/2 − FLF,k
j−1/2

)
− λ

2

(
f(uk+1

j+1/2)− f(uk+1
j−1/2)

)
,

which corresponds exactly to the FORCE scheme where the Lax-Wendroff component now is
written in the two-step Richtmyer’s form, see Remark 1.

In view of Proposition 2.1, we introduce the following definition:

Definition 1. We shall use the term eXtended FORCE (X-FORCE) to denote numerical
schemes constructed within the above semi-discrete two-step procedure (2.19)–(2.21) leading to the
scheme given by (2.29) and (2.30) (or the alternative variant (2.33)).

Remark 4. Alternatively, we could replace the forward Euler discretization used in the first
equation of (2.22) and the second equation of (2.23) by a backward Euler discretization leading to



10 EVJE, FLÅTTEN, FRIIS

a scheme of the form

v1
j − v0

j

∆t
+

1
∆x

(
g1

j+1/2 − g1
j−1/2

)
= 0, v0

j =
1
4
uk

j−1 +
1
2
uk

j +
1
4
uk

j+1,

with g1
j+1/2 =

g(uk+1
j ) + g(uk+1

j+1 )
2

,

(2.36)

w1
j − w0

j

∆t
+

1
∆x

(
h̃1

j+1/2 − h̃1
j−1/2

)
= 0, w0

j = 0,

with
h̃1

j+1/2 − h̃0
j+1/2

∆t
+

a0
j+1/2

∆x

(
g1

j+1 − g1
j

)
= 0, h̃0

j+1/2 =
h(uk

j ) + h(uk
j+1)

2
,

(2.37)

where g1
j = g(v1

j +w1
j ) = g(uk+1

j ). We shall return to this issue in more details in Section 5 and 6
where we explore explicit and semi-implicit X-FORCE schemes for the isothermal Euler equations
and 4-equations two-fluid model.

Remark 5. At the discrete level, we have seen that a sound discretization of the extended
model (2.18) produces the X-FORCE class, which contains the FORCE scheme associated with
(1.1) as a special case. Convergence and consistency of the FORCE scheme has been discussed, for
instance, in [2, 4]. Basic convergence properties of X-FORCE for a scalar nonlinear conservation
law is discussed in this paper. These results may indicate the relevance of applying the extended
model (2.18) to construct an approximation to the original model (1.1). At the continuous level
one might also expect that by introducing an appropriate viscous approximation to (2.18), one
could demonstrate convergence to the entropy solution of (1.1).

3. An interpretation via Riemann solutions. The purpose of this section is to give an
interpretation of the class of extended FORCE (X-FORCE) schemes proposed in Section 2 through
Riemann solutions. First, we note that for the model

ut + f(u)x = 0, (3.1)

due to the presence of discontinuous solutions, one uses the integral form. For example, integration
in a control volume V = [xL, xR]× [tB , tT ] in the x− t plane, leading to

∫ xR

xL

u(x, tT ) dx =
∫ xR

xL

u(x, tB) dx−
(∫ tT

tB

f(u(xR, t)) dt−
∫ tT

tB

f(u(xL, t)) dt
)
. (3.2)

It is instructive first to describe how the FORCE scheme can be obtained as solutions of Riemann
problems. The FORCE flux is a more recent centred flux which can be derived from a deterministic
interpretation of the staggered-grid version of Glimm’s method [10]. We now briefly describe this
following the line of [4].

3.1. FORCE. The method is described by the following two steps:
1) Let ûj−1/2(x, t) = RP(uk

j−1, u
k
j ) denote the solution of the following Riemann problem

ut + f(u)x = 0, u(x, 0) = u0(x) =
{

uk
j−1, x < xj−1/2,
uk

j , x > xj−1/2
, t ∈ (0,∆t/2]. (3.3)

We then calculate an approximation u
k+1/2
j−1/2 at the half time step ∆t/2 by averaging the

Riemann solution ûj−1/2(x,∆t/2) over [xL, xR] = [xj−1/2 − 1
2∆x, xj−1/2 + 1

2∆x], i.e.,

u
k+1/2
j−1/2 =

1
∆x

∫ ∆x/2

−∆x/2

ûj−1/2(x, ∆t/2) dx.
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Then, applying (3.2) we get

1
∆x

∫ ∆x/2

−∆x/2

ûj−1/2(x, ∆t/2) dx

=
1

∆x

∫ ∆x/2

−∆x/2

ûj−1/2(x, 0) dx− 1
∆x

(∫ ∆t/2

0

f(uk
j ) dt−

∫ ∆t/2

0

f(uk
j−1) dt

)

=
1
2

(
uk

j−1 + uk
j

)
− ∆t

2∆x

(
f(uk

j )− f(uk
j−1)

)

A similar approach is taken for the calculation of u
k+1/2
j+1/2 by averaging the Riemann solution

ûj+1/2(x, ∆t/2) = RP(uk
j , uk

j+1) over [xL, xR] = [xj+1/2 − 1
2∆x, xj+1/2 + 1

2∆x], i.e.,

u
k+1/2
j+1/2 =

1
∆x

∫ ∆x/2

−∆x/2

ûj+1/2(x, ∆t/2) dx.

Thus, we obtain

u
k+1/2
j−1/2 =

1
2

(
uk

j−1 + uk
j

)
− ∆t

2∆x

(
f(uk

j )− f(uk
j−1)

)

u
k+1/2
j+1/2 =

1
2

(
uk

j + uk
j+1

)
− ∆t

2∆x

(
f(uk

j+1)− f(uk
j )

)
.

(3.4)

2) Let ûj(x, t) = RP(uk+1/2
j−1/2 , u

k+1/2
j+1/2 ) denote the solution of the following Riemann problem

ut + f(u)x = 0, u(x, ∆t/2) =

{
u

k+1/2
j−1/2 , x < xj ,

u
k+1/2
j+1/2 , x > xj

, t ∈ (∆t/2,∆t]. (3.5)

We then calculate an approximation uk+1
j at the complete time step ∆t by averaging the

Riemann solution ûj(x, ∆t/2) over [xL, xR] = [xj − 1
2∆x, xj + 1

2∆x], i.e.,

uk+1
j =

1
∆x

∫ ∆x/2

−∆x/2

ûj(x, ∆t/2) dx.

Then, applying (3.2) we get

1
∆x

∫ ∆x/2

−∆x/2

ûj(x, ∆t/2) dt

=
1

∆x

∫ ∆x/2

−∆x/2

ûj(x, 0) dt− 1
∆x

(∫ ∆t/2

0

f(uk+1
j+1/2) dt−

∫ ∆t/2

0

f(uk+1/2
j−1/2) dt

)

=
1
2

(
u

k+1/2
j−1/2 + u

k+1/2
j+1/2

)
− ∆t

2∆x

(
f(uk+1/2

j+1/2 )− f(uk+1/2
j−1/2)

)

Thus, we obtain a scheme of the form

uk+1
j =

1
2

(
u

k+1/2
j−1/2 + u

k+1/2
j+1/2

)
− λ

2

(
FLW,k

j+1/2 − FLW,k
j−1/2

)
,

where FLW,k
j+1/2, in view of (3.4) and Remark 1, represents nothing but the two-step Lax-

Wendroff flux. This again corresponds to the scheme

uk+1
j = uk

j −
λ

2

(
FLF,k

j+1/2 − FLF,k
j−1/2

)
− λ

2

(
FLW,k

j+1/2 − FLW,k
j−1/2

)
, (3.6)

where FLF,k
j+1/2 corresponds to the classical Lax-Friedrich flux.
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3.2. The class of extended FORCE (X-FORCE) schemes. In a similar manner we
now describe the proposed class of generalized FORCE schemes through Riemann solutions. The
main difference lies in the fact that we solve for the complete time step ∆t, however, we solve over
this time step twice. In the first step we account for the flux component g, then in the second step
we take into account the h flux component. First, we assume that we have introduced a splitting
of the flux f such that

f(u) = g(u) + h(u), ∀u.

The method is then described by the following two steps:
1) Let v̂j−1/2(x, t) = RP(uk

j−1, u
k
j ) denote the solution of the following Riemann problem

vt + g(v)x = 0, v(x, 0) =
{

uk
j−1, x < xj−1/2,
uk

j , x > xj−1/2
, t ∈ (0,∆t]. (3.7)

We then calculate an approximation v1
j−1/2 at the complete time time step ∆t by averaging

the Riemann solution v̂j−1/2(x, ∆t) over [xL, xR] = [xj−1/2 − 1
2∆x, xj−1/2 + 1

2∆x], i.e.,

v1
j−1/2 =

1
∆x

∫ ∆x/2

−∆x/2

v̂j−1/2(x, ∆t) dx. (3.8)

Then, applying (3.2) over the control volume V = [xj−1/2− 1
2∆x, xj−1/2 + 1

2∆x]× [0,∆t]
we get

1
∆x

∫ ∆x/2

−∆x/2

v̂j−1/2(x, ∆t) dx

=
1

∆x

∫ ∆x/2

−∆x/2

v̂j−1/2(x, 0) dx− 1
∆x

(∫ ∆t

0

g(v̂j−1/2(xj , t)) dt−
∫ ∆t

0

g(v̂j−1/2(xj−1, t)) dt
)

=
1
2

(
uk

j−1 + uk
j

)
− ∆t

∆x

(
g(uk

j )− g(uk
j−1)

)

(3.9)

A similar approach is taken for the calculation of v1
j+1/2 by averaging the Riemann solution

v̂j+1/2(x, ∆t) over [xL, xR] = [xj+1/2 − 1
2∆x, xj+1/2 + 1

2∆x], i.e.,

v1
j+1/2 =

1
∆x

∫ ∆x/2

−∆x/2

v̂j+1/2(x, ∆t) dx.

Thus, we obtain

v1
j−1/2 =

1
2

(
uk

j−1 + uk
j

)
− ∆t

∆x

(
g(uk

j )− g(uk
j−1)

)

v1
j+1/2 =

1
2

(
uk

j + uk
j+1

)
− ∆t

∆x

(
g(uk

j+1)− g(uk
j )

) (3.10)

2) Let ŵj(x, t) = RP(v1
j−1/2, v

1
j+1/2) denote the solution of the following Riemann problem

wt + h(w)x = 0, w(x, 0) =

{
v1

j−1/2, x < xj ,

v1
j+1/2, x > xj

, t ∈ (0, ∆t]. (3.11)

We then calculate an approximation w1
j at the complete time step ∆t by averaging the

Riemann solution ŵj(x, ∆t) over [xL, xR] = [xj − 1
2∆x, xj + 1

2∆x], i.e.,

w1
j =

1
∆x

∫ ∆x/2

−∆x/2

ŵj(x, ∆t) dx. (3.12)
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Then, applying (3.2) we get

1
∆x

∫ ∆x/2

−∆x/2

ŵj(x, ∆t) dt

=
1

∆x

∫ ∆x/2

−∆x/2

ŵj(x, 0) dt− 1
∆x

(∫ ∆t

0

h(ŵj(xj+1/2, t)) dt−
∫ ∆t

0

h(ŵj(xj−1/2, t)) dt
)

=
1
2

(
v1

j−1/2 + v1
j+1/2

)
− ∆t

∆x

(
h(v1

j+1/2)− h(v1
j−1/2)

)

(3.13)

Setting uk+1
j = w1

j , and in view of (3.10), we obtain a scheme of the form

uk+1
j = w1

j =
1
2

(
v1

j−1/2 + v1
j+1/2

)
− λ

(
h(v1

j+1/2)− h(v1
j−1/2)

)

= uk
j − λ

(
Gk

j+1/2 −Gk
j−1/2

)
− λ

(
Hk+1

j+1/2 −Hk+1
j−1/2

) (3.14)

where Gk
j+1/2 is the modified Lax-Friedrich flux and Hk+1

j+1/2 = h(uk+1
j+1/2) is the flux which

coincides with (2.31) and (2.32), i.e.

Gk
j+1/2 =

g(uk
j ) + g(uk

j+1)
2

− 1
4λ

(uk
j+1 − uk

j ),

Hk+1
j+1/2 = h(uk+1

j+1/2), uk+1
j+1/2 =

uk
j + uk

j+1

2
− λ

(
g(uk

j+1)− g(uk
j )

) (3.15)

Consequently, we see that the class of X-FORCE schemes on the two-step Richtmyer’s form (2.33)
can be interpreted through Riemann solutions.

4. Some basic properties of the X-FORCE schemes: The scalar case. We let ∆
denote the centred difference operator defined by ∆vj+1/2 = vj+1− vj and ∆vj = vj+1/2− vj−1/2.
From (2.29) we see that the scheme can be written in the form

uk+1
j = uk

j −
λ

2
(fk

j+1 − fk
j−1) +

1
2

(
Qk

j+1/2∆uk
j+1/2 −Qk

j−1/2∆uk
j−1/2

)
, (4.1)

where

Qk
j+1/2 =

1
2∆uk

j+1/2 + 2λ2ak
j+1/2∆gk

j+1/2

∆uk
j+1/2

=
1
2

+ 2λ2ak
j+1/2b

k
j+1/2, (4.2)

where ak
j+1/2 and bk

j+1/2 is defined according to (2.8) and (2.9), i.e.,

ak
j+1/2 =

∆hk
j+1/2

∆uk
j+1/2

, bk
j+1/2 =

∆gk
j+1/2

∆uk
j+1/2

. (4.3)

Moreover, we note that the scheme can be written in the form

uk+1
j = uk

j + Ck,+
j+1/2∆uk

j+1/2 − Ck,−
j−1/2∆uk

j−1/2, (4.4)

where

C+
j+1/2 =

1
2

(
Qj+1/2 − λ

∆fj+1/2

∆uj+1/2

)

C−j+1/2 =
1
2

(
Qj+1/2 + λ

∆fj+1/2

∆uj+1/2

)
.

(4.5)
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Remark 6. Note that Monotone schemes - those for which the RHS of a scheme written in
the form

uk+1
j = H(uk

j−1, u
k
j , uk

j+1), (4.6)

is nondecreasing in all its u arguments - is a subclass of Monotonicity Preserving schemes.
Monotone schemes obey both the compactness and entropy requirements. The limit solutions
of monotonicity-preserving schemes are not necessarily the physically relevant ones. Murman’s
scheme is an example of this (we refer to [17] for more details and a concrete example).

We may state this more precisely as follows:

Definition 2. Schemes of the form (4.6) for the scalar, nonlinear conservation law are said
to be Monotonicity Preserving Schemes if whenever the data {un

j } is monotone, the solution set
{un+1

j } is monotone in the same sense. That is, if {un
j } is monotone increasing, so is {un+1

j } and
if {un

j } is monotone decreasing, so is {un+1
j }.

It is well known that monotone, TVD, and monotonicity preserving schemes for nonlinear
scalar conservation laws are related as follows (see [12] and [20]): The set SMON of monotone
schemes is contained in the set STV D of TVD schemes, and this in turn again is contained in the
set SMPR of monotonicity preserving schemes.

4.1. Monotonicity and TVD-property. We recall the following lemma according to Tad-
mor [17] (see also [12]) for a scheme written on the incremental form (4.4).

Lemma 4.1. Three-point monotonicity-preserving schemes are exactly those whose total vari-
ation is nonincreasing. They are characterized by the set of inequalities

C+
j+1/2 ≥ 0, C−j+1/2 ≥ 0, 1− C+

j+1/2 − C−j+1/2 ≥ 0. (4.7)

Corollary 4.2. The scheme (4.1)–(4.3) is monotonicity preserving and total variation non-
increasing under the CFL condtions

λ|ak
j+1/2| ≤

1
2
, λ|bk

j+1/2| ≤
1
2
, (4.8)

Proof. We simply note that

Ck,+
j+1/2 =

1
2

(1
2

+ 2λ2ak
j+1/2b

k
j+1/2 − λ[ak

j+1/2 + bk
j+1/2]

)

=
(1

2
− λak

j+1/2

)(1
2
− λbk

j+1/2

)
,

Ck,−
j+1/2 =

1
2

(1
2

+ 2λ2ak
j+1/2b

k
j+1/2 + λ[ak

j+1/2 + bk
j+1/2]

)

=
(1

2
+ λak

j+1/2

)(1
2

+ λbk
j+1/2

)
,

and

1− Ck,+
j+1/2 − Ck,−

j+1/2 = 1−Qk
j+1/2 =

(1
2
− 2λ2ak

j+1/2b
k
j+1/2

)
= 2

(1
4
− λ2ak

j+1/2b
k
j+1/2

)
.

From this, the result of the corollary follows.

In view of the general expression (4.5) and Lemma 4.1 we have the following well-known result
[17].

Lemma 4.3. A three-point conservative scheme of the form (4.1) is monotonicity preserving
and total variation nonincreasing if, and only if, its numerical viscosity coefficient Qj+1/2 satisfies

λ

∣∣∣∣
∆fj+1/2

∆uj+1/2

∣∣∣∣ ≤ Qj+1/2 ≤ 1. (4.9)
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Particularly, in view of the Corollary 4.2 we have the following result.

Corollary 4.4. If the CFL conditions (4.8) is satisfied, the relation (4.9) holds for the
scheme (4.1)–(4.3).

As noted in [18] we have the following result which ensures a maximum principle.

Lemma 4.5. A three-point conservative scheme of the form (4.1) with a numerical viscosity
coefficient Qj+1/2 satisfying

λ

∣∣∣∣
∆fj+1/2

∆uj+1/2

∣∣∣∣ ≤ Qj+1/2 ≤
1
2
, (4.10)

obeys the following maximum principle

inf
j

uk
j ≤ uk+1

j ≤ supuk
j . (4.11)

Corollary 4.6. In view of Lemma 4.5 and the form (4.2) of the numerical viscosity coef-
ficient Qj+1/2, we cannot conclude that the scheme (4.1)–(4.3) satisfies the maximum principle
(4.11).

Below we will see that the scheme (4.1)–(4.3), written in the two-step Richtmyer’s form as
given by (2.33), satisfies a maximum principle under a stronger CFL condition than (4.8).

Remark 7. The modified LxF scheme [18] corresponds to (4.1) with the choice Qk
j+1/2 = 1

2 .

The corresponding CFL condition which ensures that this scheme is TVD reads (in view of Lemma
4.3)

λ
∣∣∣∆fj+1/2

∆uj+1/2

∣∣∣ ≤ 1
2
.

For the special choice g = h = 1/2f , in view of (4.8), the resulting FORCE scheme is TVD under
the CFL condition

λ
∣∣∣∆fj+1/2

∆uj+1/2

∣∣∣ ≤ 1.

The price to pay for this weakening of the CFL condition is that a Lax-Wendroff (LW) type of
numerical viscosity term has been added.

4.2. The class of X-FORCE schemes considered as monotone schemes. In the fol-
lowing we consider the X-FORCE scheme obtained by applying the two-step Richtmyer’s approach
for the H-flux component as described in Remark 3, and also reproduced in Section 3 through an
interpretation via Riemann solutions. The resulting scheme is of the form

uk+1
j = uk

j − λ
(
Gk

j+1/2 −Gk
j−1/2

)
− λ

(
Hk+1

j+1/2 −Hk+1
j−1/2

)
(4.12)

where

Gk
j+1/2(u

k
j , uk

j+1)
=

g(uk
j ) + g(uk

j+1)
2

− 1
4λ

(uk
j+1 − uk

j )

Hk+1
j+1/2(u

k
j , uk

j+1) = h(uk+1
j+1/2),

(4.13)
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where

uk+1
j+1/2 =

uk
j + uk

j+1

2
− λ

(
g(uk

j+1)− g(uk
j )

)
. (4.14)

Monotone schemes, see Remark 6, is a classical subclass of monotonicity preserving schemes,
capturing both the compactness and the entropy requirements, see e.g. [5]. A standard way is
to verify the entropy condition is by constructing a discrete entropy pair satisfying an entropy
inequality. First, we recall a well-known result for monotone schemes, see for instance [20], then
we state a corollary relevant for the X-FORCE schemes.

Theorem 4.7. A three-point scheme of the form

uk+1
j = uk

j − λ
(
F k

j+1/2 − F k
j−1/2

)
, F k

j+1/2 = Fj+1/2(uk
j , uk

j+1), (4.15)

is monotone if

∂

∂uj
Fj+1/2(uj , uj+1) ≥ 0, and

∂

∂uj+1
Fj+1/2(uj , uj+1) ≤ 0. (4.16)

It is well known that for a given data set {uk
j }, if the solution set {uk+1

j } is obtained with a
monotone method then a maximum principle holds, i.e., infj uk

j ≤ uk+1
j ≤ supj uk

j .

Corollary 4.8. The scheme given by (4.12)–(4.14) is monotone and satisfies a maximum
principle under the CFL condition

λ‖h′‖∞ ≤ 1
8
, λ‖g′‖∞ ≤ 1

8
. (4.17)

Proof. The scheme can be written in the form (4.15) where

Fj+1/2(uk
j , uk

j+1) = Gj+1/2(uk
j , uk

j+1) + Hj+1/2(uk
j , uk

j+1).

Consequently,

4λ
∂

∂uk
j

Fj+1/2(uk
j , uk

j+1) = 2λg′(uk
j ) + 1 + 4λh′(uk+1

j+1/2)
[1
2

+ λg′(uk
j )

]

=
[
2λg′(uk

j ) +
1
4

]
+

[
2λh′(uk+1

j+1/2) +
1
4

]
+

[
4λ2h′(uk+1

j+1/2)g
′(uk

j ) +
1
2

]
,

where uk+1
j+1/2 is given by (4.14). Similarly,

4λ
∂

∂uk
j+1

Fj+1/2(uk
j , uk

j+1) = 2λg′(uk
j+1)− 1 + 4λh′(uk+1

j+1/2)
[1
2
− λg′(uk

j+1)
]

= −
[1
4
− 2λg′(uk

j )
]
−

[1
4
− 2λh′(uk+1

j+1/2)
]
−

[1
2

+ 4λ2h′(uk+1
j+1/2)g

′(uk
j )

]

Thus, we may conclude that the above inequalities (4.16) are satisfied under the CFL condition
(4.17).

Remark 8. Note that for the special case that f is linear, i.e., f(u) = cu where c is a
constant, and for the special splitting g = h = 1

2f, corresponding to the FORCE scheme, we see
that

4λ
∂

∂uk
j

Fj+1/2(uk
j , uk

j+1) = λc + 1 + 2λc
[1
2

+
λc

2

]
= (1 + λc)2,



17

and

4λ
∂

∂uk
j+1

Fj+1/2(uk
j , uk

j+1) = λc− 1 + 2λc
[1
2
− λc

2

]
= −(1− λc)2.

Hence, it follows that the CFL condition (4.17) takes the weaker form

λ|c| ≤ 1,

as pointed out in [2, 4].

Remark 9. Since the scheme given by (4.12)–(4.14) is monotone under the CFL condition
(4.17), it follows from [5] that the scheme will converge to the entropy solution.

4.3. Entropy consistency for the class of X-FORCE schemes. In this section we
explore the entropy consistency of the class of X-FORCE schemes without referring to monotonicity
properties (see Remark 9). We basically follow along the line of [18] where entropy consistency
is shown for the modified LxF scheme. However, we introduce a suitable modification due to the
fact that the X-FORCE scheme is obtained as the solution of two sets of non-interacting Riemann
problems as described in Section 3.

Assume that we have given an entropy-entropy flux pair (Φ, Ψ), i.e., Φ′′ ≥ 0 and Φ′f ′ = Ψ′

for the scalar conservation law ut + f(u)x = 0. Clearly, we can express the entropy flux Ψ as

Ψ(w) =
∫ w

w0

Φ′(z)f ′(z) dz, (4.18)

for a suitable choice of w0. For a splitting f(u) = g(u) + h(u) we may define the two scalar
functions Ψg and Φh

Ψg(w) =
∫ w

w0

Φ′(z)g′(z) dz, (4.19)

Ψh(w) =
∫ w

w0

Φ′(z)h′(z) dz. (4.20)

Clearly, (Φ, Ψg) and (Φ,Ψh) are entropy-entropy flux pairs, respectively for the two conservation
laws

vt + g(v)x = 0, (4.21)
wt + h(w)x = 0, (4.22)

For entropy solutions v and w we know that the following entropy conditions are satisfied (in a
weak sense)

Φ(v)t + Ψg(v)x ≤ 0, (4.23)
Φ(w)t + Ψh(w)x ≤ 0. (4.24)

Moreover, we observe that

Ψg(w) + Ψh(w) = Ψ(w). (4.25)

We want to show that the X-FORCE schemes described by (3.14) and (3.15) are entropy satisfying,
i.e., that

Φ(uk+1
j ) ≤ Φ(uk

j )− λ
(
ΨGF,k

j+1/2 −ΨGF,k
j−1/2

)
. (4.26)

with a numerical entropy flux ΨGF,k
j+1/2 = ΨGF (uk

j , uk
j+1) which is consistent with the differential

one, i.e., ΨGF (v, v) = Ψ(v).



18 EVJE, FLÅTTEN, FRIIS

First, we observe in view of (3.8), Jensen’s inequality, and the integral form of (4.23) that

Φ(v1
j−1/2) ≤

1
∆x

∫ ∆x/2

∆x/2

Φ(v̂j−1/2(x, ∆t)) dx

≤ 1
∆x

∫ ∆x/2

∆x/2

Φ(v̂j−1/2(x, 0)) dx− 1
∆x

(∫ ∆t

0

Ψg(v̂j−1/2(xj , t)) dt−
∫ ∆t

0

Ψg(v̂j−1/2(xj−1, t)) dt
)

=
1
2

(
Φ(uk

j−1) + Φ(uk
j )

)
− ∆t

∆x

(
Ψg(uk

j )−Ψg(uk
j−1)

)

(4.27)

Here we have used the fact that the Riemann solution v̂j−1/2(x, t) is entropy satisfying and the
CFL condition

λ ·max
v
|b(v)| ≤ 1

2
, b(v) = g′(v),

which ensures that no wave interaction have taken place. Similarly, we have

Φ(v1
j+1/2) ≤

1
∆x

∫ ∆x/2

∆x/2

Φ(v̂j+1/2(x, ∆t)) dx

≤ 1
∆x

∫ ∆x/2

∆x/2

Φ(v̂j+1/2(x, 0)) dx− 1
∆x

(∫ ∆t

0

Ψg(v̂j+1/2(xj+1, t)) dt−
∫ ∆t

0

Ψg(v̂j+1/2(xj , t)) dt
)

=
1
2

(
Φ(uk

j ) + Φ(uk
j+1)

)
− ∆t

∆x

(
Ψg(uk

j+1)−Ψg(uk
j )

)
.

(4.28)

Next, in view of (3.12), Jensen’s inequality, the integral form of (4.24) (since the Riemann solution
ŵj(x, t) is entropy satisfying) we have

Φ(w1
j ) ≤ 1

∆x

∫ ∆x/2

−∆x/2

Φ(ŵj(x, ∆t)) dt

≤ 1
∆x

∫ ∆x/2

−∆x/2

Φ(ŵj(x, 0)) dt− 1
∆x

(∫ ∆t

0

Ψh(ŵj(xj+1/2, t)) dt−
∫ ∆t

0

Ψh(ŵj(xj−1/2, t)) dt
)

=
1
2

(
Φ(v1

j−1/2) + Φ(v1
j+1/2)

)
− ∆t

∆x

(
Ψh(v1

j+1/2)−Ψh(v1
j−1/2)

)
,

(4.29)

where we have used the CFL condition

λ ·max
v
|a(v)| ≤ 1

2
, a(v) = h′(v).

Hence, the following lemma is obtained.

Lemma 4.9. Assume the CFL condition

λ ·max
v
|a(v)| ≤ 1

2
, λ ·max

v
|b(v)| ≤ 1

2
, a(v) = h′(v), b(v) = g′(v)

holds. The X-FORCE scheme described by (3.14) and (3.15), satisfies the entropy inequality (4.26)
with a numerical entropy flux ΨGF,k

j+1/2 of the form

ΨGF,k
j+1/2 = ΨGF (uk

j , uk
j+1) = ΨG,k

j+1/2 + ΨH,k
j+1/2, (4.30)
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where

ΨG,k
j+1/2 =

Ψg(uk
j ) + Ψg(uk

j+1)
2

− 1
4λ

(Φ(uk
j+1)− Φ(uk

j ))

ΨH,k
j+1/2 = Ψh(uk+1

j+1/2), uk+1
j+1/2 =

uk
j + uk

j+1

2
− λ

(
g(uk

j+1)− g(uk
j )

)
,

(4.31)

which is consistent with the differential one, ΨGF (v, v) = Ψ(v).

Proof. Combining (4.27), (4.28), (4.29), and the fact that w1
j = uk+1

j and v1
j−1/2 and v1

j+1/2

are given by (3.10), we see that (4.26) holds with ΨGF,k
j+1/2 defined by (4.30)–(4.31). Clearly, in view

of (4.25), the numerical entropy flux ΨGF,k
j+1/2 is consistent with Ψ.

Remark 10. Note that we cannot simply refer to Theorem 6.1 in [18] where entropy con-
sistency is ensured through comparison of the size of the numerical dissipation Qj+1/2. This
theorem requires that the scheme under consideration, given in the general form

uk+1
j =

[
uk

j − λ(fk
j − fk

j−1)−Qk
j−1/2∆uk

j−1/2

]
+

[
uk

j − λ(fk
j+1 − fk

j ) + Qk
j+1/2∆uk

j+1/2

]

2
,

satisfies the CFL condition

|Qj+1/2| ≤
1
2
. (4.32)

In view of the numerical dissipation term (4.2) corresponding to the X-FORCE schemes, it’s clear
that (4.32) does not hold in general.

4.4. Construction of higher order X-FORCE schemes. The purpose of this section is to
describe a procedure for obtaining higher order spatial accuracy for the X-FORCE class. Equipped
with the Riemann-based interpretation of Section 3 the idea is simply to replace piecewise constant
interpolants used in Step 1 and 2 for the evaluation of spatial and temporal integrals by appropriate
piecewise linear interpolants. Here we closely follow the line of [14]. In particular, by using the
special splitting g = f and h = 0, the resulting higher-order X-FORCE class reproduces the
non-staggered NT scheme presented in [14].

We introduce the spatial grid ∆x and consider the average

u(x, t) :=
1
|Ix|

∫

Ix

u(ξ, t) dξ, Ix = {ξ : |ξ − x| ≤ ∆x

2
}.

Introducing a time step ∆t we can rewrite the equation ut + f(u)x = 0 and end up with the
following equivalent formulation

u(x, t + ∆t) = u(x, t)− 1
∆x

[∫ t+∆t

t

f(u(x +
∆x

2
, τ)) dτ −

∫ t+∆t

t

f(u(x− ∆x

2
, τ)) dτ

]
. (4.33)

This relation between the average u(·, t) and their underlying pointvalues u(·, t) is used repeatedly
in the following. Typically, we start with some approximate solution w(·, tn) at time level tn where
it is described as a piecewise polynomial written in the form

w(x, tn) =
∑

j

pj(x)χj(x), χj(x) = 1Ij , Ij = {ξ : |ξ − xj | ≤ ∆x

2
}.

An exact evolution w(·, tn) based on (4.33) gives us

w(x, tn+1) = w(x, tn)− 1
∆x

[∫ tn+1

tn

f(w(x +
∆x

2
, τ)) dτ −

∫ tn+1

tn

f(w(x− ∆x

2
, τ)) dτ

]
. (4.34)
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4.4.1. Construction of the scheme. As before we assume that we have introduced a
splitting of the flux f such that f(u) = g(u) + h(u). Assume that we have given a piecewise
constant approximation to u(x, tn) given by u(x, tn) =

∑
j ūn

j χj(x), where χj(x) = 1Ij and Ij :=
{|x − xj | ≤ ∆x

2 }. We now describe how to construct an approximation to u(x, tn+1) via an
appropriate modification of the two steps described in Section 3.

1) We first introduce a piecewise linear interpolant

v0(x) =
∑

j

[
v0

j + v′j
(x− xj

∆x

)]
χj(x) =

∑

j

Lj(x)χj(x), v0
j = ūn

j . (4.35)

Here 1
∆xv′j is a numerical derivative determined by

1
∆x

v′j =
1

∆x
MM

(
θ∆v0

j+1/2,
∆v0

j−1/2 + ∆v0
j+1/2

2
, θ∆v0

j−1/2

)
, (4.36)

for θ ∈ [1, 2] where MM denotes the min-mod nonlinear limiter and ∆vj+1/2 = vj+1− vj .
Next, we perform an exact evolution of the piecewise linear interpolant (4.35) according
to the problem

vt + g(v)x = 0, v(x, 0) = v0(x), t ∈ (0, ∆t]. (4.37)

Let v(x, ∆t) denote this solution. The resulting solution is then projected back into the
space of staggered piecewise-constant gridfunctions, i.e.,

vj−1/2(∆t) = v(x, ∆t) =
1

∆x

∫ xj

xj−1

v(y, ∆t) dy, x ∈ (xj−1, xj) = Ij−1/2. (4.38)

In view of (4.34), considered over the control volume V = [xj−1, xj ]× [0, ∆t], we get

vj−1/2(∆t) =
1

∆x

∫ xj

xj−1

v(y, ∆t) dy

=
1

∆x

[∫ xj−1/2

xj−1

Lj−1(x) dx +
∫ xj

xj−1/2

Lj(x) dx

]

− 1
∆x

[∫ ∆t

0

g(v(xj , τ)) dτ −
∫ ∆t

0

g(v(xj−1, τ)) dτ

]
.

(4.39)

The two first integrals on the RHS can be integrated exactly. Moreover, if the CFL
condition λ ·maxxj−1≤x≤xj ρ(Ag(v(x, 0))) < 1

2 , is met (here Ag refers to the Jacobian of
g), then the two last integrands on the RHS of (4.39), g(v(xj−1, τ)) and g(v(xj , τ)) are
integrated approximately by the midpoint rule resulting in the following scheme

vj−1/2(∆t) =
1
2

[
v0

j−1 + v0
j

]
+

1
8

[
v′j−1 − v′j

]
− λ

[
g(v(xj ,

∆t

2
))− g(v(xj−1,

∆t

2
))

]
, (4.40)

where v′j is given by (4.36). Following [14], we use the approximation

v(xj ,
∆t

2
) ≈ v(xj , 0)− λ

2
g′j ,

where g′j represents a numerical derivative of the flux g(v(xj , 0)),

1
∆x

g′j =
1

∆x
MM

(
θ∆g(v0

j+1/2),
∆g(v0

j−1/2) + ∆g(v0
j+1/2)

2
, θ∆g(v0

j−1/2)
)
. (4.41)

Consequently, we obtain a sequence of discrete values {v̄1
j+1/2} by solving

v
1/2
j = v0

j −
λ

2
g′j , (4.42)

v̄1
j+1/2 =

1
2

[
v0

j + v0
j+1

]
+

1
8

[
v′j − v′j+1

]
− λ

[
g(v1/2

j+1)− g(v1/2
j )

]
. (4.43)
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2) Next, from the discrete values {v̄1
j+1/2} we introduce a piecewise linear interpolant

w0(x) =
∑

j

[
w0

j+1/2 + w′j+1/2

(x− xj+1/2

∆x

)]
χj+1/2(x) =

∑

j

Lj+1/2(x)χj+1/2(x), (4.44)

where

w0
j+1/2 = v̄1

j+1/2, χj+1/2(x) = 1Ij+1/2 , Ij+1/2 = {ξ : |ξ − xj+1/2| ≤
∆x

2
}.

Here 1
∆xw′j+1/2 is a numerical derivative similar to 1

∆xv′j given by

1
∆x

w′j+1/2 =
1

∆x
MM{∆w0

j+1, ∆w0
j}, (4.45)

where ∆wj = wj+1/2 − wj−1/2 and MM is the min-mod limiter. An exact evolution of
w0(x) is now performed according to (4.34) where we now consider the h flux, i.e., we
solve

wt + h(w)x = 0, w(x, 0) = w0(x), t ∈ (0,∆t]. (4.46)

This gives us

w̄1
j = w(x, ∆t)

= w(x, 0)− 1
∆x

[∫ ∆t

0

h(w(x +
∆x

2
, τ)) dτ −

∫ ∆t

0

h(w(x− ∆x

2
, τ)) dτ

]

=
1

∆x

[∫ xj

xj−1/2

Lj−1/2(x) dx +
∫ xj+1/2

xj

Lj+1/2(x) dx
]

− 1
∆x

[∫ ∆t

0

h(w(xj+1/2, τ)) dτ −
∫ ∆t

0

h(w(xj−1/2, τ)) dτ
]
.

(4.47)

The two first integrals on the RHS can be integrated exactly, i.e.

1
∆x

[∫ xj

xj−1/2

Lj−1/2(x) dx +
∫ xj+1/2

xj

Lj+1/2(x) dx
]

=
1
2

[
v̄1

j−1/2 + v̄1
j+1/2

]
+

1
8

[
w′j−1/2 − w′j+1/2

]

=
1
4
(v0

j−1 + 2v0
j + v0

j+1)−
1
16

(v′j+1 − v′j−1)−
λ

2

[
g(v1/2

j+1)− g(v1/2
j−1)

]
− 1

8

[
w′j+1/2 − w′j−1/2

]

(4.48)

Moreover, if the CFL condition λ · maxxj−1/2≤x≤xj+1/2 ρ(Ah(w(x, 0))) < 1
2 , is met (here

Ah refers to the Jacobian of h), then the two last integrands on the RHS of (4.47),
h(w(xj−1/2, τ)) and h(w(xj+1/2, τ)) are approximated as in Step 1. Thus we arrive at

wj(∆t) =
1
4
(v0

j−1 + 2v0
j + v0

j+1)−
1
16

(v′j+1 − v′j−1)

− λ

2

[
g(v1/2

j+1)− g(v1/2
j−1)

]
− 1

8

[
w′j+1/2 − w′j−1/2

]

− λ
[
h(w(xj+1/2,

∆t

2
))− h(w(xj−1/2,

∆t

2
))

]
,

(4.49)

where w′j+1/2 is given by (4.45). Now the pointwise values at the half-time steps are
evaluated by the approximation

w
1/2
j+1/2 = w(xj+1/2,

∆t

2
) ≈ w(xj+1/2, 0) = w0

j+1/2.
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To sum up, we obtain a sequence of discrete values {w̄1
j} by solving

v
1/2
j = v0

j −
λ

2
g′j , (4.50)

w
1/2
j+1/2 = w0

j+1/2, (4.51)

w̄1
j =

1
4
(v0

j−1 + 2v0
j + v0

j+1)−
1
16

(v′j+1 − v′j−1)

− λ

2

[
g(v1/2

j+1)− g(v1/2
j−1)

]
− 1

8

[
w′j+1/2 − w′j−1/2

]

− λ
[
h(w1/2

j+1/2)− h(w1/2
j−1/2)

]
,

(4.52)

where

w0
j+1/2 =

1
2

[
v0

j + v0
j+1

]
+

1
8

[
v′j − v′j+1

]
− λ

[
g(v1/2

j+1)− g(v1/2
j )

]
. (4.53)

The final step is to obtain the piecewise constant approximation to u(x, tn+1) given by

u(x, tn+1) =
∑

j

w̄1
j χj(x).

Remark 11. We observe the following:
1. The special choice where v′j = g′j = 0 and w′j+1/2 = 0, recovers the X-FORCE scheme

given by (4.12), (4.13), and (4.14).
2. The special case where g = f and h = 0 gives us the following scheme:

v
1/2
j = v0

j −
λ

2
g′j , (4.54)

w̄1
j =

1
4
(v0

j−1 + 2v0
j + v0

j+1)−
1
16

(v′j+1 − v′j−1)

− λ

2

[
f(v1/2

j+1)− f(v1/2
j−1)

]
− 1

8

[
w′j+1/2 − w′j−1/2

]
.

(4.55)

This scheme corresponds exactly to the nonstaggered NT central scheme developed in [14].
It remains to be explored whether the good properties possessed by this scheme carry over
to the second-order type X-FORCE class given by (4.50)– (4.53). Some numerical exper-
iments are provided in Section 6.

5. X-FORCE schemes for two systems of conservation laws. The purpose of this
section is to derive two concrete X-FORCE schemes for the isothermal Euler equations. One of
them corresponds to the FORCE scheme of Toro, the other results from a splitting of the flux into
a convective flux and a pressure flux. In particular, in light of Remark 4 in Section 2 we derive a
semi-implicit variant of this second X-FORCE scheme. In Section 6 we demonstrate through some
numerical experiments how these various X-FORCE schemes are inter-related. In this section we
also describe how we, within the framework of Section 2, can reproduce the central schemes used
in [6, 7, 8].

5.1. X-FORCE schemes for the isothermal Euler model. We now describe two dif-
ferent X-FORCE schemes in more detail for the isothermal Euler equations given by (1.2). An
X-FORCE scheme takes the general form

uk+1
j = uk

j − λ
(
Gk

j+1/2 −Gk
j−1/2

)
− λ

(
Hk+1

j+1/2 −Hk+1
j−1/2

)
. (5.1)

Different choices of g and h such that f = g + h where f = (m,m2/ρ + p(ρ))T will then produce
different X-FORCE schemes.
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Scheme 1: FORCE. One choice is simply to consider g = h = 1
2f = 1

2 (m,m2/ρ + p(ρ))T .
In view of the two-step form given by (2.33), the G and H fluxes then take the form

Gk
j+1/2 =

(
Gk

1,j+1/2

Gk
2,j+1/2

)
=

1
4

(
mk

j + mk
j+1

(m2/ρ + p(ρ))k
j + (m2/ρ + p(ρ))k

j+1

)
− 1

4λ

(
ρk

j+1 − ρk
j

mk
j+1 −mk

j

)

(5.2)

and

Hk+1
j+1/2 =

(
Hk+1

1,j+1/2

Hk+1
2,j+1/2

)
=

1
2
f(ρk+1

j+1/2,m
k+1
j+1/2) =

1
2

(
mk+1

j+1/2

(m2/ρ)k+1
j+1/2 + p(ρk+1

j+1/2)

)
, (5.3)

where

ρk+1
j+1/2 =

1
2
(ρk

j + ρk
j+1)−

λ

2

(
mk

j+1 −mk
j

)
,

mk+1
j+1/2 =

1
2
(mk

j + mk
j+1)−

λ

2

(
(m2/ρ + p(ρ))k

j+1 − (m2/ρ + p(ρ))k
j

)
.

(5.4)

Remark 12. The above FORCE scheme for the Euler model (1.2) has been analyzed in [4] for
an isentropic pressure function p(ρ), for instance, in the form p(ρ) = Kργ where γ > 1 (polytropic
gas). By using the fact that FORCE can be interpreted through Riemann solutions, and using
the solvability of the Riemann problems for any Riemann data with nonnegative density, an L∞

bound as well as a bound on the numerical dissipation are found for ρ∆ and m∆ when these are the
approximations generated by FORCE. Based on these estimates strong convergence to an entropy
solution is established.

Scheme 2: X-FORCE1 (explicit variant). Another choice is to consider g = (m,m2/ρ)T

and h = (0, p(ρ))T . In view of the two-step form given by (2.33), the G and H fluxes then take
the form

Gk
j+1/2 =

(
Gk

1,j+1/2

Gk
2,j+1/2

)
=

1
2

(
mk

j + mk
j+1

(m2/ρ)k
j + (m2/ρ)k

j+1

)
− 1

4λ

(
ρk

j+1 − ρk
j

mk
j+1 −mk

j

)
(5.5)

and

Hk+1
j+1/2 =

(
Hk+1

1,j+1/2

Hk+1
2,j+1/2

)
= h(ρk+1

j+1/2, m
k+1
j+1/2) =

(
0

p(ρk+1
j+1/2)

)
, (5.6)

where

ρk+1
j+1/2 =

1
2
(ρk

j + ρk
j+1)− λ

(
mk

j+1 −mk
j

)
. (5.7)

Note that the alternative form of the Hk+1
j+1/2 flux, according to (2.29) and (2.30), where the

coefficient a(x, t) now refers to the Jacobian matrix Duh

a = Duh =
(

0 0
p′(ρ) 0

)
,

is given by

Hk+1
j+1/2 =

(
Hk+1

1,j+1/2

Hk+1
2,j+1/2

)
=

(
0

P k+1
j+1/2

)
, (5.8)
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where

P k+1
j+1/2 =

1
2
(pk

j + pk
j+1)− κk

j+1/2λ
(
mk

j+1 −mk
j

)
. (5.9)

We follow (2.26) and use the average

κk
j+1/2 =

1
2
(p′(ρk

j ) + p′(ρk
j+1)). (5.10)

Scheme 3: X-FORCE2 (implicit variant). In view of Remark 4, we may replace Gk
j+1/2

given by (5.5) by an implicit variant Gk+1
j+1/2 of the form

Gk+1
j+1/2 =

1
2

(
mk+1

j + mk+1
j+1

(m2/ρ)k+1
j + (m2/ρ)k+1

j+1

)
− 1

4λ

(
ρk

j+1 − ρk
j

mk
j+1 −mk

j

)
, (5.11)

whereas P k+1
j+1/2 given by (5.9) is replaced by the implicit variant

P k+1
j+1/2 =

1
2
(pk

j + pk
j+1)− κk

j+1/2λ
(
mk+1

j+1 −mk+1
j

)
. (5.12)

In order to obtain a linearly implicit scheme which avoids nonlinear iterations, we propose to
modify the Gk+1

j+1/2 component associated with the momentum flux such that it is treated on the
kth time level, i.e., we consider

Gk+1
j+1/2 =

1
2

(
mk+1

j + mk+1
j+1

(m2/ρ)k
j + (m2/ρ)k

j+1

)
− 1

4λ

(
ρk

j+1 − ρk
j

mk
j+1 −mk

j

)
. (5.13)

The resulting X-FORCE scheme is then given in the form
• Mass equation

ρk+1
j = ρk

j − λ
(
M

k+1/2
j+1/2 −M

k+1/2
j−1/2

)
(5.14)

with

M
k+1/2
j+1/2 =

1
2
(mk+1

j + mk+1
j+1 )− 1

4λ
(ρk

j+1 − ρk
j ). (5.15)

• Momentum equation

mk+1
j + λ

(
P k+1

j+1/2 − P k+1
j−1/2

)
= mk

j − λ
(
[Mv]kj+1/2 − [Mv]kj−1/2

)

P k+1
j+1/2 + κk

j+1/2λ
(
mk+1

j+1 −mk+1
j

)
=

1
2
(pk

j + pk
j+1),

(5.16)

with

[Mv]kj+1/2 =
1
2
([m2/ρ]kj + [m2/ρ]kj+1)−

1
4λ

(mk
j+1 −mk

j ). (5.17)

and κk
j+1/2 given by (5.10).

Remark 13. The above scheme is semi-implicit in the sense that we solve implicitly for the
mass flux (momentum) mk+1 while we solve explicitly for the density ρk+1 along the following two
steps:

• First, we solve simultaneously for mk+1
j and P k+1

j+1/2 from the two equations given by (5.16).
This corresponds to solving a linear problem Ax = b where the matrix A is tridiagonal.

• Second, we solve for ρk+1
j from (5.14) by making use of the updated momentum mk+1

j

obtained from the first step.
In the next section we will do some simple numerical experiments whose purpose is to give

some insight into basic accuracy and stability properties.
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5.2. An X-FORCE scheme for the isothermal two-fluid model. We now describe in
more detail an explicit and semi-implicit X-FORCE scheme for the 4-equations isothermal two-
fluid model given by

∂tmk + ∂xIk = 0, mk = αkρk, Ik = mkvk,

∂tIk + ∂xJk + αk∂xp = −(∆p)∂xαk, Jk = Ikvk,
(5.18)

where ρk = ρk(p) is density, vk fluid velocity, αk volume fraction, and p = p(ml, mg) is pressure
common to both phases, and the index k = l, g represents the two phases. Moreover, ∆p is a given
function which depends on the primitive variables and its purpose is to ensure that the model
becomes hyperbolic (real eigenvalues). For more details regarding the structure of the two-fluid
model we refer to [9] and references therein. Here it suffices to observe that for αk we have the
relation

αg + αl = 1. (5.19)

This relation can be rewritten as
mg

ρg(p)
+

ml

ρl(p)
= 1, mk = αkρk, (5.20)

from which we obtain a relation yielding the pressure p = p(ml,mg) as a nonlinear function which
depends on the masses mk. By using the relation (5.20), we can derive the differential

dp = κ(ρldmg + ρgdml) (5.21)

where

κ =
1

∂ρl
∂p αlρg + ∂ρg

∂p αgρl

. (5.22)

The purpose of this section is to demonstrate, within the general framework of Section 2, how
we can reproduce the central-type scheme which was used in the previous works [6, 7, 8]. First, in
view of section 5.1, we propose to associate the convective terms with the g component, whereas
the nonlinear pressure function is associated with the h-component. Hence, we may write the
model in the form

∂tu + ∂xg(u) + α(u)∂xh(u) = q(u), (5.23)

where u = (mg, mg, Ig, Il)T , g = (Ig, Il, Jg, Jl)T , α = (0, 0, αg, αl), h = (0, 0, p, p)T , and q =
−(∆p)(0, 0, ∂xαg, ∂xαl)T . The q term, which contains spatial derivatives, is here handled as a
source term since the impact is weak and its main purpose is to ensure that the model becomes
hyperbolic, not to represent any real physical effect.

We note that the model (5.23) is slightly different from the original model equation (1.1) due
to the occurrence of the non-conservative term α(u)∂xh(u). However, the framework described in
Section 2.2 naturally allows us to treat this case. In particular, the extended model corresponding
to (2.18) now is in the form

vt + g(v + w)x = 0, v(·, 0) = uk(·),
wt + α(v + w)h̃x = 0, w(·, 0) = 0,

h̃t + a(x, t)g(v + w)x = 0, h̃(·, 0) = h(uk)(·),
(5.24)

where a(x, t) represents the Jacobian Duh

a = Duh =




0 0 0 0
0 0 0 0

κρl κρg 0 0
κρl κρg 0 0


 , (5.25)



26 EVJE, FLÅTTEN, FRIIS

where κ is given by (5.22) by using (5.21). Thus, the last set of equations of (5.24) corresponds
to the pressure evolution equation

∂p

∂t
+ κ

(
ρl

∂

∂x
(αgρgvg) + ρg

∂

∂x
(αlρlvl)

)
= 0. (5.26)

In light of (2.29), we see that the X-FORCE scheme takes the general form (here we have neglected
the ”source term” q appearing on the right hand side of (5.23))

uk+1
j = uk

j − λ
(
Gk

j+1/2 −Gk
j−1/2

)
− λαk

j

(
Hk+1

j+1/2 −Hk+1
j−1/2

)
, αk

j = α(uk
j ), (5.27)

where Gk
j+1/2 and Hk+1

j+1/2 are given by (2.30) when we apply a forward Euler discretization of the
semi-discrete system corresponding to (2.22) and (2.23).

An explicit X-FORCE scheme. To sum up, the resulting numerical fluxes Gk
j+1/2 and

Hk+1
j+1/2 are then given by

Gk
j+1/2 =

1
2




Ik
g,j + Ik

g,j+1

Ik
l,j + Ik

l,j+1

Jk
g,j + Jk

g,j+1

Jk
l,j + Jk

l,j+1


− 1

4λ




mk
g,j+1 −mk

g,j

mk
l,j+1 −mk

l,j

Ik
g,j+1 − Ik

g,j

Ik
l,j+1 − Ik

l,j


 , (5.28)

and

Hk+1
j+1/2 =




0
0

P k+1
j+1/2

P k+1
j+1/2


 , (5.29)

where

P k+1
j+1/2 =

1
2
(pk

j + pk
j+1)− λ[κρl]kj+1/2(I

k
g,j+1 − Ik

g,j)− λ[κρg]kj+1/2(I
k
l,j+1 − Ik

l,j). (5.30)

We may follow (2.26) and define [κρg]kj+1/2 as the average

[κρg]kj+1/2 =
1
2
([κρg]kj + [κρg]kj+1), (5.31)

where κ now is given by (5.22). A similar definition can used for [κρl]kj+1/2.

An implicit X-FORCE scheme. We closely follow the strategy we used for the isothermal
Euler model in the previous subsection and now propose a semi-implicit variant of the above
two-fluid explicit X-FORCE scheme. More precisely,

• we consider a backward Euler discretization of the semi-discrete system corresponding to
(2.22) and (2.23),

• in order to obtain a linearly implicit scheme, we introduce a linearization of the convective
terms of the momentum equations by considering

Jk+1
g,j ≈ Ik+1

g,j vk
g,j = J

k+1/2
g,j , Jk+1

l,j ≈ Ik+1
l,j vk

l,j = J
k+1/2
l,j . (5.32)

This results in the following numerical fluxes.

G
k+1/2
j+1/2 =

1
2




Ik+1
g,j + Ik+1

g,j+1

Ik+1
l,j + Ik+1

l,j+1

J
k+1/2
g,j + J

k+1/2
g,j+1

J
k+1/2
l,j + J

k+1/2
l,j+1


− 1

4λ




mk
g,j+1 −mk

g,j

mk
l,j+1 −mk

l,j

Ik
g,j+1 − Ik

g,j

Ik
l,j+1 − Ik

l,j


 , (5.33)
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and

P k+1
j+1/2 + λ[κρl]kj+1/2(I

k+1
g,j+1 − Ik+1

g,j ) + λ[κρg]kj+1/2(I
k+1
l,j+1 − Ik+1

l,j ) =
1
2
(pk

j + pk
j+1). (5.34)

The corresponding scheme then takes the form
• Mass equations

mk+1
g,j = mk

g,j − λ
(
I

k+1/2
g,j+1/2 − I

k+1/2
g,j−1/2

)
,

mk+1
l,j = mk

l,j − λ
(
I

k+1/2
l,j+1/2 − I

k+1/2
l,j−1/2

) (5.35)

with

I
k+1/2
g,j+1/2 =

1
2
(Ik+1

g,j + Ik+1
g,j+1)−

1
4λ

(mk
g,j+1 −mk

g,j),

I
k+1/2
l,j+1/2 =

1
2
(Ik+1

l,j + Ik+1
l,j+1)−

1
4λ

(mk
l,j+1 −mk

l,j).
(5.36)

• Momentum equations

Ik+1
g,j + λαk

g,j

(
P k+1

j+1/2 − P k+1
j−1/2

)
+ λ

(
J

k+1/2
g,j+1/2 − J

k+1/2
g,j−1/2

)
= Ik

g,j + ∆tqk
g,j

Ik+1
l,j + λαk

l,j

(
P k+1

j+1/2 − P k+1
j−1/2

)
+ λ

(
J

k+1/2
l,j+1/2 − J

k+1/2
l,j−1/2

)
= Ik

l,j + ∆tqk
l,j

P k+1
j+1/2 + [κρl]kj+1/2λ

(
Ik+1
g,j+1 − Ik+1

g,j

)
+ [κρg]kj+1/2λ

(
Ik+1
l,j+1 − Ik+1

l,j

)

=
1
2
(pk

j + pk
j+1),

(5.37)

with

J
k+1/2
g,j+1/2 =

1
2
(Jk+1/2

g,j + J
k+1/2
g,j+1 )− 1

4λ
(Ik

g,j+1 − Ik
g,j),

J
k+1/2
l,j+1/2 =

1
2
(Jk+1/2

l,j + J
k+1/2
l,j+1 )− 1

4λ
(Ik

l,j+1 − Ik
l,j),

(5.38)

where J
k+1/2
g,j and J

k+1/2
l,j are given by (5.32).

Remark 14. The above scheme is semi-implicit in the sense that we solve implicitly for the
mass flux (momentum) Ik+1

g and Ik+1
l while we solve explicitly for the masses mk+1

g and mk+1
l

along the following two steps:
• First, we solve simultaneously for Ik+1

g,j , Ik+1
l,j , and P k+1

j+1/2 from the three equations given by
(5.37). This corresponds to solving a linear problem Ax = b where the matrix A possesses
a band structure.

• Second, we solve for mk+1
g,j and mk+1

l,j from (5.35) by making use of the updated momentum
Ik+1
g,j and Ik+1

l,j obtained from the first step.

Explicit and semi-implicit X-FORCE schemes similar to those described above have been
explored extensively, respectively, in [7] and [6, 8]. In particular, it is demonstrated that the semi-
implicit X-FORCE scheme possesses a weak CFL condition which relates the CFL number to the
maximal fluid velocity and not the speed of the sonic waves. Another feature of the X-FORCE
schemes presented in these works is that an upwind component is incorporated in the convective
fluxes. As a consequence, they are able to give an accurate resolution of the important mass waves
comparable to that of a Roe scheme.

6. Some numerical experiments. First we study basic properties of second-order X-
FORCE schemes for nonlinear scalar conservation laws. Then we demonstrate characteristic
behavior of the three X-FORCE schemes described in Section 5.1 for the isothermal Euler model.
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Fig. 6.1. Left column: from top to bottom: XF1, XF2, and XF3 with fa flux. Right column: from top to
bottom: XF1, XF2, and XF3 with fb flux.

6.1. Scalar conservation law. The purpose of this test is to explore the behavior of three
different X-FORCE schemes for a nonlinear scalar conservation law ut + f(u)x = 0. We consider
second-order type of schemes as described in Section 4.4. In particular, we want to check whether
the non-oscillatory behavior ensured by Corollary 4.2 and 4.8 for the first-order X-FORCE class
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seems to carry over to the second-order X-FORCE class. First we consider an example with

fa(u) =
u2

u2 + (1− u)2
. (6.1)

Then an example with

fb(u) =
(u2 − 1)(u2 − 4)

4
. (6.2)

For both cases we consider three X-FORCE schemes corresponding to the following three different
splittings:

XF1: g(u) =

{
u for fa,
1
2 (2− |u|) for fb.

, h(u) = f(u)− g(u),

XF2: g(u) = f(u), h(u) = 0,

XF3: g(u) = h(u) =
1
2
f(u).

Note that XF2 is nothing but the nonstaggered NT scheme presented in [14]. XF3 represents a
second-order FORCE scheme. In particular, this second order FORCE flux represents an alterna-
tive to the second order FORCE scheme presented in [2]. Finally, XF-1 is an interesting candidate
since the second-order interpolation is applied only to a linear part of the nonlinear flux f(u). As
initial data we use

u0
a(x) =

{
1 0.5 ≤ x ≤ 1
0 otherwise.

, u0
b(x) =

{
2 x < 1
−2 otherwise,

and solve on the domain [0, 2]. We note that maxu∈[0,1] |f ′a(u)| = 2 and maxu∈[−2,+2] |f ′b(u)| = 3.
For the case with the fa flux we have used the following CFL numbers

CFLXF1 = 0.5, CFLXF2 = 0.5, CFLXF3 = 0.95.

The choice of CFL numbers have been guided by the stability conditions as described in Section
4 for the respective first-order schemes. We have computed solutions for two different grid sizes
∆x = 1/50 and ∆x = 1/100 where we have used θ = 1 in (4.36) and (4.41). Results after a time
T = 0.5 are shown in the left column of Fig. 6.1. Reference solutions have been generated by
applying the FORCE scheme on a very fine grid.

Similarly, for the case with the fb flux we have used

CFLXF1 = 0.25, CFLXF2 = 0.5, CFLXF3 = 0.75.

Solutions are shown in the right column of Fig. 6.1 at time T = 1.2. Particularly, the numerical
results indicate that the second order X-FORCE class, that might be seen as a generalization of
the second order non-staggered NT scheme presented in [14], is TVD. More precisely, the following
observations can be made from the above numerical examples:

(i) We can apply the interpolation technique used in [14] to only a linear part g(u) of the
flux f(u) (XF1) and obtain results similar to those produced by the non-staggered NT
scheme (XF2).

(ii) The second-order FORCE scheme (XF3), which applies linear interpolants to the flux
f(u) similar to the non-staggered NT scheme (XF2), clearly seems to be TVD under a
weaker CFL condition than the non-staggered NT scheme.

Thus, the above simulations indicate that it can be potentially fruitful to explore various candidates
in the X-FORCE class. In particular, for systems there should be room for exploiting this freedom
to explore interesting X-FORCE schemes besides the non-staggered NT scheme and the higher
order FORCE scheme. However, more investigations are necessary before any decisive conclusion
can be drawn.
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6.2. Isothermal Euler model. Now we want to pay some attention to the relation between
explicit and implicit time discretization. For that purpose we test the different first order X-
FORCE schemes corresponding to scheme 1 (explicit), scheme 2 (explicit), and scheme 3
(implicit) of Section 5.1. More precisely, we consider the first order schemes for the model (1.2)
together with the pressure law

p(ρ) = Kργ , γ > 1. (6.3)

The sound velocity σ is given by

σ2 =
∂p

∂ρ
= Kγργ−1, γ > 1.

We note that the model possesses two characteristic sonic wave velocities given by

λ = u± σ.

We use γ = 1.4 and K = 1 for the numerical calculations. We consider the Riemann problem with
(ρL, uL) = (1, 0) and (ρR, uR) = (2, 0).

In order to shed more light on the convergence properties of the proposed X-FORCE schemes
we have also included another well known central scheme, the relaxed scheme proposed by Jin
and Xin [15], in our example. We also have used the second-order relaxed scheme to calculate
reference solutions. The relaxed scheme has been tested extensively for various conservation laws.
For the relaxed scheme it is known (we refer to [15] for details) that the so-called subcharacteristic
condition given by

A− F ′(v)2 ≥ 0, for all v, (6.4)

must be satisfied for a diagonal matrix A = diag{a11, a22} and the Jacobian F ′ associated with the
conservation law. The matrix A determines the numerical dissipation associated with the relaxed
scheme. In many cases we can choose that A has the simpler form

A = aI, a > 0.

In this case (and if the model is one-dimensional), the condition (6.4) is satisfied if

max{|u− σ|, |u + σ|} <
√

a.

For the above Riemann problem we apply the following rough estimate

σ2 = γργ−1 ≤ 1.4 max(ρ)0.4 = 1.4 · 20.4 ≈ 1.85.

Consequently, we may estimate as follows (assuming |u| ≤ 0.5)

max(|u− σ|, |u + σ|) ≤ 1.4 + 0.5 < 2,

we may choose a = 4. We define the CFL number as

CFL =
√

a
∆t

∆x
= 2

∆t

∆x
, (6.5)

which relates the time step ∆t and the spatial discretization parameter ∆x to the maximal eigen-
value.

Test 1. We compare scheme 1 (the FORCE scheme given by (5.2)–(5.4)), scheme 2 (the
X-FORCE scheme given by (5.5)–(5.7)), and the first order relaxed scheme of Jin. We compute
solutions after time T = 1.5 on a grid of 100 cells. Results for two different CFL numbers, CFL=0.5
and CFL=1.0, are shown, respectively, in Fig. 7.1 and Fig. 7.2. The CFL number is inserted in
the relation (6.5), from which the corresponding time step is determined.

We observe that the performance of the various central schemes is very similar with respect to
accuracy. However, for CFL=0.5 the X-FORCE scheme gives the best resolution. This difference
is clearly reduced by increasing the time step ∆t, that is, setting CFL=1 in (6.5).
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Fig. 7.1. We consider the performance of the first order FORCE, X-FORCE, and relaxed scheme with
CFL=0.5 and N = 100 grid cells. T = 1.5.

Test 2. In Fig. 7.3 we consider the implicit variant of the X-FORCE scheme (scheme 3)
defined by (5.14)–(5.17). We have shown results produced by this scheme for a grid of N = 100
cells. The behavior is close to that of the explicit variant for CFL numbers of the same order. As
expected, higher CFL numbers introduce a smearing effect.

Finally, we want to check if solutions remain stable when we use very high CFL numbers.
For that purpose we consider a finer grid of N = 2000 cells so that ∆x in (6.5) becomes small.
This allows us to still compute solutions at time T = 1.5 at the same time as we use high CFL
numbers. Results are shown in Fig. 7.4 for CFL= 10, 20, 40, 80 and we observe that the implicit
X-FORCE scheme remains stable. In fact, apparently the implicit scheme is stable for any CFL
number, however at the cost of introducing a stronger smearing of the fronts.

7. Some concluding remarks. In [6]–[8] we proposed to use a centred type three-point
scheme as a building block in the construction of some central-upwind type schemes for an isother-
mal two-fluid model commonly used within the petroleum industry. A main ingredient in this
construction was the splitting of the flux into a convective term and a pressure term. The con-
vective term was discretized by using the modified Lax-Friedrichs scheme whereas an appropriate
numerical flux for the pressure term was obtained by developing a pressure evolution equation.

The purpose of this work has been to see how some of these ideas can be taken over to a
general nonlinear system of conservation laws. We have implemented these ideas in a systematic
and consistent manner by approximating the original model by an extended model obtained via
(i) a decomposition of the original model into two sub-systems corresponding to a general splitting
f = g + h of the flux f , (ii) development of flux evolution equations for the h flux.

In particular, we have observed that a consistent discretization of this extended model gives
rise to a class of centred type schemes which contains the FORCE scheme [20] as a special case.
Thus, we have denoted the class as extended FORCE (X-FORCE). A higher order X-FORCE
class is proposed by following along the line of [14]. We have verified that the X-FORCE schemes
for scalar conservation laws are TVD, monotone, and entropy consistent under suitable CFL
conditions. We have also illustrated how we naturally can construct an implicit X-FORCE scheme
for the isothermal Euler equations and an isothermal 4-equations two-fluid model. These examples
demonstrate potential merits in replacing the flux splittings that reproduce the FORCE scheme
or the non-staggered NT scheme with splittings more naturally tailored to the structure of the
model under consideration.
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port through the BeMatA program. The authors are also grateful for the constructive criticism
from the reviewers which has improved the original manuscript.
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Fig. 7.2. We consider the performance of the first order FORCE, X-FORCE, and relaxed scheme with
CFL=1.0 and N = 100 grid cells. T = 1.5.
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Fig. 7.3. We consider the performance of the implicit X-FORCE scheme for different CFL numbers with
N = 100 grid cells. T = 1.5.
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Fig. 7.4. We consider the performance of the implicit X-FORCE scheme for different large CFL numbers
with N = 2000 grid cells. T = 1.5.
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