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In this paper we propose a class of linearly implicit numerical schemes for a
two-phase flow model, allowing for violation of the CFL-criterion for all waves.
Based on the Weakly Implixit Mixture Flux (WIMF) approach [SIAM J. Sci.
Comput., 26 (2005), pp. 1449–1484], we here develop an extension denoted as
Strongly Implicit Mixture Flux (SIMF).
Whereas the WIMF schemes are restricted by a weak CFL condition which
relates time steps to the fluid velocity, the SIMF schemes are able to break the
CFL conditions corresponding to both the sonic and advective velocities.
The schemes possess some desirable features compared to current industrial
pressure-based codes. They allow for sequential updating of the momentum
and mass variables on a nonstaggered grid by solving two sparse linear systems.
The schemes are conservative in all convective fluxes and consistency between
the mass variables and pressure is formally maintained.
Numerical experiments are presented to shed light on the inherent differences
between the WIMF and SIMF families of schemes. In particular, we demonstrate
that the WIMF scheme is able to give an exact resolution of a moving contact
discontinuity. The SIMF schemes do not possess the “exact resolution” property
of WIMF, however, the ability to take larger time steps can be exploited so that
more efficient calculations can be made when accurate resolution of sharp fronts
is not essential, e.g. to calculate steady state solutions.
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1. INTRODUCTION

We consider in this paper a classical two-fluid model governing two-phase
flow of gas and liquid in a pipeline. The model, described in more detail
in Section 2, may be written on the following vector form:

∂t

⎛
⎜⎝

ρgαg
ρlαl
ρgαgvg
ρlαlvl

⎞
⎟⎠+ ∂x

⎛
⎜⎜⎝

ρgαgvg
ρlαlvl

ρgαgv
2
g +αgp

ρlαlv
2
l +αlp

⎞
⎟⎟⎠=

⎛
⎜⎝

0
0

p∂xαg + τg
p∂xαl + τl

⎞
⎟⎠+

⎛
⎜⎜⎝

0
0

Qg +MD
g

Ql +MD
l

⎞
⎟⎟⎠ .

(1)

Here αk is the volume fraction of phase k with αl +αg =1, ρk and vk denote
the density and fluid velocities of phase k, and p is the pressure common
to both phases. Moreover, τk represents the interfacial forces which contain
differential terms (hence, is relevant for the hyperbolicity of the model) and
satisfy τg + τl = 0. MD

k represents interfacial drag force with MD
g +MD

l = 0
whereas Qk represent source terms due to gravity, friction, etc.

The majority of computer software for such two-fluid simulations are
based on implicit time integration, allowing for violation of the CFL criterion

∆x

∆t
� |λmax| (2)

where λmax is the largest eigenvalue for the system. Examples include the
CATHARE code [1] developed for the nuclear industry, as well as OLGA
[2] and PeTra [9] aimed towards the petroleum industry.

Following [7], we classify implicit schemes as follows:

Definition 1 (Weakly implicit). A numerical scheme is said to be
weakly implicit if it allows stable calculation of solutions under the CFL
condition

∆x

∆t
� |λv

max|, (3)

where λv
max is the largest of the two eigenvalues corresponding to volume

fraction waves.

Definition 2 (Strongly implicit). A numerical scheme is said to be
strongly implicit if it allows stable calculation of solutions under no restric-
tion on the time step related to the wave velocities.

In a previous work [7], we developed a weakly implicit scheme,
termed WIMF-AUSMD, based on the AUSMD [18] convective fluxes
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applied in [6]. A key element in the construction of WIMF-AUSMD was
the introduction of the Mixture Flux (MF) technique for robust and accu-
rate resolution of both sonic and volume fraction waves.

The purpose of the present work is to elaborate further on the class
of MF schemes for the two-fluid model. In particular, we demonstrate how
a minor change to the WIMF framework introduced in [7] allows us to
obtain a strongly implicit scheme in the sense of Definition 2. We proceed
as follows:

• First, we construct a fully discrete Weakly Implicit MF scheme,
denoted as WIMF-upwind, which represents a simplification com-
pared to the WIMF-AUSMD scheme investigated in [7]. The sim-
plification lies in the fact that while WIMF-AUSMD employs an
estimate of the sound velocity, WIMF-upwind uses no information
about the sound velocity.

• Second, we construct a fully discrete Strongly Implicit MF scheme,
denoted as SIMF-upwind, based on the WIMF-upwind scheme;

• Third, we construct a more robust SIMF-FVS scheme, based on the
FVS convective fluxes investigated in [6].

Hence this work serves to demonstrate that the MF approach represents
a flexible framework which allows us to construct implicit schemes from a
broad range of basic convective fluxes.

Numerical simulations are made to highlight the differences and simi-
larities between WIMF-upwind, SIMF-upwind and SIMF-FVS. In partic-
ular, we observe the following:

• For time steps dictated by the sonic CFL condition (2) WIMF-
upwind and SIMF-upwind give a performance which is similar to
an explicit Roe scheme.

• The WIMF-upwind scheme allows exact resolution of a moving
contact discontinuity. This property closely hangs on the fact that
WIMF-type of schemes are stable for time steps dictated by the
weak CFL condition (3). Explicit schemes, like the Roe scheme used
in this work for comparison purposes, are excluded from possessing
this property since the time step must obey the strong CFL condi-
tion (2).

• The SIMF-upwind scheme does not possess the “exact resolution
property” for a linear contact discontinuity due to the implicit dis-
cretization of its numerical mass fluxes. On the other hand, this
scheme is unconditionally stable for a moving linear contact discon-
tinuity, however at a price of introducing a strong smearing of the
contact discontinuity.
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• SIMF-FVS is able to handle the transition to one-phase flow in a
robust manner. However, SIMF-FVS is more diffusive than SIMF-
upwind.

More generally, the results when WIMF and SIMF are explored for differ-
ent flow cases, indicate that the SIMF scheme allows for an increased time
step and improved computational efficiency on a given grid. In particular
the SIMF scheme allows for efficient steady state calculations. However,
the SIMF is inherently more diffusive than the WIMF on volume fraction
waves. This limits the applicability of the SIMF scheme for accurate cal-
culation of slow transients (mass fronts), where a weakly implicit scheme
may generally be preferable.

Our paper is organized as follows: In Section 2, the particular two-
fluid model we study is presented. In Section 3 we detail the numerical
schemes we investigate in this paper. In particular, we develop the WIMF-
upwind, SIMF-upwind and SIMF-FVS schemes. In Section 4 the imple-
mentation details of the various schemes are discussed; here the band
structures of the resulting coefficient matrices are presented.

In Section 5 we highlight an important difference between the WIMF
and SIMF classes of schemes, by comparing their formulation for a sim-
ple contact discontinuity. Finally, in Section 6 we present numerical simu-
lations. Particularly, we demonstrate that the SIMF scheme introduced in
this paper is able to violate the CFL criterion for all waves, justifying its
description as a strongly implicit scheme. In Section 6.3 we demonstrate
that the SIMF-FVS scheme handles the transition to one-phase flow in an
efficient and highly robust manner.

2. THE TWO-FLUID MODEL

Throughout this paper we will be concerned with the common two-
fluid model formulated by stating separate conservation equations for
mass and momentum for the two fluids, which we will denote as a gas
(g) and a liquid (l) phase. The model has been studied by several authors
[16,3,4,12,6] and will be briefly stated here. We let U be the vector of con-
served variables

U =

⎡
⎢⎣
ρgαg
ρlαl
ρgαgvg
ρlαlvl

⎤
⎥⎦=

⎡
⎢⎣
mg
ml
Ig
Il

⎤
⎥⎦ . (4)

By using the notation ∆p=p−pi , where pi is the interfacial pressure, and
τk = (pi −p)∂xαk, we see that the model (1) can be written on the form
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• Conservation of mass

∂

∂t

(
ρgαg

)+ ∂

∂x

(
ρgαgvg

)=0, (5)

∂

∂t
(ρlαl)+

∂

∂x
(ρlαlvl)=0, (6)

• Conservation of momentum

∂

∂t

(
ρgαgvg

)+ ∂

∂x

(
ρgαgv

2
g

)
+αg

∂p

∂x
+∆p∂αg

∂x
=Qg +MD

g , (7)

∂

∂t
(ρlαlvl)+

∂

∂x

(
ρlαlv

2
l

)
+αl

∂p

∂x
+∆p∂αl

∂x
=Ql +MD

l . (8)

The system is closed by some equation of states (EOS) for the liquid and
gas phase. The numerical methods we study in this work allow general
expressions for the EOS. However, for the numerical simulations presented
in this work we assume the simplified thermodynamic relations

ρl =ρl,0 + p−p0

a2
l

(9)

and

ρg = p

a2
g

(10)

where

p0 =1 bar=105 Pa

ρl,0 =1000 kg/m3,

a2
g =105(m/s)2

and

al =103 m/s.

Moreover, we will treat Qk as a pure source term, assuming that it
does not contain any differential operators. We use the interface pressure
correction

∆p=σ αgαlρgρl

ρgαl +ρlαg
(vg −vl)

2, (11)
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where unless otherwise stated we set σ =1.2. This choice ensures that the
model is a hyperbolic system of conservation laws, see for instance [16, 4].
Another feature of this model is that it possesses an approximate mixture
sound velocity c given by

c=
√√√√ ρlαg +ρgαl

∂ρg
∂p
ρlαg + ∂ρl

∂p
ρgαl

. (12)

We refer to [16,6] for more details.

3. NUMERICAL SCHEMES

In this section, we describe the SIMF and WIMF schemes investi-
gated in this paper. The WIMF scheme is elaborately discussed in [7], we
here present only the main ideas and the details necessary for implement-
ing the scheme. The SIMF class of schemes differs from WIMF in the
level of implicitness of the convective fluxes. This class of schemes is intro-
duced in Section 3.4.

3.1. General Framework

Generally, a numerical approximation of first order temporal accuracy
to the system (5)–(8) can be written as follows:

• Gas Mass

mn+1
g,j −mng,j
∆t

+
I ∗

g,j+1/2 − I ∗
g,j−1/2

∆x
=0 (13)

• Liquid Mass

mn+1
l,j −mnl,j
∆t

+
I ∗

l,j+1/2 − I ∗
l,j−1/2

∆x
=0 (14)

• Gas Momentum

In+1
g,j − Ing,j
∆t

+
(Iv)∗g,j+1/2 − (Iv)∗g,j−1/2

∆x

+αng,j
p∗
j+1/2 −p∗

j−1/2

∆x
+ (∆p)nj

α∗
g,j+1/2 −α∗

g,j−1/2

∆x
=Qn

g,j

(15)
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• Liquid Momentum

In+1
l,j − Inl,j
∆t

+
(Iv)∗l,j+1/2 − (Iv)∗l,j−1/2

∆x

+αnl,j
p∗
j+1/2 −p∗

j−1/2

∆x
+ (∆p)nj

α∗
l,j+1/2 −α∗

l,j−1/2

∆x
=Qn

l,j . (16)

Here we have used the abbreviations

mk =ρkαk (17)

and

Ik =mkvk (18)

for phase k. The *-notation indicates that the time level remains to be
specified.

The numerical scheme is now determined by the calculation of appro-
priate cell interface values (·)j+1/2 for each time step. The WIMF and
SIMF schemes differ only in their treatment of the convective fluxes Ij+1/2
and (Iv)j+1/2. In the following, we will describe the spatial discretization
of the remaining terms, defining a common ground for the WIMF and
SIMF classes of schemes.

Remark 1. In this paper, we follow [7] and consider only first-order
spatial and temporal integration. This is currently the standard for indus-
trial codes [2,9]. However, extensions to higher order accuracy should be
explored systematically, with the aim of improving the accuracy of the
schemes without hurting the robustness. This could be investigated for
instance by following the approach of [10,15].

3.1.1. The Pressure-Momentum Coupling

As noted in [7], an important step towards breaking the CFL crite-
rion for sonic waves is the development of a pressure evolution equation
at cell interfaces, and coupling this equation with the mass fluxes.

This gives rise to the following implicit algorithm for solving the
momentum equations:
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• Gas Momentum

In+1
g,j − Ing,j
∆t

+
(Iv)∗g,j+1/2 − (Iv)∗g,j−1/2

∆x

+αng,j
pn+1
j+1/2 −pn+1

j−1/2

∆x
+ (∆p)nj

αng,j+1/2 −αng,j−1/2

∆x
=Qn

g,j (19)

• Liquid Momentum

In+1
l,j − Inl,j
∆t

+
(Iv)∗l,j+1/2 − (Iv)∗l,j−1/2

∆x

+αnl,j
pn+1
j+1/2 −pn+1

j−1/2

∆x
+ (∆p)nj

αnl,j+1/2 −αnl,j−1/2

∆x
=Qn

l,j . (20)

• Pressure Evolution

pn+1
j+1/2 − 1

2 (p
n
j +pn

j+1)

∆t
=−(κρl)

n
j+1/2

In+1
g,j+1 − In+1

g,j

∆x

−(κρg)
n
j+1/2

In+1
l,j+1 − In+1

l,j

∆x
, (21)

where the interface values κn
j+1/2 and ρn

k,j+1/2 are computed from pn
j+1/2

together with the arithmetic average

αnk,j+1/2 = 1
2
(αnk,j +αnk,j+1). (22)

Here κ is given by

κ= 1(
∂ρg/∂p

)
ρlαg + (∂ρl/∂p)ρgαl

. (23)

We refer to [7] for the derivation of the pressure evolution equation.
The convective fluxes (Iv)∗

j+1/2 will be defined in Section 3.2.

3.1.2. Source Terms

As may be seen from (19) and (20), the source terms Qk are dis-
cretized explicitly in time. For the test problems investigated in this paper,
we consider only gravitational acceleration. Here the explicit integration is
sufficient even when the strong CFL criterion (3) is broken.

However, if the source terms are stiff, an implicit discretization may
be necessary. This was done in [7].
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3.1.3. Interface Pressure Correction Terms

The interface pressure correction term is approximated as follows
(
∆p

∂αk

∂x

)n
j

= (∆p)j
αn
k,j+1/2 −αn

k,j−1/2

∆x
, (24)

where

αnk,j+1/2 = 1
2
(αnk,j +αnk,j+1). (25)

In other words, we use a simple central, explicit discretization, motivated
by the idea that the interface pressure correction is small in magnitude and
plays a minor role in the dynamical behaviour of the model [7].

As the numerical examples of this paper demonstrate, the explicit dis-
cretization (24) presents no obstacle when it comes to breaking the strong
CFL criterion (3).

3.2. Convective Fluxes

By far the most important aspect of the MF methods is the spa-
tial discretization of the convective fluxes. Following [7], we introduce the
shorthands

Fk = (ρkαkvk)j+1/2 (26)

and

Gk = (ρkαkv2
k )j+1/2. (27)

We now consider the following basic flux components

• Flux components FD and GD allowing for violation of the sonic
CFL criteron (fast waves).

• Flux components FA and GA possessing desirable properties in the
resolution of mass transport dynamics (slow waves).

The fluxes Fk and Gk are then constructed as appropriate hybridizations
of the underlying “A” and “D” components, with the aim of incorporating
properties from both. This motivates the use of the term “mixture flux”
(MF) methods.

In the following, we will first describe the general construction of the
“A” and “D” flux components (Sections 3.2.1 and 3.2.2) and the appro-
priate hybridization (Section 3.2.3). Then, in Section 3.3, we define the
upwind and FVS convective splittings. In Section 3.4 we highlight the
differences between the SIMF and WIMF classes of schemes.
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3.2.1. Flux Components FD and GD

The aim of these flux components is to couple the mass calculations
mn+1
k,j to the pressure calculation pn+1

j+1/2. Our starting point is the observa-
tion that the pressure equation (21) employs the staggered Lax–Friedrichs
scheme to obtain cell interface values. A projection back to the nonstag-
gered grid yields modified Lax–Friedrichs fluxes [14], which for mass and
momentum convection become

FD
k,j+1/2 = 1

2
(In+1
k,j + In+1

k,j+1)+
1
4
∆x

∆t
(mnk,j −mnk,j+1) (28)

and

GD
k,j+1/2 = 1

2
((Iv)n+1

k,j + (Iv)n+1
k,j+1)+

1
4
∆x

∆t
(Ink,j − Ink,j+1). (29)

We refer to [7,8] for more details.
Note that we here use implicit values for the central flux approxima-

tion, and explicit values for the numerical viscosity. This is in accordance
with the numerical pressure equation (21).

3.2.2. Flux Components FA and GA

We write these flux components on the following general form

FA
k,j+1/2 =V +

k,jm
∗
k,j +V −

k,j+1m
∗
k,j+1 (30)

and

GA
k,j+1/2 =V +

k,j I
∗
k,j +V −

k,j+1I
∗
k,j+1. (31)

Here V ± are velocity splittings to be defined in Section 3.3, and the
∗-notation indicates that the time level may be either n or n + 1. This
difference defines the WIMF and SIMF schemes, as described in Section
3.4.

3.2.3. Hybrid Fluxes Fk and Gk

We here consider appropriate hybridizations of the FA,D and GA,D

fluxes, with the aim that the hybridization should

• reduce to the “D”-component in the resolution of the pressure
variable (sonic waves).

• reduce to the “A”-component in the resolution of the volume
fraction variable (material waves).
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Based on this motivation, the following hybridizations were obtained
in [7, 8] for the convective mass flux Fk:

Fl,j+1/2 = ([κρgαl∂pρl]
nFD

l + [κρlαg∂pρg]nFA
l

+[κρlαl∂pρl]
n(FD

g −FA
g ))j+1/2 (32)

and

Fg,j+1/2 = ([κρlαg∂pρg]nFD
g + [κρgαl∂pρl]

nFA
g

+[κρgαg∂pρg]n(FD
l −FA

l ))j+1/2. (33)

The coefficient variables at j + 1/2 are determined from the cell interface
pressure pn

j+1/2 as well as the relation

αnj+1/2 = 1
2
(αnj +αnj+1)

which is consistent with the treatment of the coefficients of the pressure
evolution equation (21).

Furthermore, based on the assumption that momentum convection
affects mainly the material waves (volume fraction variable), we simply use
[7, 8]

Gk,j+1/2 =GA
k,j+1/2. (34)

Remark 2. In [7], we demonstrated that with an implicit “D”-flux and
an explicit “A”-flux, we could break the CFL-criterion pertaining to the
sonic waves. A main aim of this paper is to demonstrate that by treat-
ing also the “A”-component of the flux implicitly, we are able to break the
CFL criterion for all waves.

3.3. Velocity Splittings

In this section, we describe the two types of convective velocity split-
tings we apply in this paper; the robust FVS splitting investigated in [6],
and the less dissipative upwind splitting.

3.3.1. FVS

We first define the cell interface sound velocity cj+1/2

cj+1/2 =max(cj , cj+1), (35)
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where c is given by (12). Following [6], we now define V ± as

V +
k,j =

⎧⎨
⎩

1
4cn
j+1/2

(vnk,j + cn
j+1/2)

2 if |vnk,j |<cnj+1/2

1
2 (vk,j +|vk,j |) otherwise

, (36)

V −
k,j+1 =

⎧⎨
⎩

− 1
4cn
j+1/2

(vn
k,j+1 − cn

j+1/2)
2 if |vn

k,j+1|<cnj+1/2

1
2 (vk,j+1 −|vk,j+1|) otherwise

. (37)

3.3.2. Upwind

We define the cell interface advective velocity vk,j+1/2

vk,j+1/2 = 1
2
(vk,j +vk,j+1). (38)

We now define V ± as

V +
k,j =

⎧⎨
⎩
vn
k,j+1/2 if vn

k,j+1/2>0

0 otherwise
, (39)

V −
k,j+1 =

⎧⎨
⎩
vn
k,j+1/2 if vn

k,j+1/2<0

0 otherwise
. (40)

3.4. WIMF and SIMF Schemes

We are now in a position to precisely define the various schemes we
will investigate in this paper. The difference between SIMF and WIMF lies
purely in the calculation of the flux componenents FA and GA, where we
have

• WIMF:

F
A,WIMF
k,j+1/2 =V +

k,jm
n
k,j +V −

k,j+1m
n
k,j+1 (41)

and

G
A,WIMF
k,j+1/2 =V +

k,j I
n
k,j +V −

k,j+1I
n
k,j+1. (42)
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• SIMF:

F
A,SIMF
k,j+1/2 =V +

k,jm
n+1
k,j +V −

k,j+1m
n+1
k,j+1 (43)

and

G
A,SIMF
k,j+1/2 =V +

k,j I
n+1
k,j +V −

k,j+1I
n+1
k,j+1. (44)

The WIMF-upwind, SIMF-upwind and SIMF-FVS schemes are now
defined as follows:

Definition 3 (WIMF-upwind). We will use the term WIMF-upwind to
denote the numerical algorithm as described in Sections 3.1–3.3, where

• The flux components FA and GA are given by (41) and (42).
• The velocity splittings V ± are given as described in Section 3.3.2.

Definition 4 (SIMF-upwind). We will use the term SIMF-upwind to
denote the numerical algorithm as described in Sections 3.1–3.3, where

• The flux components FA and GA are given by (43) and (44).
• The velocity splittings V ± are given as described in Section 3.3.2.

Definition 5 (SIMF-FVS). We will use the term SIMF-FVS to denote
the numerical algorithm as described in Sections 3.1–3.3, where

• The flux components FA and GA are given by (43) and (44).
• The velocity splittings V ± are given as described in Section 3.3.1.

Remark 3. The above WIMF-upwind scheme is simpler than the
WIMF schemes considered in [7] in the sense that we do not use
any approximate sound velocity. Consequently, no information about the
eigenstructure is required.

4. THE MATRIX BAND STRUCTURE

The MF approach, as reflected by the above WIMF and SIMF
schemes, allows for sequential updating of the conservative variables
according to the following steps:

(1) The momentum equations (15) and (16) are solved coupled with
the pressure equation (21).

(2) The updated mass fluxes In+1
k,j are applied for solving the mass

equations.
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For WIMF the mass equations (13) and (14) with the mixture fluxes (32)
and (33) are solved separately and in an explicit manner whereas for
SIMF the mass equations (13) and (14) with the mixture fluxes (32) and
(33) are solved coupled with each other to yield mn+1

k,j .
The band structure of the resulting linearized systems is described in

more detail below.

4.1. The Pressure–Momentum Coupling

The pressure–momentum coupling, as described in Section 3.1.1, gives
rise to a linear system that we write on the following form

(A +S)x =b +w. (45)

We further write each of the matrices M = A,S,x,b,w on the following
block form

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

...

Mj−1
Mj

Mj+1
...

⎞
⎟⎟⎟⎟⎟⎟⎠
, (46)

where in particular

xj =
⎛
⎝

Ig,j
Il,j

pj+1/2

⎞
⎠
n+1

. (47)

Furthermore, A and b are common to the WIMF and SIMF schemes.
The vector b is given by

bj =

⎛
⎜⎜⎝
Ig,j +∆t

(
Qg,j − (∆p)j αg,j+1/2−αg,j−1/2

∆x

)

Il,j +∆t
(
Ql,j − (∆p)j αl,j+1/2−αl,j−1/2

∆x

)

1
2 (pj +pj+1)

⎞
⎟⎟⎠

n

. (48)

Now introducing

δ= ∆t

∆x
, (49)
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the blocks of A may be written as

Aj =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .

. . . −αg,j δ 1 0 αg,j δ 0 0 . . .

. . . −αl,j δ 0 1 αl,j δ 0 0 . . .

. . . 0 −(κρl)j+1/2δ −(κρg)j+1/2δ 1 (κρl)j+1/2δ (κρg)j+1/2δ . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

n

.

(50)

What remains are the matrices S and w. These differ in the WIMF
and SIMF formulations of the schemes, due to the different treatment of
the momentum convection terms.

4.1.1. WIMF

From (42) we obtain

Sj =0 (51)

and

wj =
⎛
⎝

−δ(V +
g,j Ig,j +V −

g,j+1Ig,j+1 −V +
g,j−1Ig,j−1 −V −

g,j Ig,j )

−δ(V +
l,j Il,j +V −

l,j+1Il,j+1 −V +
l,j−1Il,j−1 −V −

l,j Il,j )

0

⎞
⎠
n

. (52)

4.1.2. SIMF

From (44) we obtain

Sj = δ

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .

. . . −V +
g,j−1 0 0 V +

g,j −V −
g,j 0 0 V −

g,j+1 0 . . .

. . . 0 −V +
l,j−1 0 0 V +

l,j −V −
l,j 0 0 V −

l,j+1 . . .

. . . 0 0 0 0 0 0 0 0 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

n

(53)

and

wj =0. (54)
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4.2. The Mass Equations

For the WIMF schemes, the FA
k flux components are evaluated

explicitly whereas the FD
k components are known from the previous step

as described in Section 4.1. Hence, for the WIMF schemes, the mass equa-
tions may be solved directly in an explicit manner by the hybrid fluxes (32)
and (33).

For the SIMF schemes, the implicit couplings between the FA
k flux

components give rise to a linear system which we write on the form

(I + δA)x =b, (55)

where we reuse the notation of the previous section.
Writing this on the block form (46), we obtain

xj =

⎛
⎜⎜⎜⎜⎝

...

mg,j
ml,j
...

⎞
⎟⎟⎟⎟⎠

n+1

(56)

and

bj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

.

.

.

mng,j + δ
(

[καg∂pρg]nj−1/2[ρnl F
D
g +ρngFD

l ]j−1/2 − [καg∂pρg]nj+1/2[ρnl F
D
g +ρngFD

l ]j+1/2

)

mnl,j + δ
(

[καl∂pρl ]nj−1/2[ρnl F
D
g +ρngFD

l ]j−1/2 − [καl∂pρl ]nj+1/2[ρnl F
D
g +ρngFD

l ]j+1/2

)

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (57)

where FD
g and FD

l are given by (28).

4.2.1. The Coefficient Matrix A

By introducing the shorthands

µ = κρgαl∂pρl (58)

ν = κρlαl∂pρl (59)

ϕ = κρlαg∂pρg (60)

ψ = κρgαg∂pρg (61)

and writing A as a sum of two components

A =Ag +Al, (62)
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we find from (32), (33) and (43) that

Ag,j =

⎛
⎜⎜⎜⎜⎝

. . .

. . . −µj−1/2V
+

g,j−1 0 µj+1/2V
+

g,j −µj−1/2V
−

g,j 0 µj+1/2V
−

g,j+1 . . .

. . . νj−1/2V
+

g,j−1 0 νj−1/2V
−

g,j −νj+1/2V
+

g,j 0 −νj+1/2V
−

g,j+1 . . .

. . .

⎞
⎟⎟⎟⎟⎠

n

(63)

and

Al,j =

⎛
⎜⎜⎜⎜⎝

. . .

. . . ψj−1/2V
+

l,j−1 0 ψj−1/2V
−

l,j −ψj+1/2V
+

l,j 0 −ψj+1/2V
−

l,j+1 . . .

. . . −ϕj−1/2V
+

l,j−1 0 ϕj+1/2V
+

l,j −ϕj−1/2V
−

l,j 0 ϕj+1/2V
−

l,j+1 . . .

. . .

⎞
⎟⎟⎟⎟⎠

n

.

(64)

The location of the diagonal is indicated by the dots.

5. RESOLUTION OF MOVING OR STATIONARY CONTACT
DISCONTINUITY

In this section, we analytically investigate how the different levels of
implicitness of WIMF and SIMF affect the resolution of a moving mass
front. By this, we aim to illuminate some inherent mechanisms of the
WIMF and SIMF schemes.

We consider a contact discontinuity given by

pL =pR =p (65)

αL �=αR

(vg)L = (vl)L = (vg)R = (vl)R =v,

for the time period [tn, tn+1]. All pressure terms vanish from the model
(5)–(8), and it is seen that the solution to this initial value problem is sim-
ply that the discontinuity will propagate with the velocity v. The exact
solution of the Riemann problem will then give the numerical mass flux

(ραv)j+1/2 = 1
2
ρ(αL +αR)v− 1

2
ρ(αR −αL)|v|. (66)
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We now consider a WIMF scheme where the flux component FA
k reduces

to (66) in the resolution of (65), which would be the case for the WIMF-
upwind scheme considered here, or the WIMF-AUSMD/V schemes of [7].

Then, as is proved in [7], the WIMF mass fluxes reduce to

(ρkαkvk)
n+1/2
j+1/2 =ρkαnk,j v, (67)

where we have assumed that v�0.
The discrete evolution equation for the mass at cell j is given by

(ρkαk)
n+1
j − (ρkαk)nj
∆t

=v
(ρkαk)

n
j−1 − (ρkαk)nj
∆x

. (68)

Using that ρk is constant, this may be simplified to yield the discrete evo-
lution equation for the volume fractions. For simplicity in notation we
drop the phase index k and obtain

αn+1
j −αnj
∆t

=v
αn
j−1 −αnj
∆x

. (69)

If the contact discontinuity is exactly reproduced within the grid at time
tn=n∆t , the discrete representation may be expressed as

αnj = αL for j < i, (70)

αnj = αR for j � i

for some i. We remember that here vk,j ≡v and pj ≡p. From (69) we see
that for such an exactly reproduced discontinuity, only the value αi will
change by stepping forward in time from n to n+1. We then obtain

αn+1
i −αR

∆t
=v αL −αR

∆x
. (71)

In particular, if ∆x/∆t=v we obtain an interesting result. Then

αn+1
i −αR =αL −αR (72)

or simply

αn+1
i =αL, (73)

whereas

αni =αR. (74)
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So we conclude that integrating the contact discontinuity (70) using the
time step ∆x/∆t=v will shift the location of the discontinuity exactly one
grid cell to the right. This is exactly the distance the contact discontinuity
will move in one time step, ∆x=v∆t . The discrete volume fraction distri-
bution is now given as

αn+1
j = αL for j < i+1, (75)

αn+1
j = αR for j � i+1,

and by induction

αn+mj = αL for j < i+m, (76)

αn+mj = αR for j � i+m

for all m (within the boundaries of the grid). We may now state the fol-
lowing proposition

Proposition 1. Consider a WIMF type of scheme as described in Sec-
tion 3.4 with upwind type FA

k flux components. Apply the WIMF scheme
to a contact discontinuity moving with the velocity v, as described by
(65). If the optimal time step ∆x/∆t=|v| is used, the WIMF scheme will
exactly capture the contact discontinuity for all tn > t0.

Proof. The above discussion proves the Proposition for v�0. Repeat-
ing the steps for v<0 completes the proof.

Some remarks are now in order.

Remark 4. Notably the proof of Proposition 1 does not rely directly
upon the scheme being of the WIMF class. An explicit scheme which cor-
rectly reduces to the upwind scheme for the contact discontinuity (65) will
also formally satisfy Proposition 1. However, such schemes are unstable
under the violation of the sonic CFL criterion implied by the time step
∆x/∆t = v. This means that numerical oscillations, however small, will
grow exponentially into instabilities.

For the WIMF class of schemes however, the presence of the implicit
flux component FD

k as given by (28) will prevent the development of such
instabilities.

The ability to exactly capture a contact discontinuity in a stable man-
ner is a very desirable feature unique to the class of WIMF schemes.
Numerical evidence of this fact will also be provided in the next section.
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Remark 5. Proposition 1 does not apply to the SIMF-upwind scheme
as described in Section 3.4. In this case, we may verify that the numerical
mass flux becomes

(ρkαkv)
n+1
j+1/2 =ρkαn+1

k,j v (77)

for a contact discontinuity of the form (65), and (69) must be replaced by

αn+1
j −αnj
∆t

=v
αn+1
j−1 −αn+1

j

∆x
. (78)

Hence SIMF-upwind operates on a contact discontinuity much the same
way as an implicit upwind scheme operates on a scalar advection equa-
tion. That is, we expect the SIMF class of schemes to be stable, yet diffu-
sive. This issue is explored in the numerical section.

6. NUMERICAL SIMULATIONS

In this section we explore the performance of the various schemes on
a simple linear contact discontinuity, the classical “water faucet” bench-
mark, and a stiff phase separation problem. For comparison we include
some results produced by the explicit Roe scheme considered in [6].

6.1. Linear Contact Discontinuity

In the first example we study the performance of WIMF-upwind and
SIMF-upwind for a linear contact discontinuity. In particular,

• we want to demonstrate that WIMF-upwind possesses the “exact
resolution property” of Proposition 1 and is “weakly implicit” in
the sense of Definition 1;

• we want to demonstrate that SIMF-upwind is “strongly implicit” in
the sense of Definition 2.

We consider a simple linear contact discontinuity in the volume frac-
tion, where the initial states are given by

WL =

⎡
⎢⎣
p

αl
vg
vl

⎤
⎥⎦=

⎡
⎢⎢⎣

105 Pa
0.75

10 m/s
10 m/s

⎤
⎥⎥⎦ (79)
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and

WR =

⎡
⎢⎣
p

αl
vg
vl

⎤
⎥⎦=

⎡
⎢⎢⎣

105 Pa
0.25

10 m/s
10 m/s

⎤
⎥⎥⎦ . (80)

We consider a 100 m long pipe and assume that the discontinuity is
initially located at x = 0. We use a computational grid of 100 cells and
simulate a time of t=5.0 s. The discontinuity will then have moved to the
center of the pipe, being located at x=50 m.

First, in Fig. 1 we have plotted the solutions produced by the Roe,
WIMF-upwind, and SIMF-upwind scheme when the time step corre-
sponding to ∆x/∆t = 1000 m/s is applied. This corresponds to the rather
small convective CFL

CFLconv =v ∆t
∆x

=0.01. (81)

All three schemes produce upwind type of mass fluxes, and for this time
step the solutions are the same, practically speaking.
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Fig. 1. Linear contact discontinuity, 100 cells, T = 5.0 s. Roe, SIMF-upwind, and WIMF-
upwind scheme for ∆x/∆t=1000.
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Results for different lower values of ∆x/∆t are given in Fig. 2 for the
WIMF and SIMF scheme. For these larger values of ∆t the Roe scheme
becomes unstable since it must obey the sonic CFL condition (2). SIMF-
upwind and WIMF-upwind behave similarly for a low time step (∆x/∆t=
1000 m/s). However, increasing the time step increases the accuracy for
WIMF-upwind but decreases it for SIMF-upwind.

We observe that for the critical time step ∆x/∆t = vg = vl = 10 m/s
(corresponding to a convective CFL of unity), WIMF-upwind captures the
discontinuity exactly, as stated by Proposition 1. Increasing the time step
beyond this value will make the WIMF-upwind scheme unstable. On the
other hand, we may increase the time step beyond ∆x/∆t = 10 m/s for
SIMF-upwind without inducing instabilities. Once we exceed this critical
time step, there is a significant increase in numerical diffusion.

Thus, this example demonstrates that the WIMF-upwind scheme is
weakly implicit in the sense of Definition 1 whereas the SIMF-upwind
scheme is strongly implicit in the sense of Definition 2. In addition, we
have demonstrated that the WIMF-upwind scheme possesses the ‘exact
resolution property” of Proposition 1.

6.2. Water Faucet Problem

We consider the classical faucet flow problem of Ransom [13], which
has become a standard benchmark [3, 6, 16, 11, 17].

We consider a vertical pipe of length 12 m with the initial uniform
state

W =

⎡
⎢⎣
p

αl
vg
vl

⎤
⎥⎦=

⎡
⎢⎢⎣

105 Pa
0.8
0

10 m/s

⎤
⎥⎥⎦ . (82)

Gravity is the only source term taken into account, i.e. in the framework
of (7) and (8) we have

Qk =gρkαk, (83)

with g being the acceleration of gravity. At the inlet we have the constant
conditions αl =0.8, vl =10 m/s and vg =0. At the outlet the pipe is open to
the ambient pressure p=105 Pa. An approximate analytical solution exists
for the liquid velocity and volume fraction, see [6,12,17] for details.

In Fig. 3 we compare the SIMF-upwind and the Roe scheme for T =
0.6 s on a grid of 120 computational cells. In addition, the effect of reduc-
ing the time step corresponding to ∆x/∆t = 17 m/s is investigated for the
SIMF-upwind and the WIMF-upwind scheme.
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Fig. 2. Linear contact discontinuity, 100 cells. SIMF-upwind vs WIMF-upwind scheme for
different values of ∆x/∆t . Left: WIMF-upwind. Right: SIMF-upwind.
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We note that for the small time step corresponding to ∆x/∆t =
1000 m/s the SIMF-upwind scheme is virtually indistinguishable from the
Roe scheme. Only for the pressure is any difference visible, here the SIMF-
upwind scheme is slightly more diffusive.

However, increasing the time step such that ∆x/∆t=17 m/s (approxi-
mately the liquid velocity) causes a significant increase in numerical diffu-
sion for the SIMF-upwind scheme, both in pressure and volume fraction.
This sharply contrasts the results of the WIMF-upwind scheme, where the
lower integration velocity significantly improves the performance of the
scheme on the slow waves.

6.2.1. Effect of Increasing the Time Step

We now investigate further how the SIMF and WIMF schemes
behave under different time steps. Results after t=0.6 s are given in Fig. 4.

We observe the same picture as for the linear contact discontinu-
ity studied in the previous section. For low time steps, the SIMF-upwind
and WIMF-upwind have a similar behaviour. Increasing the time step
improves the accuracy of WIMF-upwind but has the opposite effect on
the SIMF scheme. Upon breaking the strong (volume fraction) CFL cri-
terion, WIMF-upwind becomes unstable whereas SIMF-upwind merely
becomes more diffusive.

Remark 6. These results confirm the picture observed in Section 6.1
and highlight an important difference between the SIMF and WIMF class
of schemes. In effect, WIMF-upwind reduces to the upwind explicit flux
(67) for a contact discontinuity, whereas SIMF-upwind reduces to the
upwind implicit flux (77).

6.2.2. Stationary Solution

We now investigate the performance of the SIMF-upwind scheme for
very large time steps, where the volume fraction CFL criterion is strongly
violated.

We here use the time step ∆t = 5 s, which for the current grid corre-
sponds to a convective CFL of approximately 400. Results after 2, 4 and
7 iterations are given in Fig. 5, where the results are compared to the
analytical stationary solutions. We observe that the SIMF-upwind scheme
produces qualitatively correct solutions already after 2 iterations. After 7
iterations, the numerical solutions coincide with the analytical reference
solutions for liquid velocity and volume fraction.
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Fig. 4. Water faucet problem, 120 cells. WIMF-upwind vs SIMF-upwind scheme for
different values of ∆x/∆t . Left: WIMF-upwind. Right: SIMF-upwind.
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6.3. Separation Problem

We follow Coquel et al. [3] and consider a vertical pipe of length
7.5 m, where gravitational acceleration is the only source term taken into
account. Initially the pipe is filled with stagnant liquid and gas with a uni-
form pressure of p0 =105 Pa and a uniform liquid fraction of αl =0.5. The
pipe is considered to be closed at both ends, i.e. both phasic velocities are
forced to be zero at the end points.

An approximate analytical solution may be derived [6] for the evolu-
tion of the liquid variables

vref
l (x, t)=

⎧⎨
⎩

√
2gx for x < 1

2gt
2

gt for 1
2gt

2 �x <L− 1
2gt

2

0 for L− 1
2gt

2<x

(84)

αref
l (x, t)=

⎧⎨
⎩

0 for x < 1
2gt

2

0.5 for 1
2gt

2 �x <L− 1
2gt

2

1 for L− 1
2gt

2<x

(85)

When the phases are fully separated, we expect the pressure distribution
to be fully hydrostatic, approximately given by

pref (x, t)=
{

p0 for x <L/2
p0 +ρlg (x−L/2) for x�L/2. (86)

6.3.1. Numerical Results for the Stationary State

Using a grid of 1000 cells and the time step corresponding to
∆x/∆t=60 m/s, results for the SIMF-FVS scheme are plotted in Fig. 6 at
the time T =3.0 s. The calculation has now settled to the stationary state,
although artificial velocity profiles remain due to numerical diffusion.

The scheme handles well the transition to one-phase flow for this
difficult test case. The lack of friction terms causes the gas velocity to be
large as the gas phase is disappearing, which causes the pressure distribu-
tion to deviate slightly from the expected hydrostatic distribution.

Remark 7. The SIMF-upwind and WIMF-upwind schemes do not
possess a sufficiently strong numerical dissipation mechanism to handle
the transition to one-phase flow in a satisfactory manner. This may be
remedied by taking advantage of the excellent stability properties of the
FVS flux splitting in one-phase regions, following the approach of [6, 7].
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Remark 8. An eigenvalue analysis [6] demonstrates that the volume
fraction wave velocities are roughly given by

λv = ρgαlvg +ρlαgvl

ρgαl +ρlαg
±

√
∆p(ρgαl +ρlαg)−ρlρgαlαg(vg −vl)

2

(ρgαl +ρlαg)2
. (87)

For this particular problem we see that these are approximately given by the
gas velocity as the gas phase is disappearing. As the maximum gas velocity
here becomes higher than the integration parameter ∆x/∆t , we see that

CFLconv =max |λv|∆t
∆x

>
∆x

∆t

∆t

∆x
=1.

Thus, we conclude that the SIMF-FVS scheme is able to violate the CFL
criterion for both sonic and volume fraction waves for this problem. In
particular, SIMF-FVS allows a choice of time step an order of magnitude
larger than the choice used for the WIMF-AUSMDV∗ scheme in [7].

6.3.2. Convergence Properties of SIMF-FVS

In Fig. 7 we investigate the convergence of the SIMF-FVS scheme
as the grid is refined. A plot of the liquid fraction is made at the time
T =0.6 s. The SIMF-FVS scheme approximates the expected solution in a
monotone way. The convergence rate is given in Table 1, where the error
is measured by the 1-norm

||E||=
∑
j

∆x|αl,j −αref
l,j |. (88)

The order of convergence s is obtained through

sn= ln(||E||n/||E||n−1)

ln(∆xn/∆xn−1)
. (89)

Although the SIMF-FVS scheme is formally of first order, the convergence
rate s is significantly less; this is due to the discontinuities in the solution.

7. SUMMARY

We have constructed a framework termed Strongly Implicit Mix-
ture Flux (SIMF) which allows us to construct CFL-violating numerical
schemes for a standard two-fluid model. Within this framework we have
constructed natural extensions of the schemes investigated by Evje et al [5,
6, 7], resulting in the SIMF-upwind and SIMF-FVS schemes.
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Fig. 7. Separation problem, T =0.6 s. Convergence properties of the SIMF-FVS scheme.

Table I. Separation Problem, T =0.6 s. Convergence Rates for the SIMF-FVS Scheme

n cells ||E||n sn

1 100 1.158
2 250 0.8139 0.3849
3 1000 0.4473 0.4318
4 10000 0.1497 0.4754

We have demonstrated that the SIMF-upwind scheme possesses accu-
racy and stability properties comparable to the Roe scheme for small time
steps. On breaking the sonic CFL criterion, the SIMF-upwind scheme
becomes less accurate than its weakly implicit variant WIMF-upwind in
the resolution of volume fraction waves. As opposed to the SIMF-upwind
scheme, the WIMF scheme is in fact able to capture a moving contact dis-
continuity exactly.

On the other hand, the SIMF family of schemes, in particular SIMF-
FVS, possesses excellent robustness properties. Hence they are well suited
for steady state solvers or for cases where a computationally cheap quali-
tative description of the transient is desired.
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