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Abstract. Previous studies have shown that seawater may alter the wettabil-
ity in the direction of more water-wet conditions in carbonate reservoirs. The
reason for this is that ions from the salt (sulphat, magnesium, calsium, etc)
can create a wettability alteration toward more water-wet conditions as salt is
absorbed on the rock.

In order to initiate a more systematic study of this phenomenon a 1-D
mathematical model relevant for spontaneous imbibition is formulated. The
model represents a core plug on laboratory scale where a general wettability
alteration (WA) agent is included. Relative permeability and capillary pressure
curves are obtained via interpolation between two sets of curves correspond-
ing to oil-wet and water-wet conditions. This interpolation depends on the
adsorption isotherm in such a way that when no adsorption of the WA agent
has taken place, oil-wet conditions prevail. However, as the adsorption of this
agent takes place, gradually there is a shift towards more water-wet conditions.
Hence, the basic mechanism that adsorption of the WA agent is responsible for
the wettability alteration, is naturally captured by the model.

Conservation of mass of oil, water, and the WA agent, combined with
Darcy’s law, yield a 2x2 system of coupled parabolic convection-diffusion equa-
tions, one equation for the water phase and another for the concentration of
the WA agent. The model describes the interactions between gravity and cap-
illarity when initial oil-wet core experiences a wettability alteration towards
more water-wet conditions due to the spreading of the WA agent by molecular
diffusion. Basic properties of the model are studied by considering a discrete
version. Numerical computations are performed to explore the role of molecu-
lar diffusion of the WA agent into the core plug, the balance between gravity
and capillary forces, and dynamic wettability alteration versus permanent wet-
ting states. In particular, a new and characteristic oil-bank is observed. This is
due to incorporation of dynamic wettability alteration and cannot be seen for
case with permanent wetting characteristics. More precisely, the phenomenon
is caused by a cross-diffusion term appearing in capillary diffusion term.
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1. Introduction. Seawater has been injected into the naturally fractured Ekofisk
chalk reservoir in the North Sea for nearly 20 years with great success. Many
laboratory studies of spontaneous imbibition test with chalk cores indicate that
seawater has the potential to improve oil recovery. Especially it has been observed
that the sulphate ions in seawater have a catalytic effect on wettability alteration
processes [1, 2, 3, 4, 5, 6, 7, 8, 9]. In these studies the sulphate ions in seawater
were observed as the key factor leading to wettability alteration towards more water-
wetness. The mechanism to explain the experimental results is then suggested as
follows:

Sulphate can adsorb onto the chalk surface and make the surface less positively
charged. The desorption of negative charged acidic material on the surface becomes
easier with less electrostatic interactions between oil components and the chalk
surface. Further studies show that calsium and magnesium may cooperate with
sulphate ions to contribute to this wettability alteration process. Thus, there is a
wealth of experimental data which require systematic analysis. In order to exploit
fully the data that is generated through experiments there is a need for developing
mathematical models which take into account dynamic wettability alteration.

The objective of this paper is to build a 1-D model to simulate the laboratory
spontaneous imbibition experiments of seawater into preferentially oil-wet cores, ow-
ing to alteration of flow parameters (in terms of relative permeability and capillary
pressure curves) caused by a general wettability alteration (WA) agent. This agent
may represent ions from sulphate, calsium, magnesium, et al. Relative permeability
and capillary pressure curves are obtained via a natural interpolation between two
given sets of relative permeability curves (kow

r , kww
r ) and capillary pressure curves

(Pcow, P cww) corresponding to oil-wet and water-wet conditions. This interpolation
depends on the adsorption isotherm in such a way that when no adsorption of the
WA agent has taken place, oil-wet conditions prevail. However, as the adsorption of
this agent takes place, gradually there is a shift towards more water-wet conditions.
Hence, the basic mechanism that adsorption of the WA agent is responsible for the
wettability alteration, is naturally captured by the model.

Conservation of mass, combined with Darcy’s law, then yield a model of the form
(dimensionless form)

st + f(s, c)x = ε([−λof ](s, c)Pc(s, c)x)x

(sc+ a(c))t + (cf(s, c))x = δ(D(s)cx) + ε(c[−λof ](s, c)Pc(s, c)x)x,
(1)

where s is water saturation, c concentration of WA agent, f is fractional flow func-
tion, λo is oil mobility, Pc capillary pressure, D(s) molecular diffusion coefficient,
a(c) adsorption isotherm, whereas ε and δ are dimensionless characteristic numbers.
Models of the form (1) have been studied extensively before in connection with for
example polymer and surfactant flooding. A nice overview of this activity is given in
the book [10] which also includes a comprehensive reference list. However, common
for most of this work is that focus is on reservoir scale displacement phenomena.
That is, the dimensionless parameter ε ∼ 1

L , where L represents reservoir length,
becomes small (ε << 1) and diffusion terms (capillary and molecular diffusion) are
neglected. The resulting model then is a system of conservation laws of the form

st + f(s, c)x = 0

(sc+ a(c))t + (cf(s, c))x = 0,
(2)
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for which analytical solutions can be constructed, see e.g. [11, 12, 10]. In con-
trast, since the focus of this work is on modelling of spontaneous imbibition due
to wettability alteration on laboratory scale, the capillary diffusion and molecular
diffusion terms in (1) cannot be neglected. In fact, these terms are crucial for the
performance of the whole imbibition process and a main objective of the present
work is to gain a more accurate understanding of the impact from these terms.

In order to put the model (1) into perspective let us for a moment focus on a
simplified version of (1) where (i) convective terms are disregarded; (ii) the second
equation is simplified by neglecting the adsorption isotherm a(c) and using the
approximation sc ≈ c (assuming that s does not become too small and that the
concentration c is small). Consequently, the following model is obtained

st = ε([−λof ](s, c)Pc(s, c)x)x

ct = δ(D(s)cx) + ε(c[−λof ](s, c)Pc(s, c)x)x.
(3)

A characteristic feature of this model is that the equations are strongly coupled in

the sense that the parabolic equation for s contains second derivatives both of sxx

and cxx. Similarly, the same is true for the second equation describing the dynamics
of c. In particular, the cxx term in the first equation and the sxx term in the second
equation is often referred to as cross-diffusion terms. It is pointed out in several
recent papers that the inclusion of such terms make models more realistic since they
can incorporate important new effects however at the cost of making the analysis
of such models much more difficult. Interesting examples (among many others) of
such models relevant for porous media flow are given in [14, 13, 16, 15]. Another
example is the well-known Keller-Segel model used to describe the collective motion
of biologic cells, see for example [17, 18] and references therein. Another area which
applies models involving strongly coupled diffusion terms as in (3) is modelling
of cancer cell dynamics [19]. Finally, various models relevant for mathematical
biology which involve both triangular diffusion matrix (only one of the equations
involve cross-diffusion) as well as full diffusion matrix (both equations involve cross-
diffusion) are investigated in [20, 21].

On this background it seems clear that the model (1) requires careful investi-
gations. Especially, some aspects of the following points will be addressed in this
work:

(i) What is characteristic behavior for the solutions?

(ii) To what extent can important effects relevant for dynamic wettability al-
teration be captured by the proposed model, in view of observations from
experiments?

(iii) What is the role played by cross-diffusion terms?

Having derived the model which includes dynamic wettability alteration, a discrete
approximation is considered by applying the relaxed scheme [22] for the discretiza-
tion of the convective terms. A good feature of this scheme is that it gives accurate
resolution of sharp fronts. The diffusion terms are treated by standard central dis-
cretization. Armed with the numerical scheme an example with a vertical core plug
is investigated. The core plug is sealed everywhere except at the top surface leading
to countercurrent spontaneous imbibition. Through numerical computations the
role of molecular diffusion of the WA agent into the core plug is explored. Simi-
larly, the balance between gravity and capillary forces is illustrated, and comparison
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of the performance of the imbibition process with permanent wetting state versus
dynamic wettability alteration is studied. In particular, a new and characteristic
oil-bank is observed which is due to the incorporation of dynamic wettability alter-
ation. In other words, it cannot be seen for the case with permanent wetting states.
This phenomenon is caused by the cross-diffusion term appearing in the capillary
diffusion term for the equation for s.

The paper is organized as follows. In Section 2 the basic mechanism of wettability
alteration using interpolation between oil-wet and water-wet relative permeability
and capillary pressure curves is introduced. In Section 3 the governing flow equa-
tions for mass conservation are presented. Appropriate boundary conditions for
counter-current imbibition are stated. In Section 4 discretization of the resulting
system of strongly coupled convection-diffusion equations is outlined. In Section 5
various aspects of the model are systematically explored using numerical computa-
tions. Both transient and quasi-steady state behavior is studied.

2. Modelling of wettability alteration. The aim is to build a mathematical
model which can be used to study spontaneous imbibition processes on laboratory
scale. More precisely, focus is on a spontaneous imbibition process for a core plug
surrounded by seawater as indicated by Fig. 1. It is sealed everywhere except at
the top, thus, seawater can only enter from the top. In the following the seawater
phase is represented by the saturation variable s, whereas c is used to represent
the concentration of a wettability alteration (WA) agent. Before developing the
model in detail it is useful to summarize by words, based on insight from previous
studies [1]–[9], the main mechanisms of spontaneous imbibition owing to dynamic
wettability alteration:

An initial oil-wet core plug is given with an initial constant water distribution
sw,initial such that the corresponding capillary pressure Pc(sw,initial) is negative.
Consequently, no spontaneous imbibition of water will take place. The mechanism
to initiate the process is molecular diffusion of the wettability alteration (WA) agent
into the core from the surrounding seawater phase. As the WA agent is absorbed
on the rock, the wetting state is rendered to be locally water-wet. Consequently,
the capillary pressure Pc(sw,initial) becomes positive in the corresponding part of
the core, thereby creating spontaneous imbibition. The dynamics of the resulting
imbibition process is then determined by an internal interplay between capillary
forces, gravity, adsorption, and molecular diffusion.

In order to develop a model that can describe this process, appropriate relative
permeability curves and capillary pressure curves must be defined that can repre-
sent the wetting state of the core plug. In the following it is assumed that the core
plug initially is filled with 25% water, i.e. sinit = 0.25, and that the core initially is
oil-wet. Below two sets of curves for relative permeability (kow

r , kww
r ) and capillary

pressure (P ow
c , Pww

c ) are specified, corresponding to oil-wet and water-wet condi-
tions. Idealized and simplistic curves are used since this work is meant to be a first
study of basic mechanisms related to dynamic wettability alteration rather than
providing direct comparisons with experimental data [23, 24].

2.1. Relative permeability and capillary pressure functions. As a basic
model the well-known Corey type correlations are used [25]. They are given in
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Figure 1. Schematic figure for the spontaneous imbibition process
on laboratory scale.

the form (dimensionless functions)

k(s) = k∗
( s− swr

1 − sor − swr

)Nk

, swr ≤ s ≤ 1 − sor,

ko(s) = k∗o

( 1 − sor − s

1 − sor − swr

)Nko

, swr ≤ s ≤ 1 − sor,

(4)

where swr and sor represent critical saturation values and Nk and Nko are the
Corey exponents that must be specified. In addition, k∗ and k∗o are the end point
relative permeability values that also must be given.

As a simple model for capillary pressure a piecewise linear function of the fol-
lowing form is used

Pc(s) = C∗



































1 s < swr,

1 +
(

pc1−1
s1−swr

)

(s− swr) swr ≤ s ≤ s1,

pc1 +
(

pc2−pc1

s2−s1

)

(s− s1) s1 ≤ s ≤ s2,

pc2 +
(

−1−pc2

sor−s2

)

(s− s2) s2 ≤ s ≤ 1 − sor,

−1 s > 1 − sor,

(5)

where C∗ and the points (s1, pc1) and (s2, pc2) are constants that must be speci-
fied. In a more realistic setting these would be based on experimental data and,
typically, more than two points would be given. Furthermore, C∗ is a scaling con-
stant (characteristic capillary pressure) that contains information about interfacial
tension and contact angle effects. More precisely, Pc(s) = C∗J(s), where the di-
mensionless function J(s) is called the Leverett function and its multiplier C∗ takes
the form [10]

C∗ =
σ cos(θ)
√

K/φ
, (6)

where σ is interfacial tension, θ is contact angle,K absolute permeability, φ porosity.
In the following data required to obtain concrete relative permeability and capillary
pressure curves are specified that can represent, respectively, oil-wet and water-wet
conditions.
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Oil-wet conditions. The following set of values for oil-wet conditions is used:

k∗,ow = 0.7, k∗,ow
o = 0.75, sow

wr = 0.1, sow
or = 0.15, Nkow = 2, Nkow

o = 3.

(7)

Applying these values in (4) the following two relative permeability curves are ob-
tained

kow(s; sow
wr, s

ow
or ), kow

o (s; sow
wr, s

ow
or ), for sow

wr ≤ s ≤ 1 − sow
or .

Similarly, from (5) a corresponding capillary pressure function is obtained

P ow
c (s; sow

wr, s
ow
or ), for sow

wr ≤ s ≤ 1 − sow
or ,

where the following values are used

(sow
1 , pcow

1 ) = (0.2,−0.1), (sow
2 , pcow

2 ) = (0.8,−0.5). (8)

Moreover, C∗ is associated with a reference capillary pressure value which we denote
by Pc,r

C∗,ow = Pc,r. (9)

A specific value for Pc,r is given in Section 5.1. We refer to Fig. 2 for a plot of
these curves (red line). In particular, note that P ow

c (sinit) < 0 for sinit = 0.25 which
implies that no spontaneous imbibition can take place for this wetting state.

Water-wet conditions. The following set of values for water-wet conditions is
used:

k∗,ww = 0.4, k∗,ww
o =0.9, sww

wr = 0.15, sww
or = 0.25, Nkww = 3, Nkww

o = 2.

(10)

These choices give corresponding relative permeability curves

kww(s; sww
wr , s

ww
or ), kww

o (s; sww
wr , s

ww
or ), for sww

wr ≤ s ≤ 1 − sww
or ,

and via (5) a corresponding capillary pressure function

Pww
c (s; sww

wr , s
ww
or ), for sww

wr ≤ s ≤ 1 − sww
or ,

with

(sww
1 , pcww

1 ) = (0.2, 0.4), (sww
2 , pcww

2 ) = (0.7,−0.3). (11)

Again

C∗,ww = Pc,r. (12)

We refer to Fig. 2 for a plot of these curves (blue line). In particular, note that
Pww

c (sinit) > 0 for sinit = 0.25 which implies that spontaneous imbibition will take
place for this wetting state.

2.2. Molecular diffusion and adsorption. Molecular diffusion of the WA agent
is thought to be responsible for the initial wettability alteration. Typical expression
for molecular diffusion is of the form

D(s) = Drg(φ, s), g(φ, s) = φs, (13)

where Dr is a characteristic molecular diffusion coefficient and φ is porosity of the
porous media. As the the WA agent diffuses into the core it will be absorbed on the
rock and this, in turn, brings forth the wettability alteration towards more water-
wet conditions. The adsorption effect of the WA agent is taken into account via an
adsorption isotherm a(c) which depends on the concentration c of the wettability
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Figure 2. Left: Example of relative permeability curves corre-
sponding to oil-wet and water-wet conditions. Right: Example of
capillary pressure curves corresponding to oil-wet and water-wet
like conditions.
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Figure 3. The adsorption coefficient a(c) and its asymptotic limit a∗.

alteration (WA) agent. More precisely, a Langmuir type adsorption isotherm [10]
is used given in the form

a(c) =
a1c

1 + a2c
, a1, a2 > 0, (14)

where a1, a2 are specified constants. In the remaining part of the paper we use a(c)
given by

a(c) =
c

1 + 5000c
, (15)

i.e., a1 = 1 and a2 = 5000.

2.3. Modelling of transition from oil-wet to water-wet conditions. Im-
proved oil recovery by invasion of seawater in an initially oil-wet porous medium is
ultimately due to changes in various flow parameters. The flow conditions before
and after the wettability alteration can be described by capillary pressure curves,
relative permeability curves, and residual saturations. In this work wettability alter-
ation is incorporated in these flow parameters by defining capillary pressure Pc(s, c)
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Figure 4. Relative permeability curves (left) and capillary curves
curves (right) corresponding to oil-wet (c = 0), intermediate wet
(c = 0.0001, c = 0.0005, c = 0.001), and water-wet like conditions
(c = 0.05), respectively, by using the interpolation (16)–(18) with
a(c) given by (15).

and relative permeability curves k(s, c), ko(s, c) through an interpolation between
the oil-wet and water-wet curves given in (4)–(12).

More precisely, motivated by the fact that transition from oil-wet towards water-
wet conditions depends on the adsorption of the WA agent on the rock through the
adsorption isotherm a(c), the following interpolation is proposed:

k(s, c) = F (c)kow(s) + [1 − F (c)]kww(s), (16)

where F (c) is assumed to depend on a(c) in the following manner:

F (c) =
a∗ − a(c)

a∗
, a∗ =

a1

a2
, (17)

and a∗ is the asymptotic limit of a(c). Clearly, 0 ≤ F (c) ≤ 1. Furthermore, when
no adsorption of the WA agent has taken place it follows that a(c) = 0 and F (c) = 1
implying that k(s, c) = kow(s). This reflects the initial oil-wet wetting state. Then,
as the WA agent is absorbed on the rock it follows that a(c) increases towards its
asymptotic limit a∗ as described by the curve shown in Fig. 3. In particular, for high
enough concentration c we see that a(c) ≈ a∗. This implies that F (c) ≈ 0, which
means that k(s, c) ≈ kww(s), reflecting that a wettability alteration has taken place
which results in water-wet wetting states. In particular, different concentration
values c produce relative permeability curves that lie between the two extremes kow

and kww, see Fig. 4 (left figure), which shows intermediate wetting states.
The same interpolation procedure is natural to use for the capillary pressure

curves. That is,

Pc(s, c) = F (c)P ow
c (s) + [1 − F (c)]Pww

c (s). (18)

Thus, different concentration values c produce capillary pressure curves that lie
between the two extremes P ow

c and Pww
c , see Fig. 4 (right figure).

3. Governing equations. In this section the relevant three-component (oil-water-
WA agent) system is stated. Non-dimensionless versions are identified as well as
appropriate initial and boundary conditions.
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3.1. The dynamic wettability alteration (WA) model. The basic underlying
assumption is that we have two phases, water and oil, where water is immiscible with
oil. The oil phase involves only one oil component whereas the water phase involves
a water component and a WA agent component. Assuming one-dimensional flow in
a homogeneous medium, the mass conservation of the three components oil, water,
and WA agent, respectively, is given by the following set of equations [10, 25]:

(φρoso)t + (ρovo)x = ρoqo, (19)

(φρs[1 − c])t + (ρ[1 − c]v)x = ρq, (20)

(φρsc+ (1 − φ)ρra(c))t + (ρcv)x = (ρD(s)cx)x + ρcqc. (21)

It is assumed that volumes do not change when the WA agent is dissolved in water.
The variables ρo, ρ, and ρr represent respectively oil, water, and rock density. The
variable s is the saturation of the water phase (the mixture of water and WA agent)
which we may refer to as the aqueous phase. The oil phase is denoted by so and is
related to s by so = 1 − s. The variable c is the concentration of WA agent in the
aqueous phase (volumetric fraction in the water phase). Thus, s(1−c) represents the
volume fraction of the water component whereas sc represents the volume fraction
of the WA agent component. Moreover, φ is the porosity, and v and vo denote the
volumetric flow rates of the aqueous phase and oil, respectively, whereas qo, q, and
qc represent rates of production/injection (in terms of volume per unit time). As
described in Section 2.2 the function a(c) models adsorption of the WA agent on
rock whereas D(s) represents molecular diffusion of seawater ions into the rock pore
space and is responsible for initiating the spontaneous imbibition of seawater into
an oil-wet rock.

Making the approximation that the volume fraction of the WA agent is negligible
compared with the water (setting [1 − c] ≈ 1, see e.g. [26]), (20) takes the form

(φρs)t + (ρv)x = ρq. (22)

In addition we assume incompressible rock and fluids, i.e. ρo, ρ, and ρr are in-
dependent of pressure, together with the assumption that the water density ρ is
independent of the composition of the water phase represented by c. Consequently,
all densities become constant and the following simplified model is obtained (with

a slight abuse of notation since we absorb the term (1−φ)ρr

φρ in the function a(c))

φ(so)t + (vo)x = qo, (23)

φ(s)t + (v)x = q, (24)

φ(sc+ a(c))t + (cv)x = (D(s)cx)x + cqc. (25)

Including gravity, we get v and vo by Darcy’s law as follows:

v = −Kλ[(p)x − ρgZ ′(x)], λ(s, c) =
k(s, c)

µ
(26)

vo = −Kλo[(po)x − ρogZ
′(x)], λo(s, c) =

ko(s, c)

µo
, (27)

where Z(x) = −x and positive direction is upward. In the following g means
g = −9.81. K represents absolute permeability and is assumed to be constant,
p represents water pressure, po oil pressure, and k, ko are relative permeability
functions as described in Section 2. The mobilities λ and λo are defined in (26)
and (27) where the water and oil viscosities µ and µo are assumed to be constant.
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Moreover, capillary pressure Pc(s, c) is defined as the difference between oil and
water pressure

Pc(s, c) = po(c, s) − p(c, s), (28)

where Pc is a known function. Total velocity vT is given by

vT = v + vo = −K
(

λ[px − ρg] + λo[(po)x − ρog]
)

= −K
(

λ[(po)x − (Pc)x − ρg] + λo[(po)x − ρog]
)

= −K
(

λT (po)x − λ(Pc)x − g[λρ+ λoρo]
)

= −KλT (po)x +Kλ(Pc)x +Kg[λρ+ λoρo],

(29)

where total mobility λT

λT = λ+ λo, (30)

has been introduced. Summing the equations (23) and (24), and using that 1 =
s+ so, implies that

(vT )x = q + qo.

Assuming that q = qo = 0 (no mass inflow/outflow associated with the two phases),
i.e., vT =constant and is determined from boundary conditions. From (29) it follows
that

po =

∫ x 1

λT

(

λ(Pc)x + g[λρ+ λoρo] −
vT

K

)

dx, (31)

which can be used to obtain po once s and c are known. From the continuity
equation for s given by (24) it follows (since v = −Kλ[(po)x − (Pc)x − ρg])

φst +
(

−Kλ(po)x

)

x
+
(

Kλ(Pc)x

)

x
+
(

Kλρg
)

x
= 0, (32)

where, in view of (29),

−K(po)x =
vT

λT
−K

λ

λT
(Pc)x −Kg[

λ

λT
ρ+

λo

λT
ρo].

Thus,

φst +
(

λ
[ vT

λT
−K

λ

λT
(Pc)x−Kg[

λ

λT
ρ+

λo

λT
ρo]
])

x

+
(

Kλ(Pc)x

)

x
+
(

Kλρg
)

x
= 0.

(33)

The fractional flow function f(s, c) and fo(s, c) are defined as follows

f(s, c)
def
:=

λ(s, c)

λ(s, c) + λo(s, c)
, (34)

fo(s, c)
def
:=

λo(s, c)

λ(s, c) + λo(s, c)
= 1 − f(s, c). (35)

Using this in (33) implies that

φst +
(

vT f(s, c) +Kg∆ρ[fλ0](s, c)
)

x
−
(

K[λf ](s, c)(Pc)x −Kλ(s, c)(Pc)x

)

x
= 0,

(36)
where ∆ρ = [ρ− ρo]. Noting from (34) that

λf − λ = −λof,
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(36) can be written in the form

φst +
(

vT f(s, c) + ∆ρKg[fλ0](s, c)
)

x
= −

(

K[λof ](s, c)(Pc(s, c))x

)

x
. (37)

The same procedure can be applied for the continuity equation for the WA agent
component given by (25) which gives the following equation:

φ(sc+ a(c))t+
(

c
[

vT f(s, c) + ∆ρKg[fλ0](s, c)
])

x

= (D(s)cx)x −
(

Kc[λof ](s, c)(Pc(s, c))x

)

x
,

(38)

where it has been assumed that qc = 0. Thus, in view of (37) and (38), a model
has been obtained of the form

φst + vT

(

f(s, c) +G[fλo](s, c)
)

x

= (B1(s, c)sx)x + (B2(s, c)cx)x,
(39)

φ[sc+ a(c)]t+vT

(

c
[

f(s, c) +G[fλo](s, c)
])

x

= (D(s)cx)x + (cB1(s, c)sx)x + (cB2(s, c)cx)x,
(40)

where G is a constant given by G = ∆ρK(g/vT ), f(s, c) is given by (34) whereas
the diffusion coefficients B1(s, c) and B2(s, c), are given by

B1(s, c) = −Kλo(s, c)f(s, c)(Pc)s, B2(s, c) = −Kλo(s, c)f(s, c)(Pc)c. (41)

Remark 1. Note that the model (39)–(40) is included as a special case of the
general formulation used in [10] (chapter 5) where a 1-D model for displacement of
oil by water with chemical components is studied. However, the aim of the current
work is to study the effects from capillary diffusion and gravity on laboratory scale,
whereas main focus in [10] is on reservoir scale simulations where molecular diffusion,
capillary diffusion, and gravity are disregarded.

Remark 2. Concerning the impact from the molecular diffusion term (D(s)cx)x

in (40) it is expected that for small times this term plays an important role for
an initial oil-wet core plug where the concentration c initially is zero. In fact, the
molecular diffusion is responsible for initiating the whole spontaneous imbibition
of seawater into the core plug. At later times the performance of the imbibition
process is a result of an intricate interplay between various forces; gravity, capillary
diffusion, and viscous forces. See Section 5 for more details.

Remark 3. Assuming that the total velocity vT = 0 the model (39) and (40) takes
the simpler form

φst +
(

∆ρKg[fλo](s, c)
)

x
= (B1(s, c)sx)x + (B2(s, c)cx)x, (42)

φ[sc+ a(c)]t+
(

c
[

∆ρKg[fλo](s, c)
])

x

= (D(s)cx)x + (cB1(s, c)sx)x + (cB2(s, c)cx)x.
(43)

In particular, neglecting gravity a pure nonlinear and coupled diffusion system of
the form

φst = (B1(s, c)sx)x + (B2(s, c)cx)x, (44)

φ[sc+ a(c)]t = (D(s)cx)x + (cB1(s, c)sx)x + (cB2(s, c)cx)x, (45)

is obtained.
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Remark 4 (More components). A more general model may be studied where sev-
eral components have been included

(φρoso)t + (ρovo)x = ρoqo, (46)

(φρs[1 − c])t + (ρ[1 − c]v)x = ρq, (47)

(φρsci + (1 − φ)ρrai(c))t + (ρciv)x = (ρDi(s)ci,x)x + ρciqci , i = 1, 2, .. ,m− 1,
(48)

where c =
∑m−1

i=1 ci and cm = 1 − c (equivalently
∑m

i=1 ci = 1) and ci ≥ 0. Conse-
quently, (39) is obtained as before (except that it now depends on c1, . . . , cm−1) and
a new convection-diffusion equation of the form (40) is added for each component
ci.

Remark 5. Neglecting capillary pressure effects, i.e. Pc = 0, as well as the molec-
ular diffusion term (D(c)cx)x gives the hyperbolic system of conservation laws

φst + vT f(s, c)x = 0, (49)

φ[sc+ a(c)]t + vT [cf(s, c)]x = 0. (50)

Formally, this model is similar to the model used for polymer flooding [26, 11, 12, 10].

3.2. Non-dimensional form of the model (39)–(40) with vT 6= 0 (viscous
forces included). In order to solve the system numerically, we first of all non-
dimensionalise the equations. The variables and parameters in the model and their
associated boundary conditions are transformed into dimensionless quantities using
the following reference variables:

(i) reference length scale, L (cm);

(ii) reference time unit, τ = φL
vT

(sec);

(iii) reference molecular diffusion coefficientDr (m2/s), reference capillary pressure
Pc,r ( Pa), and reference viscosity µr ( Pa s).

We use the coordinate transformation

x′ =
x

L
, t′ =

t

τ
, (51)

and new parameters are defined via the following scaling:

D′ =
D

Dr

, µ′ =
µ

µr
, P ′

c =
Pc

Pc,r
(52)

Then the model (39)–(40) takes the form (omitting the prime notation)

st + fT (s, c)x = ε [B1(s, c)sx +B2(s, c)cx]x , ε =
KPc,r

LvTµr
, δ =

Dr

LvT
(53)

[sc+ a(c)]t + [cfT (s, c)]x = δ(D(s)cx)x + ε [cB1(s, c)sx + cB2(s, c)cx]x , (54)

with

fT (s, c) = f(s, c) + γ[fλo](s, c), γ =
∆ρKg

vTµr
, (55)

and

D(s) = φs, B1(s, c) = −[λof ](s, c)(Pc)s, B2(s, c) = −[λof ](s, c)(Pc)c.

(56)

The dimensionless, characteristic numbers ε and γ are sometimes refereed to as,
respectively, the capillary number and gravity number. Note also that λo and Pc

now refer to dimensionless functions.
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For construction of numerical solutions we consider the model in the form

st + fT (s, c)x = ε
[

(B1(s, c)sx)x + (B2(s, c)cx)x

]

,

mt + [cfT (s, c)]x = δ(D(s)cx)x + ε
[

(cB1(s, c)sx)x + (cB2(s, c)cx)x

]

,
(57)

where c solves the equation m = sc+ a(c). Typically this amounts to finding roots
of a second order polynomial. In particular, by using the expression (14) for the
adsorption, we see that finding c from m = sc + a(c) and s results in the second
order polynomial

Ac2 +Bc+ C = 0, A(s) = a2s, B(s,m) = s+ a1 − a2m, C(m) = −m.

Then

c = ψ(s,m) =
−B(s,m) +

√

B(s,m)2 − 4A(s)C(m)

2A(s)
. (58)

In other words, we can express the c variable by c = ψ(s,m).

3.3. Non-dimensional form of the model (39)–(40) with vT = 0 (counter-
current flow). The starting point is the model (42)–(43). Again we use the scaling
(51) and (52), the only difference is that a modified characteristic time is used

(ii) reference time unit, τ = φL2

Dr
sec whereDr is the reference chemical (molecular)

diffusion coefficient.

Using this scaling the model now takes the form

st + γfT (s, c)x = ε
[

(B1(s, c)sx)x + (B2(s, c)cx)x

]

, (59)

[sc+ a(c)]t + γ[cfT (s, c)]x = δ(D(s)cx)x + ε
[

(cB1(s, c)sx)x + (cB2(s, c)cx)x

]

,

(60)

with

γ =
L∆ρKg

µrDr
, ε =

KPc,r

µrDr
, δ = 1, (61)

where fT (s, c) = [fλo](s, c). Neglecting gravity gives the pure diffusion model

st = ε
[

(B1(s, c)sx)x + (B2(s, c)cx)x

]

, (62)

[sc+ a(c)]t = δ(D(s)cx)x + ε
[

(cB1(s, c)sx)x + (cB2(s, c)cx)x

]

, (63)

with

D(s) = φs, B1(s, c) = −[λof ](s, c)(Pc)s, B2(s, c) = −[λof ](s, c)(Pc)c. (64)

Remark 6. Note that the capillary diffusion coefficients B1 and B2 involve (Pc)s

and (Pc)c, respectively. These are given by

∂Pc

∂s
(s, c) = F (c)

d

ds
P ow

c (s) + [1 − F (c)]
d

ds
Pww

c (s) (65)

and
∂Pc

∂c
(s, c) = F ′(c)

[

P ow
c (s) − Pww

c (s)
]

, F ′(c) = −
a2

a1
a′(c). (66)

The capillary diffusion term associated with B1 in (53) (and (59)) is similar to
the one appearing in a standard Buckley-Leverett two-phase type model (but now
with an additional dependence on c). However, the diffusion like term associated
with B2 is a consequence of the dynamic wettability alteration and add new effects



162 YU, KLEPPE, KAARSTAD, SKJAEVEL, EVJE AND FJELDE

to a standard two-phase model with permanent wetting states. In particular, it
represents what is sometimes referred to as cross-diffusion [14, 16, 15, 20, 21]. The
role of this term is explored in Section 5. The strength of the term B2 depends on
(Pc)c. From (66) is is clear that this in turn depends on a′(c) and ∆Pc = P ow

c −Pww
c .

Note that a′(c) contains information about how fast the salt is adsorbed on the
rock. In particular, a′(0) = max(a′(c)) where a′(c) tends to zero as c increases.
This follows from

h(c) = a′(c) =
a1

1 + a2c
−

a1a2c

(1 + a2c)2
. (67)

Clearly, the B2-term impacts in an interval starting at the front of the WA agent
where a′(c) takes its largest value and where, at the same time, there is a gradient
in the concentration of the WA agent, cx 6= 0. As c becomes larger, a′(c) goes
to zero, and the effect from the B2-related capillary diffusion term vanishes. For
further discussion, see Section 5.6.

3.4. Boundary and initial conditions. In the remaining part of this work we
shall restrict ourselves to the case with spontaneous counter-current imbibition.
Consequently, the bottom of the core is sealed, only the top is open. When the plug
is closed at the bottom the total velocity vT at the bottom vanishes, i.e. vT = 0,
which means that we consider the model (59)–(60).

Bottom. It is clear that there is no mass flux at the bottom. That is, the total flux
(convective and diffusive) is zero at the bottom which corresponds to the following
boundary condition, see e.g. [28] for a similar situation,

γfT (c, s) − ε
[

B1(s, c)sx +B2(s, c)cx

]

= 0, for x = 0

γ[cfT (c, s)] − ε
[

D(s)cx + cB1(s, c)sx + cB2(s, c)cx

]

= 0, for x = 0.
(68)

Top. The top is open, and an appropriate boundary condition must be specified.
Since the top surface is exposed to seawater with a specified concentration of the
WA agent, it is natural to use the Dirichlet condition

s(1+, t) = 1.0, c(1+, t) = c∗, (69)

where c∗ is the specified concentration of the WA agent in the seawater. In addition
we also have the boundary condition

Pc(t)|x=1+ = 0, (70)

which implies that the capillary diffusion term causes flow of seawater into the core
plug only if Pc(s, c)|x=1− > 0.

Using (69) and (70) we can specify the total flux at the top surface for the water
phase equation (59). On the other hand if Pc(s, c)|x=1− ≤ 0 the model, through its
capillary term, tries to move water out of the plug through the top end. However,
there is no oil available outside the plug that can replace this water. Consequently,
the total flux at the top must be set to zero. The only thing that can happen then
is a redistribution of the water phase s within the core due to gravity.

Concerning the equation (60) for the WA concentration c it is assumed that
molecular diffusion is the only force that makes the WA agent enter at the top
surface. In other words, we use the condition that

γ[cfT (c, s)] − ε
[

cB1(s, c)sx + cB2(s, c)cx

]

= 0, for x = 1. (71)
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Figure 5. The fractional flow function fT (s, c) in (55) is composed
of f(s, c) (left) associated with viscous forces and [fλo](s, c) (right)
associated with gravitation. Different curves are shown correspond-
ing to oil-wet (c = 0), intermediate wet (c = 0.001), and water-wet
like conditions (c = 0.05), respectively, by using the interpolation
(16) and (17) with a(c) given by (15).

Initial data. Initially, the plug is filled with oil and 25% formation water and it is
surrounded by seawater. Thus, initial data are given by

s(x, 0) = 0.25, c(x, 0) = 0, x ∈ [0, 1].

4. Discrete approximation. Since pressure is decoupled from the calculation of
s and c through (31), the main purpose is to solve a 2x2 system of equations of the
general form

ut + f(u)x = (a(u)ux)x, u(x, 0) = u0(x). (72)

In order to study solutions of this simplified model the relaxed scheme proposed by
Jin and Xin [22] is employed for the numerical discretization of the convective fluxes.
This scheme, which has been tested for many different hyperbolic conservation laws,
see for instance [27] and references therein, is known to be robust and accurate for
many cases without using any information about the eigenstructure associated with
f(u).

For the discretization of the diffusive fluxes of the convection-diffusion system a
straightforward “central in space-explicit in time” type of discretization is employed.
It is well known that this imposes a somewhat strict CFL condition on the time step.
However, since efficiency of the numerical calculations is not the main aim of the
present investigations but seeking insight into fundamental mechanisms relevant for
wettability alteration processes, a simple explicit in time discretization is preferred
for both the convective and diffusive fluxes. In this respect we also follow along the
line of, for instance [28] (which apply a discretization similar to the one proposed
in [29]) where the Kurganov-Tadmor central-upwind scheme has been used for the
convective part together with a central type discretization of the diffusive part.

First, for the domain QT = [0, 1] × [0, T ] a uniform grid in space and time is
assumed. That is, for K spatial cells of length ∆x = 1/K we associate xj+1/2 with
cell interface for j = 0, . . . ,K and xj with cell center for j = 1, . . . ,K. Similarly,
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for N temporal time steps of length ∆t = 1/N we have tn = n∆t for n = 1, . . . , N .
A discrete version (finite volume type) of (72) is then given by

Un+1
j − Un

j

∆t
+

1

∆x

(

Fn
j+1/2 − Fn

j−1/2

)

=
1

∆x

(

an
j+1/2D+U

n
j − an

j−1/2D−U
n
j

)

, (73)

where Fn
j+1/2 = F (Un

j , U
n
j+1) is a numerical flux to be specified whereas the diffusion

coefficient an
j+1/2 = a(Un

j , U
n
j+1) represents an appropriate average at the interface

j+ 1/2. We shall apply an arithmetic average. Here the notation D+Uj = (Uj+1 −
Uj)/∆x and D−Uj = (Uj−Uj−1)/∆x is used. We note that there is a CFL stability
condition associated with the explicit time discretization used in (73) of the form
[28]

∆t

∆x
max

u
ρ[Df(u)] +

∆t

2∆x2
max

u
ρ[a(u)] ≤

1

4
, (74)

where Df(u) denotes the Jacobian matrix associated with the flux f(u) and ρ
represents the spectral radius.

4.1. Discretization in the interior domain. The model we focus on takes a
form slightly different from (72). More precisely, in view of (57) the model can be
written in the form

st + fT (c, s)x = ε
[

−(λof)(s, c)Pc(s, c)x

]

x
, fT = f + λof,

mt + [cfT (c, s)]x = δ(D(s)cx)x + ε
[

−c(λof)(s, c)Pc(s, c)x

]

x
,

(75)

where c = ψ(s,m) as described in (58). Thus, a discretization of the following form
is employed for j = 2, . . . ,K − 1:

Sn+1
j − Sn

j

∆t
+

1

∆x

(

[FT ]nj+1/2 − [FT ]nj−1/2

)

=
ε

∆x

(

[−λof ]nj+1/2D+[Pc]
n
j − [−λof ]nj−1/2D−[Pc]

n
j

)

,

Mn+1
j −Mn

j

∆t
+

1

∆x

(

[cFT ]nj+1/2 − [cFT ]nj−1/2

)

=
δ

∆x

(

[D]nj+1/2D+c
n
j −[D]nj−1/2D−c

n
j

)

+
ε

∆x

(

[−cλof ]nj+1/2D+[Pc]
n
j − [−cλof ]nj−1/2D−[Pc]

n
j

)

.

(76)

We refer to Appendix A for details concerning the discrete convective fluxes [FT ]nj+1/2

and [cFT ]nj+1/2 appearing in (76). This approach gives a second-order, conservative

central type finite volume scheme for the convective transport associated with (75)
similar to the approach used, for instance, in [28, 30]. Higher order accuracy could
also be implemented along the line of [31, 32] (see also references therein).

The relaxed scheme requires only information about the maximal eigenvalue
associated with the flux vector (f(c, s), cf(s, c)). For that purpose we note that the
left-hand side of (75) can be written as

ut +A(u)ux = 0, A(u) =

(

fs(s, c) fc(s, c)

0 f(s,c)
s+h(c)

)

,
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where u = (s, c) [11]. This follows by first observing that the model can be written
as

B(u)ut + C(u)ux = 0, B(u) =

(

1 0
c [s+ a′(c)]

)

, C(u) =

(

fs fc

cfs [f + cfc]

)

,

and

B−1(u) =

(

1 0
− c

s+h
1

s+h

)

.

Eigenvalues are then given by

λs = fs, λc =
f

s+ h(c)
, where h(c) = a′(c). (77)

Remark 7. In the work [28] no special conditions are enforced when discretizing
the diffusion term of (73) whereas the authors of [30] enforce certain continuity
conditions as a part of their mixed-finite element discretization approach. In or-
der to make calculations more efficient one could also use an operator splitting
(fractional-step) approach where the convection-diffusion system is split into a sep-
arate convection and diffusion step.

4.2. Discretization at the boundary. The discretization (76) is used in the
interior of the core plug domain, i.e., for cell j = 2, . . . ,K − 1. Below we describe
the discretization at cell j = 1 and j = K corresponding to the bottom cell and top
cell.

Bottom: Cell j = 1. In view of the boundary conditions (68) and the discrete
scheme (76) we consider the following scheme for cell j = 1.

Sn+1
1 − Sn

1

∆t
+

1

∆x

(

[FT ]n1+1/2 − 0
)

=
ε

∆x

(

[−λof ]n1+1/2D+[Pc]
n
1 − 0

)

,

Mn+1
1 −Mn

1

∆t
+

1

∆x

(

[cFT ]n1+1/2 − 0
)

=
δ

∆x

(

[D]n1+1/2D+c
n
1−0

)

+
ε

∆x

(

[−cλof ]n1+1/2D+[Pc]
n
1 − 0

)

.

(78)

Top: Cell j = K. An additional cell (ghost cell) j = K + 1 is introduced at the
top. In view of the boundary conditions (69) and (70), we set

Sn
K+1 = 1.0, Cn

K+1 = c∗, [Pc]nK+1 = 0,

for all n, which allows to calculate the flux [FT ]nK+1/2, coefficient [−λof ]nK+1/2 and

discrete derivative D+[Pc]
n
K . Together with (71), which is applied for the second

equation of (76), the scheme takes the following form for cell j = K:

Sn+1
K − Sn

K

∆t
+

1

∆x

(

[FT ]nK+1/2 − [FT ]nK−1/2

)

=
ε

∆x

(

[−λof ]nK+1/2D+[Pc]
n
K − [−λof ]nK−1/2D−[Pc]

n
K

)

,

Mn+1
K −Mn

K

∆t
+

1

∆x

(

0 − [cFT ]nK−1/2

)

=
δ

∆x

(

[D]nK+1/2D+c
n
K−[D]nK−1/2D−c

n
K

)

+
ε

∆x

(

0 − [−cλof ]nK−1/2D−[Pc]
n
K

)

.

(79)
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5. Simulation cases. Through various numerical computations we will explore
the role of molecular diffusion of the WA agent into the core plug, the balance
between gravity and capillary forces, and dynamic wettability alteration versus
permanent wetting state for a case with spontaneous counter-current imbibition.
First we specify some data needed for the simulations. These are used throughout
all simulations if nothing else is said.

5.1. Various data. Data we use are as follows:

Core plug properties.

• Length of core plug: L = 4.0 cm.
• Permeability: K = 5 mD = 5 · 0.987 · 10−15 m2.
• Porosity: φ = 0.4.

Oil properties.

• Oil viscosity: µo = 0.6 cp (1 cp = 10−3 Pa s)
• Oil density : ρo = 0.73 g/cm3

Brine properties.

• Water viscosity: µ = 0.3 cp
• Water density: ρ = 0.92 g/cm3

• Concentration of WA agent: c∗ = 0.001.
Salt concentration cs in sea water is taken to be: cs = 0.024 mol/l = 2.3
g/l. Assuming that the density of salt is ρs = 2.68 g/cm3, it follows that
the corresponding volumetric fraction of salt in seawater is c = 2.30

2.6810−3 =

0.8582 · 10−3 ≈ 10−3.

Other quantities.

• Reference molecular diffusion: Dr = 5 · 10−10 m2/s.
• Reference capillary pressure: Pc,r = 3 · 102 Pa.
• Reference viscosity: µr = 10−3 Pa s.

Oil recovery is defined as

Oil Recovery :=

∫ 1

0
[s(x, t) − sinit(x)] dx
∫ 1

0 [1 − sinit(x)] dx
,

where sinit(x) is initial water saturation in the core. All simulations are run on a
grid with 80 cells. Grid refinement shows that this is sufficient to give an accurate
approximation. Note that since we apply an explicit time discretization of the
diffusion terms, in view of (74), we have to deal with a rather strict CFL condition.
Therefore, we seek to avoid using too many grid cells. For all simulations we have
used a time step determined by the rough estimate

∆t = 0.95
∆x2

ε
,

which has been sufficient to ensure that (74) is satisfied.
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5.2. Example 1: Characteristics of seawater imbibition with dynamic
wettability alteration. Figs. 6 and 7 show the distribution of the WA agent
concentration c, capillary pressure Pc and water saturation s plotted along x-axis
for different times. Note that the right-hand side of the figures corresponds to the
top of the core plug. Fig. 6 focus on small times and reflects that molecular diffusion
initiates the transport of the WA agent into the initially oil-wet core from the top
(left figure). The WA agent is absorbed onto the rock surface rendering the surface
to be more water-wet. This is reflected by the middle plot showing that capillary
pressure becomes positive at the top of the core. In turn, this leads to imbibition
of seawater (right figure), and a corresponding production of oil.

Fig. 7 shows the distribution of c, Pc, and s in the core after T = 3 days. Most
notably, we observe from the right figure (water phase s) that an oil-bank has formed
which is surrounded by a left and right-hand water front. This can be explained
as follows: The left figure shows that the WA agent has reached approximately the
center of the core. A corresponding wettability alteration has taken place in the
upper part of the core leading to positive capillary pressure (middle figure). As a
consequence, capillary diffusion becomes the driving force in this part of the core
and is responsible for the right-hand water front. The bottom part of the core is still
oil-wet and capillary pressure is negative. Hence, capillary forces do not contribute
here, however, due to gravity another water front is formed. This indicates that
there is an interaction between gravity and capillarity which is characteristic for the
performance of the imbibition process.

Next, we see from Fig. 8 that after 80 days, the imbibition process has arrived
quasi steady state. The WA agent is almost uniformly distributed inside the core
(left figure) which means that the core now is completely water-wet. The negative
capillary pressure (middle figure) tells us that capillary diffusion does not contribute
any longer, gravity is the dominating force in the final stage of the imbibition
process. This is also clearly reflected by the distribution of s (right figure) whose
negative slope is due to gravity alone. Finally, Fig. 9 shows the oil recovery through
a period of 80 days and reflects that most of the oil has been produced after 30-40
days.

5.3. Example 2: The role of molecular diffusion of the WA-agent. Cap-
illary forces cannot drive seawater into the core since it initially is oil-wet (which
implies that capillary pressure is negative). At this stage molecular diffusion plays
a crucial role as it initiates the diffusion of the WA agent into the core, independent
of capillary forces. In the current example the role of molecular diffusion for the
imbibition process is explored by considering different values for the coefficient Dr.

Results for three different values of Dr are shown in Fig. 10 after T = 3 days.
The left plot illustrates that enhancing molecular diffusion by increasing Dr will
lead to a stronger transport effect of the WA agent into the core. This in turn
speeds up the wettability alteration caused by the WA agent and the corresponding
imbibition of seawater into the core, see right figure for the water distribution s.

Fig. 11, showing oil recovery curves for the different choices of Dr, also reflects
that the effect of increasing Dr is a higher oil recovery in the initial period. How-
ever, after long enough time when the WA agent concentration has arrived at the
same value throughout the core and the degree of wettability alteration is largely
the same, oil recovery tends to the same highest value independent of the differ-
ent molecular diffusion coefficients. In particular, different choices of Dr do not
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Figure 6. Left: WA agent concentration c inside the core after
T1 = 1 hour and T2 = 3 hours. Middle: Corresponding capillary
pressure Pc distribution. Right: Corresponding water phase s dis-
tribution.
The plots show how the imbibition process is initiated by the diffu-
sion of the WA agent into the core from top, and the corresponding
adsorption onto the rock, which brings forth a wettability alteration
towards more water-wet conditions. Consequently, capillary pres-
sure Pc becomes positive at the top, and the imbibition of seawater
starts.
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Figure 7. The plots show the imbibition process after T = 3 days.
Left: WA agent concentration c. Middle: Capillary pressure Pc

distribution. Right: Water phase s distribution.

directly affect the balance between gravity and capillarity which can be seen from
the expression for γ and ε given by (61).

5.4. Example 3: The balance between gravity and capillarity. Figs. 12–
13 show solutions after time T = 3, and T = 80 days where we compare results,
respectively, with and without gravity influence. That is, we compare results pro-
duced respectively by the model (59)–(60) and (62)–(63). First, it is observed from
left-hand figure of Fig. 12 that the transport of the WA agent to a large extent is
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Figure 8. The plots show the imbibition process after T = 80
days when a steady state like situation has been reached. Left: WA
agent concentration c. Middle: Capillary pressure Pc distribution.
Right: Water phase s distribution.
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Figure 9. Oil recovery through a period of 80 days.

the same for both cases after T = 3 days. Consequently, the wettability alteration
is largely the same. From the right figure for the water phase we see that the right-
hand water front due to capillary forces is then very similar for both cases. The
main difference lies in the treatment of the oil-bank. When gravity is neglected, the
negative capillary pressure in the lower part of the core implies that the oil-bank is
trapped. However, when gravity is included accumulation of water at the bottom
leads to another water front on the left side of the oil-bank. The interaction between
the left and right water wave then leads to a much more efficient release of the oil
bank, as can be seen from the oil recovery plots in Fig. 14.

The steady state type of solutions shown in Fig. 13 reflect that the water-wet state
is the same for both cases after T = 80 days (left figure showing the concentration c),
however gravity works independent of capillary diffusion and imbibes water despite
the fact that capillary pressure is negative throughout the core (see middle figure of
Fig. 13). Thus, the final water distribution is given by a straight line whose slope
depends on the strength of gravity versus capillary forces, see right figure of Fig. 13.
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Figure 10. We consider the situation after 3 days of imbibi-
tion with different molecular diffusion coefficients corresponding
to Dr = 5 · 10−10 m2/s (green), 0.5Dr (red), and 2Dr (blue). Left:
WA agent concentration c. Middle: Capillary pressure Pc distri-
bution. Right: Water phase s distribution.
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Figure 11. Oil recovery after 80 days imbibition with different
molecular diffusion coefficients Dr = 5 · 10−10 m2/s (green), 0.5Dr
(red), and 2Dr (blue).

In Figs. 15–17 the balance between gravity and capillary diffusion is altered,
represented by γ and ε in (61), by changing the reference capillary pressure value
Pc,r. Hence, in addition to standard Pc,r value, two other cases are considered
corresponding to 0.5Pc,r and 2Pc,r. Left figure of Fig. 15 reflects that the degree of
wettability alteration is the same, practically speaking. The right figure of Fig. 15
clearly indicates that the interplay between the left and right water front (which is
crucial for the release of the oil-bank) is clearly affected by considering different Pc,r

values, i.e., by changing the balance between gravity and capillarity. In particular,
by increasing Pc,r, the right water front (due to capillary forces) becomes larger
whereas the left (due to gravity) becomes smaller.

Fig. 17 reflects that the balance between gravity and capillarity becomes impor-
tant for the oil recovery at later times, e.g. after 25 days. Clearly, gravity is crucial
for the later stage of the imbibition process and oil recovery increases with a more
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Figure 12. The plots show the imbibition process after T = 3
days. Left: WA agent concentration c. Middle: Capillary pres-
sure Pc distribution. Right: Water phase s distribution.
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Figure 13. The plots show the imbibition process after T = 80
day when a steady state like situation has been reached. Left: WA
agent concentration c. Middle: Capillary pressure Pc distribution.
Right: Water phase s distribution.

dominating gravity force. This is also reflected by Fig. 16 showing steady state
solutions after T = 80 days.

5.5. Example 4: Dynamic weattability alteration versus permanent wet-
ting states. The purpose of this example is to compare solutions obtained by the
model (59)–(60) and a standard Buckley-Leverett two-phase model with permanent
wetting characteristics. More precisely, we compare the model (59)–(60) with the
simplified model

st + γfT (c, s)x = ε
[

(B1(s, c)sx)x + (B2(s, c)cx)x

]

,

c = c∗,

where c∗ is a fixed value. In other words, we consider the two-phase Buckley-
Leverett model

st + γfT (c∗, s)x = ε(B1(s, c
∗)sx)x. (80)
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Figure 14. Oil recovery after 80 days imbibition with gravity and
without gravity influence.
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Figure 15. The plots show the imbibition process after T = 3 days
with different Pc,r values corresponding to Pc,r = 3 ·102 Pa (green),
0.5Pc,r (red), and 2Pc,r (blue). Left: WA agent concentration c.
Middle: Capillary pressure Pc distribution. Right: Water phase
s distribution.

The choice of c∗ will then determine the wetting state of the core, i.e., which relative
permeability curve and capillary pressure curve that are used. First, we run simula-
tions where the model (80) with three different c∗ values is considered, c∗1 = 0.0001,
c∗2 = 0.001, and c∗3 = 0.01. See Fig. 18 for the corresponding relative permeability
and capillary pressure curves. Results for three different times T1 = 1 day, T2 = 3
days, and T3 = 80 days are shown in Fig. 19 (water distribution s) and 20 (cap-
illary pressure distribution Pc). Clearly, more water-wet conditions leads to more
imbibition of water (thus, a higher oil recovery).

Next, results produced by the model (59)–(60) with dynamic WA together with
standard data (those used in Example 1) are compared with results produced by
the model (80) with permanent water-wet conditions corresponding to c∗ = 0.001.
See Fig. 21 for the curves that are used. Results are shown in Figs. 22–25 for times
T = 1 hour, T = 1 day, T = 3 days, and T = 80 days, respectively. Oil recovery is
shown in Fig. 26. Figs. 22–25 show that dynamic wettability alteration from oil-wet
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Figure 16. The plots show the imbibition process after T = 80
days with different Pc,r values corresponding to Pc,r = 3 · 102 Pa
(green), 0.5Pc,r (red), and 2Pc,r (blue). Left: WA agent concentra-
tion c. Middle: Capillary pressure Pc distribution. Right: Water
phase s distribution.
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Figure 17. Oil recovery after 80 days with different Pc,r values.

towards water-wet conditions produces a behavior that is fundamentally different
from the case with permanent wettability conditions. This is clearly seen from
the right figure of Figs. 22, 23 and 24. Most notably, a new “dip” in the water
distribution s behind the front of the WA agent appears. This oil-bank is formed
owing to the inclusion of dynamic wettability alteration. There is also a difference
at the bottom region of the core. The Pc curves show that capillary forces have
an impact throughout the whole core (Pc is positive) for the case with permanent
water-wet conditions. In particular, gravity is balanced against capillary diffusion
and the water accumulation at the bottom of the core is much weaker than for
the case with dynamic WA. For that case capillary forces are absent (since Pc is
negative here) and gravity is the only force at work. Finally, Fig. 25 and 26 reflect
that steady-state solutions become very similar for both cases.

5.6. Example 5: The role of the difference ∆Pc = P ow
c − Pww

c . In the final
example we seek insight into the mechanism that produces the new oil-bank. For
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Figure 18. Three different relative permeability and capillary
pressure curves corresponding to oil-wet conditions c∗1 = 0.0001
(dashed red), intermediate wet conditions c∗2 = 0.001 (dashed
green), and water-wet conditions c∗3 = 0.01 (dashed blue). The
curves are used for simulations with the model (80) corresponding
to permanent wetting states.
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Figure 19. Solutions produced by (80) with c∗1 = 0.0001 (solid
red), c∗2 = 0.001 (solid green), and c∗3 = 0.01 (solid blue). Water
phase s for different times T1 = 1 (left), T2 = 3 (middle), and
T3 = 80 days (right).

that purpose the model (62)–(63) is considered where gravity has been neglected.
It is suspected that the oil-bank depends on the quantity Pc = P ow

c − Pww
c , more

precisely, that it is related to the second term on the right-hand side of (62). This
term, often referred to as a cross-diffusion term (see Remark 6), takes the form

(B2(s, c)cx)x, B2(s, c) = −[λof ](s, c)F ′(c)∆Pc(s), F ′(c) = −
1

a∗
a′(c). (81)

Recalling that the first term on the right-hand side of (62) corresponds to

(B1(s, c)sx)x, where B1(s, c) = −[λof ](s, c)(Pc)s, (82)

we want to change the oil-wet Pc curve such that the difference ∆Pc(s) becomes
smaller. More precisely, we consider the couple of capillary pressure curves shown
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Figure 20. Solutions produced by (80) with c∗1 = 0.0001 (solid
red), c∗2 = 0.001 (solid green), and c∗3 = 0.01 (solid blue). Capillary
pressure Pc for different times T1 = 1 (left), T2 = 3 (middle), and
T3 = 80 days (right).
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Figure 21. Relative permeability curves and capillary pressure
curves relevant for the comparison of dynamic wettability alteration
versus permanent wettability conditions.

in Fig 27 (referred to as weak cross-diffusion) instead of the previously used couple
shown in Fig. 2 (referred to as strong cross-diffusion). From the solutions shown in
Fig. 28 it is observed:

• The spreading of the WA agent is very similar independent of the difference
in ∆Pc.

• The shape of the upper part of the right-hand water wave is very similar for
both cases. This must be understood in view of the light that this part of
the solution is largely determined by the capillary diffusion term (82). Since
the slope of Pc(c, s) as a function of s, i.e. ∂sPc, has not been changed (see
Fig. 27), we should expect an impact from this term which is similar for both
the case with weak and strong cross-diffusion.

• The new dip, which can be seen at the foot of the right water front, clearly
seems to be a result of the cross-diffusion term (81). The particular form of
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Figure 22. Dynamic WA versus permanent wettability condi-
tions, T = 1 hour. Left: WA agent concentration c. Middle:
Capillary pressure Pc. Right: Water phase s.
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Figure 23. Dynamic WA versus permanent wettability condi-
tions, T = 1 day.
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Figure 24. Dynamic WA versus permanent wettability condi-
tions, T = 3 day.
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Figure 25. Dynamic WA versus permanent wettability condi-
tions, T = 80 days. Left: WA agent concentration c. Right:
Capillary pressure Pc. Bottom: Water phase sw.
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Figure 26. Oil recovery during 80 days, respectively, for case with
dynamic wettability alteration and permanent wettability condi-
tions.

the coefficient B2(s, c) indicates that this term has an impact in an interval
that starts at the front of the WA agent concentration (where both a′(c) > 0
and cx 6= 0 simultaneously) and ends where a′(c) becomes small (see Fig. 3).
See also Remark 6. It seems clear that the size of ∆Pc determines how large
the dip is.

6. Concluding remarks. In this work a 1-D model has been proposed that can de-
scribe dynamic wettability alteration. The model is based on fundamental principles
(mass conservation and Darcy’s law) together with a direct and natural modelling
of wettability alteration by interpolating between two sets of relative permeability
curves and capillary pressure curves, corresponding to oil-wet and water-wet con-
ditions. The interpolation depends on the adsorption isotherm. More precisely, as
the adsorption of the WA agent takes place there is a corresponding alteration to-
ward water-wet conditions (in terms of relative permeability and capillary pressure
curves).
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Figure 27. Changing the P ow
w curve towards more water-wet conditions.
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Figure 28. Solutions demonstrating how the oil-bank depends on
the quantity ∆Pc = P ow

c −Pww
c . Top: Concentration c after T = 1

hour (left), T = 1 day (middle), and T = 3 days (right). Bottom:
Water saturation s after T = 1 hour, T = 1 day, and T = 3 days.

Characteristic behavior of this model has been investigated by using a numeri-
cal discretization procedure. An advantage of the proposed model is that it is not
overly complicated, and still it reveals characteristic features due to the inclusion
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of dynamic wettability alteration. In particular, (i) the importance of the balance
between gravity and capillary forces is clearly demonstrated; (ii) the wave propa-
gation associated with the imbibition process is different compared to simulations
with permanent wetting characteristics. A cross-diffusion term, which is related to
the difference between oil-wet and water-wet capillary curves, appears in the water
phase equation and produces a characteristic effect.

To conclude, there is an essential difference between imbibition with permanent
wetting states and dynamic wettability alteration. These results motivate for fur-
ther work in two directions. Firstly, more experimental work should be done in order
to assess the proposed model. Secondly, simplified versions of the model which are
more amenable to mathematical analysis and understanding of qualitative proper-
ties should also be considered.

Appendix A: The relaxed scheme.

The relaxation model for 1-D systems of conservation laws. Consider now
a system of conservation laws in one space variable

∂tw + ∂xF (w) = Q(w), (83)

where F (w) ∈ R
n is a smooth vector-valued function. The corresponding relaxation

system is then given by






∂tw + ∂xv = Q(w),

∂tv +A∂xw = − 1
ε [v − F (w)], ε > 0,

(84)

where

A = diag{a1, a2, . . . , an} (85)

is a positive diagonal matrix to be chosen. For small ε, applying Chapman-Enskog
expansion in the relaxation system (84), one can derive the following approximation
for w as

∂tw + ∂xF (w) = Q(w) + ε∂x (F ′(w)Q(w)) + ε∂x

(

[A− F ′(w)2]∂xw
)

, (86)

where F ′(w) is the Jacobian matrix of the flux F . Equation (86) governs the first-
order behavior of the relaxation system (84). Here we must require that the well
known subcharacteristic condition holds given by

A− F ′(w)2 ≥ 0, for all w. (87)

This condition ensures the dissipative nature of (86). It is clear that for w varying
in a bounded domain, equation (87) can always be satisfied by choosing sufficiently
large A. However, because of the CFL constraints on numerical stability, it is
desirable to obtain the smallest A meeting the criterion (87). As will be observed in
the next section, the size of A also has a decisive influence regarding the numerical
dissipation associated with the numerical schemes derived from (84).

For both theoretical and computational purposes it is sometimes necessary to
choose A to have distinct diagonal elements so as to avoid any degeneracy in the
relaxation system. However, for many cases it is sufficient to choose that A has the
special form

A = aI, a > 0 (88)



180 YU, KLEPPE, KAARSTAD, SKJAEVEL, EVJE AND FJELDE

where I is the identity matrix. In the case of one space variable (as we consider)
and where we assume (88) the dissipative condition (87) is satisfied if

λ2 < a, (89)

where λ = max1≤i≤n |λi(w)| where λi are the genuine eigenvalues of F ′(w).

The relaxation schemes. We will follow the notation of Jin and Xin [22] and
use relaxation schemes to denote both the relaxing and relaxed scheme. We recall
that the relaxing schemes depend on the relaxation parameter ε and the artificial
variable v, while the zero relaxation limit of these relaxing schemes are the relaxed
schemes, independent of both ε and v.

The relaxing scheme. The relaxing scheme associated with the relaxation model
(84) is given by























wn+1
j − wn

j + λ
2 (vn

j+1 − vn
j−1) −

λ
2A

1/2(wn
j+1 − 2wn

j + wn
j−1)

= ∆tQ(wn
j ),

vn+1
j − vn

j + λ
2A(wn

j+1 − wn
j−1) −

λ
2A

1/2(vn
j+1 − 2vn

j + vn
j−1)

= −k(vn+1
j − F (wn+1

j )),

(90)

where λ = ∆t/∆x is the mesh ratio, and k = ∆t/ε. Whenever we apply the relaxing
scheme for numerical computations, we will use the Runge-Kutta splitting scheme
of Jin and Xin which takes two implicit stiff source steps and two explicit convection
steps alternatively. We refer to [22] for details on this as well as the second order
variant of this scheme.

The Relaxed Scheme. Using a formal Hilbert expansion in (90), we get the following
relaxed scheme














vn
j = F (wn

j ),

wn+1
j = wn

j

−λ
2 (F (wn

j+1) − F (wn
j−1)) + λ

2A
1/2(wn

j+1 − 2wn
j + wn

j−1) + ∆tQ(wn
j ).

(91)

The relaxed scheme can be written on the following “viscous” form










wn+1
j = wn

j − λ(F̂n
j+1/2 − F̂n

j−1/2) + ∆tQ(wn
j )

where

F̂j+1/2 = 1
2

(

F (wj) + F (wj+1)
)

− 1
2A

1/2(wj+1 − wj),

(92)

where A1/2 plays the role as the “viscosity matrix” which determines the numerical
dissipation of the scheme. The relaxed scheme (91) can also be viewed as a flux
splitting scheme. To see this we write the system as











wn+1
j = wn

j − λ(F̂n
j+1/2 − F̂n

j−1/2) + ∆tQ(wn
j )

where

F̂j+1/2 = F+
j+1/2,− + F−

j+1/2,+,

(93)

where we have (for the first order scheme) that

F+
j+1/2,− = F+(wj), F−

j+1/2,+ = F−(wj+1),
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and where we have used the Lax-Friedrichs flux splitting

F±(w) =
1

2
(F (w) ±A1/2w). (94)

Note that the condition (87) ensures that the Jacobian of F±(w) has nonnegative
eigenvalues only or nonpositive eigenvalues only.

Second Order Relaxed Scheme. The second order relaxed scheme can be obtained
by using van Leer’s MUSCL scheme. Instead of using the piecewise constant inter-
polation, the MUSCL uses the piecewise linear interpolation which, applied to the
p-th components of F+(wj) approximated at xj yields:

(F+)
(p)
j (x) = (F+)(p)(wj) + (S+)

(p)
j (x− xj), x ∈ (xj−1/2, xj+1/2)

where

(S+)
(p)
j = S((s+l )(p), (s+r )(p))

(95)

and

(s+l )p =
(F+)(p)(wj) − (F+)(p)(wj−1)

∆x
, (s+r )p =

(F+)(p)(wj+1) − (F+)(p)(wj)

∆x
.

Here S(u, v) represents the slope limiter function. Similarly, the piecewise linear
interpolation applied to the p-th components of the negative flux part F−(wj+1)
approximated at xj+1 yields:

(F−)
(p)
j+1(x) = (F−)(p)(wj+1) + (S−)

(p)
j+1(x− xj+1), x ∈ (xj+1/2, xj+3/2)

where

(S−)
(p)
j+1 = S((s−l )(p), (s−r )(p))

(96)

and

(s−l )p =
(F−)(p)(wj+1) − (F−)(p)(wj)

∆x
,

(s−r )p =
(F−)(p)(wj+2) − (F−)(p)(wj+1)

∆x
.

The van Leer limiter corresponds to the choice

S(u, v) = s(u, v)
2|u||v|

|u| + |v|
, (97)

where s(u, v) = 1/2(sgn(u) + sgn(v)). The numerical flux F
(p)
j+1/2 is then computed

in a split form,

F̂
(p)
j+1/2 = (F+)

(p)
j (x)|xj+1/2

+ (F−)
(p)
j+1(x)|xj+1/2

. (98)

Second order accuracy in time is obtained by using a two-stage Runge-Kutta dis-
cretization.
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