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Abstract. This work deals with a viscous two-phase liquid-gas model relevant for flow in wells
and pipelines. The liquid is treated as an incompressible fluid whereas the gas is assumed
to be polytropic. The model is rewritten in terms of Lagrangian coordinates and is studied
in a free boundary setting where the liquid and gas masses are of compact support initially,
and continuous at the boundary. Consequently, the initial masses involve transition to single
phase gas flow and vacuum at the boundary. An appropriate balance between pressure and
viscous forces is identified which allows to obtain pointwise upper and lower estimates of masses.
These estimates rely on the assumption of a certain relation between rate of degeneracy of the
viscosity coefficient and the rate that determines how fast the initial masses are vanishing at
the boundary. By combining these estimates with basic energy type of estimates, higher order
regularity estimates are obtained. Existence of global weak solutions is then proved by showing
compactness for a class of semi-discrete approximations.
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1. Introduction

We are interested in a one-dimensional two-phase liquid-gas model of the drift-flux type [1, 15,
26]. This model is frequently used to simulate unsteady, compressible flow of liquid and gas in pipes
and wells [27, 9, 21, 12]. The model consists of two mass conservation equations corresponding to
each of the two phases, and one equation for the conservation of the mixture momentum. More
precisely, it is given in the following form:

∂t[αgρg] + ∂x[αgρgug] = 0

∂t[αlρl] + ∂x[αlρlul] = 0

∂t[αlρlul + αgρgug] + ∂x[αgρgu
2
g + αlρlu

2
l + P ] = −q + ∂x[ε∂xumix], umix = αgug + αlul,

(1)

where P, ε ≥ 0. Unknown variables are liquid and gas densities ρl, ρg and volume fractions
αl, αg ∈ [0, 1] satisfying the fundamental relation

αg + αl = 1. (2)

Furthermore, velocities of liquid and gas are represented by ul, ug whereas P is common pres-
sure for both phases. Finally, q is representing external forces like gravity and friction. The
momentum is given only for the mixture, therefore an additional closure law is needed, a so-called
hydrodynamical closure law, which connects the two phase velocities. In addition, we need a
thermodynamical equilibrium model which specifies the fluid properties.

Few results concerning existence, uniqueness, and stability seem to exist for two-phase liquid-
gas models of the form (1). Compared to the single-phase Navier-Stokes model, several new and
challenging problems occur when two phases of totally different character are introduced in one
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and the same model. Thus, in the works [7, 8] we have focused on a simplified model obtained
by assuming that fluid velocities are equal ug = ul = u and by neglecting the external forces, i.e.,
q = 0. More precisely, we considered a model in the form

∂t[αgρg] + ∂x[αgρgu] = 0

∂t[αlρl] + ∂x[αlρlu] = 0

∂t[αlρlu] + ∂x[αlρlu
2] + ∂xP = ∂x[ε∂xu], P, ε ≥ 0.

(3)

Here certain small gas effects have been neglected since we employ a simplified momentum equation
where acceleration terms depend solely on the liquid phase. This is motivated by the fact that
liquid phase density typically is much higher than gas phase density, i.e. ρl/ρg = O(103).

The purpose of this paper is to continue the work with the model (3). Assuming that the liquid
is incompressible, i.e. ρl = Const, whereas the gas is represented by a polytropic gas law relation
P = Cργ

g with γ > 1 and C a positive constant, we get a pressure law of the form

P (n,m) = Cργ
l

( n

ρl −m

)γ

. (4)

This follows by observing that ρg = ρln
ρl−m , where we use the notation n = αgρg and m = αlρl as

well as the relation (2). In particular, we see that pressure becomes singular at transition to pure
liquid phase αl = 1 which yields m = ρl. In order to treat this difficulty we shall in this work
consider (3) in a free boundary problem setting where the masses m and n initially occupy only
a finite interval [a, b] ⊂ R. That is,

n(x, 0) = n0(x) ≥ 0, m(x, 0) = m0(x) ≥ 0, u(x, 0) = u0(x), x ∈ [a, b],

and n0 = m0 = 0 outside [a, b]. In particular, the initial masses n0,m0 are assumed to be positive
in (a, b) and vanish at the boundary x = a, b. The viscosity coefficient ε is assumed to be a
functional of the masses n and m, i.e. ε = ε(n,m).

We rewrite the model (3) in terms of Lagrangian variables. An advantage is that the free
boundaries are then converted into fixed and we get a model in the form (see next section for more
details)

∂tn + (nm)∂xu = 0

∂tm + m2∂xu = 0

∂tu + ∂xP (n,m) = ∂x(ε(n,m)m∂xu), x ∈ (0, 1),

(5)

with boundary conditions
n = m = 0, at x = 0, 1, t ≥ 0, (6)

and initial data

n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (7)

In [8], the initial masses n0 and m0 were assumed to be connected to vacuum at the boundary
with a discontinuity. Then, it was shown that the masses n,m remained strictly positive in time
up to the vacuum interface x = 0, 1. This estimate then played a crucial role in the study of global
existence of weak solutions. By contrast, in this work initial masses n,m connect to vacuum
continuously through the boundary condition (6), in other words, they vanish at the boundary
where the vacuum interface is located. Consequently, more refined arguments are required to
obtain a priori estimates that ensure existence of weak solutions. In particular, the analysis of
this paper reveals that a certain relation must exist between rate of degeneracy associated with
the viscosity coefficient ε(n,m) and the rate of degeneracy of the initial masses n0,m0 at the
boundary x = 0, 1, i.e. the rate that determines how fast the initial data is approaching zero at
the boundary.

The main result of this paper is that we obtain an existence result for the model (5)–(7) for a
class of weak solutions and for a flow regime where the viscosity coefficient is of the form

ε = ε(n,m) =
nβ

(ρl −m)β+1
, β ∈ (0, 1/3). (8)
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This form is quite natural in view of the pressure law (4) and ensures a certain balance between
the pressure and viscous forces, represented respectively by (4) and (8), as m is approaching the
critical limit ρl. This balance is sufficient to guarantee that the liquid mass m can be controlled
pointwise from below and from above by means of a weight function φ(x) = x(1− x) when initial
data is subject to a similar behavior. This pointwise control is then transferred to the gas mass
n through the common fluid velocity u and the two mass conservation equations of (5). More
precisely, by assuming initially that the gas and liquid masses n and m do not disappear or blow
up on (0, 1), but degenerate at the boundary points at a certain rate α ∈ (0, 1), given by

C−1φ(x)α ≤ n0(x) ≤ Cφ(x)α, C−1φ(x)α/2 ≤ m0(x) ≤ Cφ(x)α/2 < ρl, (9)

for a suitable constant C > 0, then a similar behavior will be true for the masses n and m for all
t ∈ [0, T ] for any specified time T > 0. We refer to Theorem 2.1 for a precise statement. This in
turn allows us to obtain various estimates which ensure convergence to a class of weak solutions.
The main tool in this analysis is the introduction of a suitable variable transformation allowing
for application of ideas and techniques similar to those used in [23, 17, 19, 29, 24, 31, 28, 16] in
previous studies of the single-phase Navier-Stokes equation.

The novelty of this paper compared to [8] can be summarized as follows:
• The model studied in this paper is different from the one studied in [8] in the sense that

the ε coefficient now depends on both n and m together with the assumption of continuous
masses n,m at the boundaries. More precisely, in [8] we considered a flow regime where
viscosity was governed by the presence of the liquid phase only by using

ε(m) =
mβ

(ρl −m)β+1
. (10)

For this case, the liquid mass m and gas mass n were shown to be non-vanishing at all
points in the domain [0, 1]. The current work focus on a flow regime where the viscosity to
a large extent is governed by the presence of the gas phase as expressed by the functional

ε(n,m) =
nβ

(ρl −m)β+1
. (11)

In particular, the boundary condition (6) implies that the viscosity coefficient (11) vanishes
at the boundary x = 0, 1.

• The model (5)–(7) involves transition to single-phase gas flow at the boundary since
αl|x=0,1 = 0. This situation is not included in the analysis of [8].

• The analysis of Section 3 shows that there is a fine balance between (i) the rate of degen-
eracy at the boundary associated with initial data n0,m0 and represented by a function
of the form φ(x) = (x(1 − x))α; and (ii) the rate of degeneracy associated with the vis-
cosity coefficient (11). More precisely, a specific relation between α and β is identified for
β ∈ (0, 1/3) and α ∈ (0, 1). This may reflect some of the additional difficulty associated
with two-phase flow compared to single-phase flow. It also represents a clear difference
between the present work and the two-phase model studied in [8].

To motivate for further studies in the context of two-phase liquid-gas flow, we would like to
emphasize some of the restrictions that are used in this work:

• Relatively strong smoothness assumptions are made on the initial data and weaker con-
ditions would clearly be desirable, i.e. analysis that allows for discontinuous initial data.
For some results in this direction in the single-phase gas flow setting, we refer to [13, 14]
and references therein.

• A relative strong restriction on the rate of degeneracy associated with the viscous coeffi-
cient ε(n, m) is assumed since β ∈ (0, 1/3). It would be interesting to explore the model
used in this paper in a framework where the upper limit of β can be relaxed.

• The assumptions on the initial data n0,m0 are rather restrictive concerning the rate of
degeneracy at the boundary represented by the parameter α ∈ (0, 1). This is due to
the fact that we make use of the assumption that c0(x) = n0(x)

m0(x) , in view of (9), can be
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bounded as

C1φ(x)α/2 ≤ c0(x) ≤ C2φ(x)α/2.

Weaker conditions are clearly of interest.
• Apparently, a consequence of the techniques we rely on in this work is that we do not cover

the mixed situation where the liquid phase does not vanish at the boundaries whereas
the gas mass does vanish. In other words, the transition to single-phase gas-flow at the
boundary seems inevitable, see Remark 3.1 for more details.

• The existence result presented in Section 2 relies on the fact that the α parameter is related
to β in a certain manner. More precisely, for a choice of β ∈ (0, 1/3), the α parameter
cannot be chosen freely in (0, 1) but must obey the relation (34). An interesting question
is whether this is only an artifact of the techniques used in this work, or reflects a more
intimate connection between degeneracy of the viscosity coefficient and behavior of initial
masses at the boundary.

• The form of the viscous term represented by (11) is not based on experimental data or
some deeper physical considerations, but represents a rather straightforward generalization
in view of the relation between the functional form of pressure and viscosity as used for
single-phase gas flow [23, 17, 19, 29, 24, 31, 28, 16]. Clearly, it is of interest to address
this aspect more carefully in a context where experimental data is considered.

• It would be desirable to consider a more complete two-phase model where unequal fluid
velocities are involved. An example of such a two-phase drift-flux model written in terms
of Lagrangian variables is given in [12]. Various numerical methods for solving the model
(1) in such a more general context can be found in [3, 4, 5, 9, 10, 11, 18, 20, 22, 27].

The rest of this paper is organized as follows. In Section 2 we give more details relevant for
the model (5) obtained from (3), and we state various assumptions and the main theorem. In
Section 3 we describe a priori estimates for an auxiliary model obtained from (5) by employing
an appropriate variable transformation. Finally, in Section 4 we consider a family of approximate
solutions obtained by defining a semi-discrete approximation to (5). The estimates of Section 3 are
shown to hold for these approximate solutions, which in turn imply compactness and convergence
to a global weak solution, as stated in Theorem 2.1.

2. A global existence result for a simplified viscous two-phase model

In the following we shall work with the compressible gas-incompressible liquid two-phase model

∂tn + ∂x[nu] = 0

∂tm + ∂x[mu] = 0

∂t[mu] + ∂x[mu2] + ∂xP (n, m) = ∂x[ε(n,m)∂xu],

(12)

where

P (n, m) = A
( n

ρl −m

)γ

, γ > 1, (13)

ε(n, m) = B
nβ

(ρl −m)β+1
, β ∈ (0, 1/3), (14)

where A and B are appropriate constants. One special feature of the above two-phase model (12)–
(14) is that the pressure law becomes singular for pure liquid flow, that is, when m = ρlαl = ρl. To
compensate for this, it is assumed that the viscosity coefficient ε(n,m) reflects a similar behavior
such that a proper balance between pressure and viscous forces takes place.

2.1. Main idea. The idea of this paper is to study the model (12)–(14) in a setting where sufficient
pointwise control on the masses n and m can be ensured through a careful balance between
pressure and viscous forces. Motivated by previous studies of the single-phase Navier-Stokes
model [19, 31, 28, 25], we propose to study (12) in a free-boundary setting where the gas and
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liquid masses n and m are of compact support initially. More precisely, we study the model (12)
with initial data

(n, m,mu)(x, 0) =

{
(n0,m0,m0u0) x ∈ [a, b],
(0, 0, 0) otherwise,

with n0(x) > 0 and m0(x) > 0 for x ∈ (a, b). In other words, we study the two-phase model in
a setting where an initial true two-phase mixture region (a, b) is surrounded by vacuums states
n = m = 0 on both sides. Letting a(t) and b(t) denote the particle paths initiating from (a, 0)
and (b, 0) respectively, these paths represent free boundaries, i.e., the interface of the gas-liquid
mixture and the vacuum. They are given by

d

dt
a(t) = u(a(t), t),

d

dt
b(t) = u(b(t), t), (15)

together with an appropriate boundary condition. In [8] we studied (15) together with the bound-
ary condition

(−P (n,m) + ε(m)ux) (a(t)+, t) = 0, (−P (n,m) + ε(m)ux) (b(t)−, t) = 0, (16)

where ε(m) was given by (10). In particular, it was assumed that the initial masses n0(x),m0(x)
connect to vacuum discontinuously, i.e., inf [0,1] n0(x), inf [0,1] m0(x) ≥ C0 > 0 for a positive con-
stant C0.

A main purpose of this work is to study the case where n0(x),m0(x) connect to vacuum contin-
uously, as described in [19, 31] in the context of single-phase Navier-Stokes equations. This means
that the boundary condition (16) is replaced by

n(a(t), t) = n(b(t), t) = 0, m(a(t), t) = m(b(t), t) = 0. (17)

Following along the line of previous studies for the single-phase Navier-Stokes equations [23, 17,
19, 31], it is convenient to replace the free boundaries a(t) and b(t) (which are unknown in Eulerian
coordinates) by fixed boundaries using Lagrangian coordinates. First, in view of the particle paths
Xt(x) given by

dXt(x)
dt

= u(Xt(x), t), X0(x) = x,

the system (12) takes the form
dn

dt
+ nux = 0

dm

dt
+ mux = 0

m
du

dt
+ P (n,m)x = (ε(n,m)ux)x.

(18)

Next, we introduce the coordinate transformation

ξ =
∫ x

a(t)

m(y, t) dy, τ = t, (19)

such that the free boundary x = a(t) and x = b(t), in terms of the (ξ, τ) coordinate system, are
given by

ξa(τ) = 0, ξb(τ) =
∫ b(t)

a(t)

m(y, t) dy =
∫ b

a

m0(y) dy = const, (20)

where
∫ b

a
m0(y) dy is the total liquid mass initially, which we normalize to 1. Applying (19) to

shift from (x, t) to (ξ, τ) in (18), we get

nτ + (nm)uξ = 0

mτ + (m2)uξ = 0

uτ + P (n, m)ξ = (ε(n,m)muξ)ξ, ξ ∈ I := (0, 1), τ ≥ 0,

where boundary conditions, in light of (17), are given by

n(0, τ) = n(1, τ) = 0, m(0, τ) = m(1, τ) = 0.
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In addition, we have the initial data

n(ξ, 0) = n0(ξ), m(ξ, 0) = m0(ξ), u(ξ, 0) = u0(ξ), ξ ∈ Ī := [0, 1].

In the following, we find it convenient to replace the coordinates (ξ, τ) by (x, t) such that the
model we shall work with in the rest of this paper is given in the form

∂tn + (nm)∂xu = 0

∂tm + m2∂xu = 0

∂tu + ∂xP (n,m) = ∂x(E(n,m)∂xu), x ∈ (0, 1),

(21)

with
P (n,m) =

( n

ρl −m

)γ

, γ > 1, (22)

and

E(n,m) =
mnβ

(ρl −m)β+1
, 0 < β < 1/3, (23)

where we, for simplicity, have set the constants A = B = 1. Moreover, boundary conditions are
given by

n(0, t) = n(1, t) = 0, m(0, t) = m(1, t) = 0, (24)
whereas initial data are

n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x = Ī = [0, 1]. (25)

Both initial masses n0(x), m0(x) become zero at the boundary x = 0, 1. But it is also essential, as
stated in a precise manner in assumption (A1) below, that the initial gas mass n0(x) is approaching
zero faster than the initial liquid mass m0(x).

2.2. Main result. Before we state the main result for the model (21)–(25), we describe the
notation we apply throughout the paper. H1(I) represents the usual Sobolev space defined over
I = (0, 1) with norm ‖ · ‖H1(I). Moreover, Lp(K, B) with norm ‖ · ‖Lp(K,B) denotes the space of all
strongly measurable, pth-power integrable functions from K to B where K typically is a subset
of R and B is a Banach space. In addition, let α ∈ (0, 1), Cα[0, 1] denotes the Banach space of
functions on [0, 1] which are uniformly Hölder continuous with exponent α and Cα,α/2(DT ) for
the Banach space of functions on DT = [0, 1]× [0, T ] which are uniformly Hölder continuous with
exponent α in x and α/2 in t.

In the following, we first state some main assumptions for the initial data n0,m0, and u0 and
the constants γ and β relevant for P (n,m) and E(n, m). Then we present the global existence
result.

Main assumptions.
(A1) We assume that there are constants K1,K2,K3, and K4 such that for φ(x) = x(1− x) we

have
K1φ(x)α/2 ≤ m0(x) ≤ K2φ(x)α/2 < ρl, 0 < α < 1,

such that sup
x∈[0,1]

m0(x) < ρl,

K3φ(x)α ≤ n0(x) ≤ K4φ(x)α.

(26)

In particular, this implies that for suitable constants C1 and C2

C1φ(x)α/2 ≤ c0(x) :=
n0

m0
(x) ≤ C2φ(x)α/2. (27)

Moreover, in view of (26), it also follows that

K1

ρl
φ(x)α/2 ≤ m0(x)

ρl
≤ Q0(x) := Q(m0(x)) ≤ K2

inf(ρl −m0(x))
φ(x)α/2, (28)

for Q(x) = x
ρl−x . We also note that the following estimate holds, in view of (26)

φ(x)k1

(ρl −m0(x)
m0(x)

)
≤ φ(x)k1−α/2 sup(ρl −m0(x))

K1
∈ L1([0, 1]), for k1 >

1
2k

, (29)
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for all positive integer k since k1 − α/2 > −1;
(A2) More assumptions that are required for the analysis are:

([ n0

ρl −m0

]β)
x
∈ L2k([0, 1]),

([ n0

ρl −m0

]γ)
x
∈ L2([0, 1]), (30)

for sufficiently large positive integer k. In addition, we require that

c0,x ∈ L∞([0, 1]); (31)

(A3) We assume that

u0(x) ∈ L∞([0, 1]) and (E(n0,m0)u0,x)x ∈ L2([0, 1]); (32)

(A4) We assume that

0 < β <
1
3
, γ > 1; (33)

(A5) We assume that the choice of α and β, for sufficiently large k, satisfy the relation

2kβ + 1
(2k − 1)− 2kβ

<
1
2β

− 1− α

2
− 1

(2k − 1)β
. (34)

Some comments are in order here before we present the main result.

Remark 2.1. We observe that m0|x=0,1 = 0 implies that αg|x=0,1 = 1, i.e., transition to single-
phase gas flow occur at the left and right boundary point. However, vacuum states exist at the
boundaries since n0|x=0,1 = ρg|x=0,1 = 0. In addition, we observe that supx∈[0,1] m0(x) < ρl

implies that the gas phase is present at all points in the domain (no transition to single-phase
liquid flow).

Remark 2.2. Sharper lower estimates are required for the masses n0 and m0, as described by
(26) of assumption (A1), compared to previous studies of a single-phase gas flow model [31, 28].
For single-phase flow it is typically only required that 0 ≤ ρ0(x) ≤ Cφ(x)α for a suitable choice of
C and α where ρ represents the gas density. The two-phase analysis requires an estimate of the
rate of degeneracy for the lower bounds of n0 and m0, as described by (26), such that the estimate
(27) is obtained. Estimate (27) is used throughout the whole analysis.

Remark 2.3. Concerning the relation (34), we see that letting k go to infinity we get the relation

β

1− β
<

1
2β

− 1− α

2
,

that is,

1 +
α

2
<

(1− 2β)(1 + β)
2β(1− β)

:= f(β). (35)

Clearly, f(β) goes to infinity as β → 0+ and f(β) approaches 0 from above as β → 1
2

−. In
particular, f( 1

3 ) = 1 which implies that β must satisfy β ∈ (0, 1/3) in order to allow α to become
positive. In other words, for β close to 1

3 the rate of degeneracy of n0,m0 must be low (α must be
close to zero). As β becomes smaller (i.e., the rate of degeneracy of the viscous coefficient ε(n,m)
becomes lower), the rate of degeneracy α associated with n0,m0 can be higher. The coupling
between α and β as described by (34) is a ”two-phase phenomenon” in the sense that it is not seen
for the single-phase gas analysis as described in [31, 28].

Theorem 2.1 (Main Result). Under the assumptions (A1)–(A5), the initial-boundary value prob-
lem (21)–(25) possesses a global weak solution (n, m, u) in the sense that:

(A) For any T > 0, we have the following regularity:

n,m, u ∈ L∞([0, 1]× [0, T ]) ∩ C1([0, T ];H1([0, 1])),

E(n, m)ux ∈ L∞([0, 1]× [0, T ]) ∩ C
1
2 ([0, T ];L2([0, 1])).

(36)
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In particular, we have for a small constant µ > 0 the estimate

C(T )φ(x)1+k2 ≤ m(x, t) ≤ min{ρl − µ,C(T )φ(x)
α
2 },

C1C(T )φ(x)1+k2+
α
2 ≤ n(x, t) ≤ C2 min{ρl − µ,C(T )φ(x)

α
2 }φ(x)

α
2 ,

(37)

where (x, t) ∈ [0, 1] × [0, T ]. The assumptions on k2 is that for all positive integer k,
sufficiently large,

2kβ + 1
(2k − 1)− 2kβ

< k2 <
1
2β

− 1− α

2
− 1

(2k − 1)β
. (38)

(B) Moreover, the following equations hold,

nt + nmux = 0, mt + m2ux = 0,

(n,m)(x, 0) = (n0(x),m0(x)), for a.e. x ∈ (0, 1) and any t ≥ 0,
∫ ∞

0

∫ 1

0

[
uφt + (P (n,m)− E(n,m)ux)φx

]
dx dt +

∫ 1

0

u0(x)φ(x, 0) dx = 0

(39)

for any test function φ(x, t) ∈ C∞0 (D), with D := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}.
The proof of Theorem 2.1 is based on a priori estimates for a class of approximate solutions of

(21)–(25) and a corresponding limit procedure. These results are obtained by adopting techniques
similar to those used in [31, 28] for the single-phase Navier-Stokes equation. A crucial part of
this analysis is to obtain sufficient point-wise upper and lower limits for m and n, as described by
Corollary 3.4. A main tool in this analysis is to focus, not on the mass m but instead the related
quantity Q(m) = m/(ρl −m) which connects pressure P (n,m) and viscosity coefficient E(n,m).
It turns out that we naturally can reformulate the model (21) in terms of the variables (c,Q, u)
instead of (n,m, u) where c = n/m. Together with higher order regularity of u and (Qβ)x as well
as energy-conservation, certain pointwise upper and lower limits for Q(m) can be derived. This,
in turn, gives the required boundedness on m and n from below and above, together with the L1

estimate of mx and nx. Finally, L2 continuity in time is obtained for m and n. Armed with these
estimates we can rely on standard compactness arguments to prove Theorem 2.1. This is done in
Section 4.

3. Basic estimates

Below we derive a priori estimates for (n,m, u) assumed to be a smooth solution of (21)–(25).
We then construct the approximate solutions of (21) in Section 4 by considering a semi-discrete
approximation to (21)–(25).

More precisely, first we assume that (n,m, u) is a solution of (21)–(25) on [0, T ] satisfying

n, nt, nx, ntx,m,mx, mt,mtx, u, ux, ut, uxx ∈ Cα,α/2(DT ) for some α ∈ (0, 1),

n(x, t) > 0, m(x, t) > 0, m(x, t) < ρl on (0, 1)× [0, T ].
(40)

In the following we will frequently take advantage of the fact that the model (21) can be rewritten
in a form more amenable for deriving various estimates. We first describe this reformulation, and
then present a number of a priori estimates, obtained mainly by relying on suitable modifications
of techniques used in [28], see also references therein.

3.1. A reformulation of the model (21). We introduce the variable

c =
n

m
, (41)

implicitly using that m > 0, and see from the first two equations of (21) that

ct =
1
m

nt − n

m2
mt = −nm

m
ux +

nm2

m2
ux = 0.
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Consequently, the model (21)–(25) then can be written in terms of the variables (c,m, u) in the
form

∂tc = 0

∂tm + m2∂xu = 0

∂tu + ∂xP (c,m) = ∂x(E(c,m)∂xu), x ∈ (0, 1),
(42)

with

P (c,m) =
( mc

ρl −m

)γ

, γ > 1, (43)

and

E(c,m) = cβ
( m

ρl −m

)β+1

, 0 < β < 1/3. (44)

Moreover, boundary conditions are given by

c(0, t) = c(1, t) = 0, m(0, t) = m(1, t) = 0, (45)

whereas initial data are

c(x, 0) = c0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (46)

Furthermore, we introduce the variable

Q(m) =
m

ρl −m
=

αl

1− αl
> 0, (47)

since m > 0 and m < ρl and observe that

Q(m)t =
( m

ρl −m

)
t
=

( 1
ρl −m

+
m

(ρl −m)2
)
mt

=
ρl

(ρl −m)2
mt = −ρl

m2

(ρl −m)2
ux = −ρlQ(m)2ux,

in view of the second equation of (42). Consequently, we rewrite the model (42) in the form

∂tc = 0

∂tQ(m) + ρlQ(m)2∂xu = 0

∂tu + ∂xP (c,Q(m)) = ∂x(E(c,Q(m))∂xu), x ∈ (0, 1), t > 0,

(48)

with

P (c, Q(m)) = cγQ(m)γ , γ > 1, (49)

and

E(c,Q(m)) = cβQ(m)β+1, 0 < β < 1/3. (50)

This model is then subject to the boundary conditions

c(0, t) = c(1, t) = 0, Q(0, t) = Q(1, t) = 0. (51)

In addition, we have the initial data

c(x, 0) = c0(x), Q(x, 0) = Q0(x), u(x, 0) = u0(x), x = [0, 1], (52)

where Q0(x) = Q(m0(x)) = m0(x)
ρl−m0(x) . In particular, the first equation of (48) gives that

c(x, t) := c0(x) :=
n0

m0
(x) > 0, x ∈ (0, 1), t > 0, (53)

for initial data as prescribed in assumption (A1).
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3.2. A priori estimates. Now we derive a priori estimates for (n,m, u) by making use of the
reformulated model (48)–(52). In Section 4 we consider corresponding semi-discrete versions. Note
that in the following we will use C to denote a generic positive constant depending only on the
initial data and C(T ) to indicate dependence on the given time T .

Lemma 3.1 (Energy estimate). We have the basic energy estimate
∫ 1

0

(1
2
u2 +

cγ

ρl(γ − 1)
Q(m)γ−1

)
(x, t) dx +

∫ t

0

∫ 1

0

cβQ(m)β+1(ux)2 dx ds

=
∫ 1

0

(1
2
u2

0 +
cγ
0

ρl(γ − 1)
Q(m0)γ−1

)
dx, ∀t ∈ [0, T ]

≤ C(T ).

(54)

Moreover,

cQ(m)(x, t) ≤ C(T ), ∀(x, t) ∈ [0, 1]× [0, T ], (55)

and for any positive integer k,
∫ 1

0

u2k(x, t) dx + k(2k − 1)
∫ t

0

∫ 1

0

u2k−2cβQ(m)1+β(ux)2 dx ds ≤ C(T ). (56)

Proof. We multiply the third equation of (48) by u and integrate over [0, 1] in space. Applying
the boundary condition (51) and the equation

cγ

ρl(γ − 1)
(Qγ−1)t + cγQγux = 0, (57)

obtained from the second equation of (48) by multiplying with cγQγ−2, we get

d

dt

∫ 1

0

(1
2
u2 +

cγ

ρl(γ − 1)
Qγ−1

)
(x, t) dx +

∫ 1

0

E(c, Q)(ux)2 dx = 0.

From this, (54) follows, by application of (32), (27) and (28).
Next, we focus on (55). From the second equation of (48) we deduce the equation

1
ρl

(Qβ)t + βQβ+1ux = 0. (58)

Multiplying with cβ and integrating over [0, t], we get

(cQ)β(x, t) = (cQ)β(x, 0)− βρl

∫ t

0

cβQβ+1ux ds. (59)

Then, we integrate the third equation of (48) over [0, x] and get
∫ x

0

ut(y, t) dy + P (c, Q)− P (c(0, t), Q(0, t)) + (E(c,Q)ux)(0, t) = E(c, Q)ux = cβQ(m)β+1ux.

Using the boundary condition (51) and inserting the above relation into the right hand side of
(59), we get

(cQ)β(x, t) = (cQ)β(x, 0)− βρl

∫ t

0

(∫ x

0

us(y, s) dy + P (c,Q)
)

ds

= (cQ)β(x, 0)− βρl

∫ x

0

(u(y, t)− u0(y)) dy − βρl

∫ t

0

P (c,Q) ds

(60)

Consequently, since P (c,Q) ≥ 0

(cQ)β(x, t) ≤ (cQ)β(x, 0) + βρl

∫ 1

0

|u(y, t)| dy + βρl

∫ 1

0

|u0(y)| dy. (61)

Applying Hölder’s inequality and (54) we can bound
∫ 1

0
|u| dy, hence the upper bound (55) follows

in view of (27) and (28).
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Finally, we focus on estimate (56). Multiplying the third equation of (48) by 2ku2k−1, integrat-
ing over [0, 1]× [0, t] and integration by parts together with application of the boundary conditions
(51), we get

∫ 1

0

u2k dx + 2k(2k − 1)
∫ t

0

∫ 1

0

cβ
0Q(m)β+1(ux)2u2k−2 dx ds

=
∫ 1

0

u2k
0 dx + 2k(2k − 1)

∫ t

0

∫ 1

0

cγ
0Q(m)γu2k−2ux dx ds.

(62)

For the last term we have by the Cauchy type inequality ab ≤ (1/4ε)a2 + εb2 where ε > 0, that
∫ t

0

∫ 1

0

cγ
0Q(m)γu2k−2ux dx ds

≤ 1
4ε

∫ t

0

∫ 1

0

c
2(γ−β/2)
0 Q(m)2γ−β−1u(2k−2) dx ds + ε

∫ t

0

∫ 1

0

cβ
0Q(m)β+1u(2k−2)(ux)2 dx ds

≤ 1
4ε

sup
[0,1]

(c0)
∫ t

0

∫ 1

0

(c0Q(m))2γ−β−1u(2k−2) dx ds + ε

∫ t

0

∫ 1

0

cβ
0Q(m)β+1u(2k−2)(ux)2 dx ds.

The last term clearly can be absorbed in the second term of the left-hand side of (62) by the
choice ε = 1/2. Finally, let us see how we can bound the term

∫ t

0

∫ 1

0
u(2k−2)(c0Q(m))2γ−1−β dx ds.

In view of Young’s inequality ab ≤ (1/p)ap + (1/q)bq where 1/p + 1/q = 1, we get for the choice
p = k and q = k/(k − 1)
∫ t

0

∫ 1

0

u(2k−2)(c0Q(m))2γ−1−β dx ds ≤ 1
k

∫ t

0

∫ 1

0

(c0Q(m))(2γ−1−β)k dx ds +
k − 1

k

∫ t

0

∫ 1

0

u2k dx ds

≤ C(T ) +
k − 1

k

∫ t

0

∫ 1

0

u2k dx ds,

by using (55). To sum up, we get
∫ 1

0

u2k dx + k(2k − 1)
∫ t

0

∫ 1

0

cβ
0Q(m)β+1(ux)2u2k−2 dx ds

≤
∫ 1

0

u2k
0 dx + k(2k − 1) sup

[0,1]

(c0)
[
C(T ) +

k − 1
k

∫ t

0

∫ 1

0

u2k dx ds
]
.

(63)

In view of (63), application of (27) and Gronwall’s inequality then gives the estimate (56). ¤

Taking advantage of a more refined use of the relation (60) together with the higher order
integrability of u given by (56), we can obtain a sharper estimate for the upper bound of cQ(m)
as follows.

Corollary 3.1. We have the estimates

c(x)Q(m) ≤ C(T )φ(x)α, (64)

and
Q(m) ≤ C(T )φ(x)α/2, (65)

where φ(x) = x(1− x).

Proof. In addition to (60), we also have

(cQ)β(x, t) = (cQ)β(x, 0) + βρl

∫ 1

x

(u(y, t)− u0(y)) dy − βρl

∫ t

0

P (c,Q) ds. (66)

Consequently, (60) and (66) give for a positive integer k, respectively,

(cQ)β ≤ (c0Q0)β + C
(∫ x

0

u2k dx
)1/2k

x(2k−1)/2k + Cx,
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and

(cQ)β ≤ (c0Q0)β + C
(∫ 1

x

u2k dx
)1/2k

(1− x)(2k−1)/2k + C(1− x),

where we have used Hölder’s inequality with p = 2k and q = 2k
2k−1 . Together with the fact that

min(x, 1− x) ≤ 2x(1− x) this implies that

(cQ)β ≤ (c0Q0)β + C
(∫ 1

0

u2k dx
)1/2k

(x(1− x))(2k−1)/2k + Cx(1− x)

≤ (c0Q0)β + C(T )(x(1− x))(2k−1)/2k,

where we have used (56). Thus, in light of (27) and (28), we conclude that

(cQ) ≤ C(x(1− x))α + C(T )(x(1− x))(2k−1)/2kβ .

Observing that α < 2k−1
2kβ for all positive integers k when β ∈ (0, 1/3), we conclude that

(cQ) ≤ C(T )(x(1− x))α.

Then, from (27) of assumption (A1) it follows that

Q(m) ≤ C(T )(x(1− x))α/2.

¤

Remark 3.1. Note that the above refined arguments are necessary in order to obtain the estimate
Q(m) ≤ C(T ) because (61) together with (27) and (28) imply that

cQ(m) ≤ C(x(1− x))α + C,

which does not allow us to extract an upper bound for Q(m) since c(x) degenerates at the boundary.
On the other hand, (65) implies that m has to become zero at the boundary x = 0, 1, i.e., transition
to single-phase gas flow is inescapable. Apparently, the interesting case where the gas-phase n
vanishes at the boundary whereas m does not, cannot be explored in the current framework.

Lemma 3.2 (Additional higher order regularity). We have for all integers k the estimate
∫ 1

0

(∂x[cQ(m)]β)2k(x, t) dx ≤ C(T ), (67)

for a suitable constant C(T ).

Proof. We have
(cQ)β

t + ρlβcβQβ+1ux = 0.

That is,
(cQ)β

tx = −ρlβ(ut + P (c,Q)x),
where we have used the third equation of (48). Integrating in t over [0, t], and then multiplying
by [(cQ)β

x ]2k−1 and integrating in x over [0, 1] gives
∫ 1

0

[(cQ)β
x ]2k dx =

∫ 1

0

[(c0Q0)β
x ][(cQ)β

x ]2k−1 dx− ρlβ

∫ 1

0

[u(t, x)− u0(x)][(cQ)β
x ]2k−1 dx

− ρlβ

∫ 1

0

[(cQ)β
x ]2k−1

∫ t

0

P (c,Q)x ds dx.

Repeated use of Young’s inequality ab ≤ εp

p ap + ε−q

q bq then yields with p = 2k and q = 2k/(2k−1)
and suitable choices of ε > 0

∫ 1

0

[(cQ)β
x ]2k dx ≤ C

∫ 1

0

[(c0Q0)β
x ]2k dx +

1
2

∫ 1

0

[(cQ)β
x ]2k dx

+ C

∫ 1

0

u2k(x, t) dx + C

∫ 1

0

u2k
0 (x, t) dx + C

∫ 1

0

(∫ t

0

P (c,Q)x ds
)2k

dx.
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Consequently, applying (30), Jensen’s inequality, and (56) it follows that
∫ 1

0

[(cQ)β
x ]2k dx ≤ C(T ) + C

∫ 1

0

(∫ t

0

P (c,Q)x ds
)2k

dx

≤ C(T ) + C(T )
∫ t

0

max(cQ)(γ−β)2k

∫ 1

0

[(cQ)β
x ]2k dx ds.

From this, in view of (55) and Gronwall’s lemma, the result follows. ¤
Corollary 3.2 (Additional regularity with weight function). We have the estimate

∫ 1

0

ψ(x)(∂x[cQ(m)]β)2k(x, t) dx ≤ C(T ), (68)

for a constant C(T ) and a bounded function ψ(x).

In the following lemmas the role played by the weighted function φ(x) is crucial. In particular,
a proper balance between the weighted function φ(x) and c(x) must be ensured in order to get
the desired estimates. The assumption (26) (which implies (27)) is used here.

Lemma 3.3. For any k1 > 1
2k , from (29) it follows that φ(x)k1Q(m0(x))−1 ∈ L1([0, 1]). Then

∫ 1

0

φ(x)k1

Q(m(x, t))
dx ≤ C(T ). (69)

Proof. We have (φ(x)k1

Q(m)

)
t
= ρlφ(x)k1ux = ρl

(
φ(x)k1u

)
x
− ρl

(
φ(x)k1

)
x
u. (70)

Integrating over [0, 1] × [0, t] and using Young’s inequality with p = 2k and q = 2k/(2k − 1) and
the fact that φ(x)|x=0,1 = 0, we get

∫ 1

0

φ(x)k1

Q(m)
dx =

∫ 1

0

φ(x)k1

Q(m0)
dx− ρl

∫ t

0

∫ 1

0

(
φ(x)k1

)
x
u dx ds

≤ C + C

∫ t

0

∫ 1

0

u2k(x, s) dx ds + C

∫ t

0

∫ 1

0

φ(x)
2k(k1−1)

2k−1 dx ds

≤ C(T ).

(71)

Here we have used (56) and the observation that k1 > 1
2k implies that 2k(k1−1)

2k−1 > −1 which ensures

that
∫ 1

0
φ(x)

2k(k1−1)
2k−1 dx is finite. ¤

The following remark, taken from [28], is also relevant to us.

Remark 3.2. Note that the finite propagation property implies the finiteness of the integral∫ 1

0
1

Q(x,t) dx which is stronger than Lemma 3.3. However, this boundedness cannot be obtained
here without using the weight φ(x)k1 where k1 is a positive constant which can be arbitrary small.
The boundedness of

∫ 1

0
1

Q(x,t) dx holds once the L∞ bound on the velocity u is given, see Lemma 3.7.

Considering the special choice k1 = 1
2k−1 in Lemma 3.3 we get the following result.

Corollary 3.3. The following estimate holds:
∫ 1

0

φ(x)
1

2k−1

Q(m(x, t))
dx ≤ C(T ). (72)

This result is used to obtain a lower limit for Q(m) as given by the next lemma.

Lemma 3.4. Let β satisfy 0 < β < 1/3. Then, for any positive k it follows that 0 < 2k − 1−2kβ.
Moreover, let α and β satisfy the relation (34) of assumption (A5). This implies that for all
positive integer k, sufficiently large, the following relation holds

2kβ + 1
2k − 1− 2kβ

<
1
2β

− 1− α

2
. (73)
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Let k2 be chosen in the interval

2kβ + 1
2k − 1− 2kβ

< k2 <
1
2β

− 1− α

2
, (74)

and observe that

max
( β

1− β
,

1
2k − 1

)
<

2kβ + 1
2k − 1− 2kβ

< k2. (75)

Then, the following estimate holds

Q(m(x, t)) ≥ C(T )φ(x)1+k2 . (76)

Proof. Sobolev’s embedding theorem W 1,1(I) ↪→ L∞(I), together with estimate (72) and the fact
that c(x)−1 ≤ C−1

1 φ(x)−α/2 and c(x) ≤ C2φ(x)α/2, yields (for a sufficiently large k)

φ(x)1+k2

Q(m(x, t))

≤
∫ 1

0

φ(x)1+k2

Q(m(x, t))
dx +

∫ 1

0

∣∣∣
( φ(x)1+k2

Q(m(x, t))

)
x

∣∣∣ dx

≤ (max φ(x))1+k2− 1
2k−1

∫ 1

0

φ(x)
1

2k−1

Q(m)
dx +

∫ 1

0

∣∣∣
(φ(x)1+k2c(x)

cQ(m)

)
x

∣∣∣ dx

≤ C(T ) + (1 + k2)
∫ 1

0

φ(x)k2 |φ′(x)|
Q(m)

dx +
∫ 1

0

φ(x)1+k2 |c′(x)|
cQ(m)

dx +
∫ 1

0

φ(x)1+k2c(x)
[cQ(m)]2

∣∣∣[cQ(m)]x
∣∣∣ dx

≤ C(T ) + C(max φ(x))k2− 1
2k−1

∫ 1

0

φ(x)
1

2k−1

Q(m)
dx

+ C(max φ(x))1+k2−α/2− 1
2k−1

∫ 1

0

φ(x)
1

2k−1

Q(m)
dx + C

∫ 1

0

φ(x)1+k2+α/2

[cQ(m)]β+1

∣∣∣([cQ(m)]β)x

∣∣∣ dx

≤ C(T ) + C

∫ 1

0

φ(x)1+k2− βα
2

([cQ(m)]β)x

Q(m)β+1
dx

≤ C(T ) + C

∫ 1

0

φ(x)3/4+k2
([cQ(m)]β)x

Q(m)β+1
dx,

(77)

where we have used that βα
2 ≤ 1

4 , that is, 1− βα
2 ≥ 3

4 which implies that φ(x)1−
βα
2 ≤ φ(x)

3
4 . Next,

∫ 1

0

φ(x)3/4+k2

Q(m)β+1
([cQ(m)]β)x dx

=
∫ 1

0

φ(x)1/4k+1/4+k2φ(x)(2k−1)/4k

Q(m)β+1
([cQ(m)]β)x dx

≤
(∫ 1

0

φ(x)(k−1/2)([cQ(m)]β)2k
x dx

)1/p(∫ 1

0

φ(x)(1/4k+1/4+k2)q

Q(m)(β+1)q
dx

)1/q

≤ C(T )
(∫ 1

0

φ(x)(1/4k+1/4+k2)q

Q(m)(β+1)q
dx

)1/q

,

(78)

where we have used Hölder’s inequality with p = 2k and q = 2k/(2k − 1) together with Corol-
lary 3.2. Moreover, applying (72) we estimate as follows:

(∫ 1

0

φ(x)(1/4k+1/4+k2)q

Q(m)(β+1)q
dx

)1/q

=
(∫ 1

0

φ(x)
1

2k−1

Q(m)
· φ(x)(1/4k+1/4+k2)q− 1

2k−1

Q(m)(β+1)q−1
dx

)1/q

≤ C(T )max
(φ(x)1+k2

Q(m)

)(β+1)−1/q

φ(x)(1/4k+1/4+k2)− 1
(2k−1)q

−(1+k2)((β+1)−1/q).

(79)
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We define the parameter k3 and observe that

k3 := (1/4k + 1/4 + k2)− 1
(2k − 1)q

− (1 + k2)((β + 1)− 1/q)

= k2 − 1
4k

+
1
4
− (1 + k2)(β +

1
2k

)

= k2(1− β)− β +
1
4
− 1

2k

(3
2

+ k2

)
.

Noting that

k2 >
2kβ + 1

2k − 1− 2kβ
>

2kβ

2k − 2kβ
=

β

1− β
,

we conclude that

k3 >
1
4
− 1

2k

(3
2

+ k2

)
≥ 0,

for k large enough, in view of the upper bound for k2 given by (74). Consequently,

max
(φ(x)1+k2

Q(m)

)
≤ C(T ) + C(T )max

(φ(x)1+k2

Q(m)

)(β+1)−1/q

.

Since β+1−1/q = β+1/2k < 1 for a given β ∈ (0, 1) by choosing k large enough, we can conclude
that

max
(φ(x)1+k2

Q(m)

)
≤ C(T ),

which proves (76). ¤

Corollary 3.4. We have the upper and lower bounds

C(T )φ(x)1+k2 ≤Q(m(x, t)) ≤ C(T )φ(x)
α
2 , (80)

C(T )φ(x)1+k2 ≤m(x, t) ≤ min{C(T )φ(x)α/2, ρl − µ}, (81)

C1C(T )φ(x)1+k2+
α
2 ≤n(x, t) ≤ C2 min{C(T )φ(x)α/2, ρl − µ}φ(x)

α
2 , (82)

where µ > 0 is a small constant.

Proof. The first estimate (80) follows from Corollary 3.1 and Lemma 3.4. For the second estimate
(81) we observe that for Q(x) = x

ρl−x , which is strictly increasing for x ∈ [0, ρl), the inverse exists
and is given by Q−1(y) = ρly

1+y . Thus, in view of (80) it follows

m ≥ Q−1
(
C(T )φ(x)1+k2

)
=

ρlC(T )φ(x)1+k2

1 + C(T )φ(x)1+k2
≥ ρlC(T )

1 + C(T )
φ(x)1+k2 .

and

m ≤ Q−1
(
C(T )φ(x)α/2

)
=

ρlC(T )φ(x)α/2

1 + C(T )φ(x)α/2
≤ min{ρlC(T )φ(x)α/2, ρl − µ},

for a suitable small µ > 0. In view of the fact that n(x, t) = m(x, t)c0(x) and the estimate (27),
the last estimate (82) follows. ¤

Corollary 3.5. We have the estimates
∫ 1

0

|∂xm| dx ≤ C(T ),
∫ 1

0

|∂xn| dx ≤ C(T ), (83)

for a suitable constant C(T ).
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Proof. It follows that

∂x([cQ(m)]β) = cβ∂x(Q(m)β) + βcβ−1Q(m)β∂xc

= βcβQ(m)β−1Q′(m)∂xm + βcβ−1Q(m)β∂xc

= βρlc
βQ(m)β−1 Q(m)2

m2
∂xm + βcβ−1Q(m)β∂xc

= βρlc
β Q(m)β+1

m2
∂xm + βcβ−1Q(m)β∂xc

=
β

ρl
cβQ(m)β−1[1 + Q(m)]2∂xm + βcβ−1Q(m)β∂xc

=
βc

ρl
[cQ(m)]β−1[1 + Q(m)]2∂xm + βcβ−1Q(m)β∂xc,

(84)

since Q′(m) = (ρl/m2)Q(m)2 and m = ρlQ(m)/(1 + Q(m)). For x ∈ (0, 1) where cQ(m) > 0 and
c > 0 we can rewrite in the form

β

ρl
[1 + Q(m)]2∂xm =

[cQ(m)]1−β

c
∂x([cQ(m)]β)− [cQ(m)]1−β

c
βcβ−1Q(m)β∂xc

=
[cQ(m)]1−β

c
∂x([cQ(m)]β)− β

Q(m)
c

∂xc.

Consequently, using Young’s inequality with coefficients p = 2k and q = 2k
2k−1 we get

∫ 1

0

|∂xm| dx ≤ C

∫ 1

0

φ(x)
2k−1
2k |∂x([cQ(m)]β)| [cQ(m)]1−β

cφ(x)
2k−1
2k

dx + C

∫ 1

0

Q(m)
c

|∂xc| dx

≤ C

2k

∫ 1

0

φ(x)2k−1(∂x[cQ(m)]β)2k dx +
C(2k − 1)

2k

∫ 1

0

[cQ(m)]
2k(1−β)

2k−1

c
2k

2k−1 φ(x)
dx + C

∫ 1

0

Q(m)
c

|∂xc| dx

≤ C(T ) + C(T )
∫ 1

0

φ(x)k4 dx + C(T )
∫ 1

0

|∂xc| dx,

with

k4 =
2k(1− β)α

2k − 1
− 1− α

2
2k

2k − 1
,

and where we have used Lemma 3.2, Corollary 3.1, and (27) of assumption (A1). We observe that
for β ∈ (0, 1/3) we get

k4 > (1− β)α− α

2
2k

2k − 1
− 1 > α

(2
3
− 1

2
2k

2k − 1

)
− 1 > −1,

for sufficiently large k. Applying (31) of assumption (A2), the first estimate of (83) has been
proved. Clearly,

∫ 1

0

|∂xn| dx ≤
∫ 1

0

|m||∂xc| dx +
∫ 1

0

c|∂xm| dx ≤ C(T ),

in view of (31), Corollary 3.4, and the above estimate of
∫ |mx| dx. ¤

Remark 3.3. Note that the above estimate gives us upper bounds for the bounded variation of
m and n in space. However, the bound

∫ T

0

∫ 1

0
mt dx ds depends on the bound of

∫ T

0

∫ 1

0
u2

x dx ds by
applying the second equation of (21). This term, in view of the estimate of Lemma 3.1, requires
a positive pointwise lower limit of cβQ(m)β+1. And this is not available due to the degeneracy of
c as well as Q(m). Consequently, more refined estimates must be obtained.

Lemma 3.5. Under the assumptions of Lemma 3.4 we can prove that
∫ 1

0

u2
t dx +

∫ t

0

∫ 1

0

cβQ(m)β+1u2
xt dx ds ≤ C(T ). (85)
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Proof. We differentiate the third equation of (48) with respect to time t, multiply the resulting
equation by 2ut and integrate over [0, 1]× [0, t], and obtain

∫ 1

0

u2
t (x, t) dx + 2

∫ t

0

∫ 1

0

(cγQ(m)γ)xtut dx ds =
∫ 1

0

u2
t (x, 0) dx

+ 2
∫ t

0

∫ 1

0

(cβQ(m)β+1ux)xtut dx ds.

(86)

First, it follows that
∫ 1

0

u2
t (x, 0) dx ≤ C(T ), (87)

by considering the momentum equation of (48) at time t = 0

ut(x, 0) + (c(x)γQ(m(x, 0))γ)x = (cβ(x)Q(m(x, 0))β+1ux(x, 0))x,

together with assumptions (A2) and (A3), as given by (30) and (32). Moreover, using the second
equation of (48) it follows that

∫ t

0

∫ 1

0

(cβQ(m)β+1ux)xtut dx ds = −
∫ t

0

∫ 1

0

(cβQ(m)β+1ux)tuxt dx ds

= −
∫ t

0

∫ 1

0

cβQ(m)β+1u2
xt dx ds + (β + 1)ρl

∫ t

0

∫ 1

0

cβQ(m)β+2u2
xuxt dx ds,

(88)

and
∫ t

0

∫ 1

0

(cγQ(m)γ)xtut dx ds = −
∫ t

0

∫ 1

0

(cγQ(m)γ)tuxt dx ds

= γρl

∫ t

0

∫ 1

0

cγQ(m)γ+1uxuxt dx ds.

(89)

Using this in (86) we get
∫ 1

0

u2
t (x, t) dx + 2

∫ t

0

∫ 1

0

cβQ(m)β+1u2
xt dx ds

≤ C + 2(β + 1)ρl

∫ t

0

∫ 1

0

cβQ(m)β+2u2
xuxt dx ds− 2γρl

∫ t

0

∫ 1

0

cγQ(m)γ+1uxuxt dx ds.

(90)

For the two last terms on the right hand side we estimate as follows:

2(β + 1)ρl

∫ t

0

∫ 1

0

cβQ(m)β+2u2
xuxt dx ds

≤ 1
2

∫ t

0

∫ 1

0

cβQ(m)β+1u2
xt dx ds + 2(β + 1)2ρ2

l

∫ t

0

∫ 1

0

cβQ(m)β+3u4
x dx ds,

(91)

where we have used ab ≤ εa2 + b2

4ε with ε = 1
2 . Similarly,

2γρl

∫ t

0

∫ 1

0

cγQ(m)γ+1uxuxt dx ds

≤ 1
2

∫ t

0

∫ 1

0

cβQ(m)β+1u2
xt dx ds + 2γ2ρ2

l

∫ t

0

∫ 1

0

c2γ−βQ(m)2γ−β+1u2
x dx ds.

(92)

Inserting this in (90) we get
∫ 1

0

u2
t (x, t) dx +

∫ t

0

∫ 1

0

cβQ(m)β+1u2
xt dx ds

≤ C + 2(β + 1)2ρ2
l I1 + 2γ2ρ2

l I2,

(93)
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where I1 =
∫ t

0

∫ 1

0
cβQ(m)β+3u4

x dx ds and I2 =
∫ t

0

∫ 1

0
c2γ−βQ(m)2γ−β+1u2

x dx ds. We then estimate
as follows:

I1 =
∫ t

0

∫ 1

0

cβQ(m)β+3u4
x dx ds ≤

∫ t

0

max(Q2u2
x)V (s) ds (94)

where V (s) =
∫ 1

0
cβQ(m)β+1u2

x dx. We observe that the third equation of (48) gives

E(c, m)ux = P (c,m) +
∫ x

0

ut(y, t) dy = P (c,m)−
∫ 1

x

ut(y, t) dy.

It follows, using Hölder’s inequality, Lemma 3.4, Corollary 3.1, and (27), that

Q2u2
x = (cβQ(m)β+1ux)2(cQ(m))−2β

= (cQ)−2β
(∫ x

0

ut dx + P (c, m)
)2

≤ C(cQ)−2β
(
x(1− x)

∫ 1

0

u2
t dx + P (c,m)2

)

≤ Cφ(x)φ(x)−βαφ(x)−2β(1+k2)

∫ 1

0

u2
t dx + C(cQ)2(γ−β)

≤ Cφ(x)1−2β(1+k2+α/2)

∫ 1

0

u2
t dx + C(T ) ≤ C(T )

∫ 1

0

u2
t dx + C(T ),

where we have used that, for sufficiently large k, k2 + 1 + α/2 < 1
2β , see (74). Consequently, we

have

I1 ≤ C(T )
∫ t

0

V (s) ds + C(T )
∫ t

0

V (s)
∫ 1

0

u2
t dx ds ≤ C(T ) + C(T )

∫ t

0

V (s)
∫ 1

0

u2
t dx ds, (95)

where V (s) ∈ L1([0, T ]) in view of (54) of Lemma 3.1. Moreover, by (55) of Lemma 3.1 we have

I2 =
∫ t

0

∫ 1

0

c2γ−βQ(m)2γ−β+1u2
x dx ds ≤

∫ t

0

max(cQ)2(γ−β)V (s) ds ≤ C(T )
∫ t

0

V (s) ds ≤ C(T ).

(96)

Using (95) and (96) in (93) we get
∫ 1

0

u2
t (x, t) dx +

∫ t

0

∫ 1

0

cβQ(m)β+1u2
xt dx ds

≤ C(T ) + C(T )
∫ t

0

V (s)
∫ 1

0

u2
t dx ds,

(97)

which by application of Gronwall’s lemma yields
∫ 1

0

u2
t dx ≤ C(T ) exp

(
C(T )

∫ t

0

V (s) ds
)
≤ C(T ).

¤

We now can sum up the following ”regularity in space” type of estimates:

Lemma 3.6. Under the assumptions of Lemma 3.4, we have
∫ 1

0

|mx| dx ≤ C(T ),
∫ 1

0

|nx| dx ≤ C(T ), (98)

‖c(x)βQ(m(x, t))β+1ux(x, t)‖L∞(DT ) ≤ C(T ), DT = [0, 1]× [0, T ], (99)
∫ 1

0

|(cβQ(m)β+1ux)x(x, t)| dx ≤ C(T ). (100)
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Proof. The bounds of (98) have already been proven, see Corollary 3.5. Moreover, we have that

cβQ(m)β+1ux =
∫ x

0

ut dx + (cQ(m))γ ,

(cβQ(m)β+1ux)x = ut + ([cQ(m)]γ)x.

(101)

Estimate (99) follows directly from the first relation of (101), Corollary 3.1, Hölder’s inequality,
and Lemma 3.5. Estimate (100) follows from the second relation of (101), by application of
Corollary 3.1, Lemma 3.2, and Lemma 3.5. ¤

Next, we focus on various regularity estimates for the fluid velocity u. We have the following
estimates.

Lemma 3.7. Under the assumptions of Lemma 3.4 where we choose k2 such that for a sufficient
large integer k

k2 ≤ 1
2β

− 1− α

2
− 1

(2k − 1)β
, (102)

which clearly is possible in light of (34), it follows that
∫ 1

0

|ux(x, t)| dx ≤ C(T ), ‖u(x, t)‖L∞(DT ) ≤ C(T ). (103)

Proof. From the momentum equation of (48) we get

ux = cγ−βQ(m)γ−β−1 + c−βQ(m)−β−1

∫ x

0

ut dy

= cγ−βQ(m)γ−β−1 − c−βQ(m)−β−1

∫ 1

x

ut dy.

From this we estimate as follows:∫ 1

0

|ux| dx ≤
∫ 1

0

cγ−βQ(m)γ−β−1 dx +
∫ 1

0

c−βQ(m)−β−1 min
(∫ x

0

|ut| dy,

∫ 1

x

|ut| dy
)

dx

≤
∫ 1

0

cγ−βQ(m)γ−β−1 dx +
√

2
(∫ 1

0

c−βQ(m)−β−1φ(x)1/2 dx
)(∫ 1

0

|ut|2 dy
)1/2

,

(104)

where we have used Hölder’s inequality and min(x, 1− x) ≤ 2x(1− x) = 2φ(x) for x ∈ [0, 1]. For
the first integral on the right hand side of (104) we have:

∫ 1

0

cγ−βQ(m)γ−β−1 dx ≤
∫ 1

0

(cQ(m))γ−βQ(m)−1 dx ≤ C

∫ 1

0

φ(x)(γ−β)α− 1
2k−1

φ(x)
1

2k−1

Q(m)
dx

≤ C max φ(x)(γ−β)α− 1
2k−1

∫ 1

0

φ(x)
1

2k−1

Q(m)
dx ≤ C(T ),

by choosing k sufficiently large, and where we have applied Corollary 3.1 and Corollary 3.3. For
the second integral on the right hand side of (104) we have

∫ 1

0

c−βQ(m)−β−1φ(x)1/2 dx ≤ C

∫ 1

0

Q(m)−βφ(x)
1
2− βα

2 − 1
2k−1

φ(x)
1

2k−1

Q(m)
dx

≤ C

∫ 1

0

φ(x)
1
2− βα

2 − 1
2k−1−β(1+k2) φ(x)

1
2k−1

Q(m)
dx

≤ C(T )maxφ(x)
1
2− βα

2 − 1
2k−1−β(1+k2)

∫ 1

0

φ(x)
1

2k−1

Q(m)
dx ≤ C(T ),

in view of Corollary 3.3 and Lemma 3.4, see estimate (76), and by using (102) which implies that
β(k2 + 1) ≤ 1

2 − αβ
2 − 1

(2k−1) . Thus, the first estimate of (103) has been proved. For the second

estimate it is sufficient to observe that
∫ 1

0
|u| dx ≤ C(T ), which follows from Lemma 3.1, and apply

Sobolev’s embedding theorem W 1,1([0, 1]) ↪→ L∞([0, 1]). ¤
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The final estimates that are required, are about L2-continuity in time. More precisely, we have.

Lemma 3.8. Under the assumptions of Lemma 3.4, we have for 0 < s ≤ t ≤ T that
∫ 1

0

|m(x, t)−m(x, s)|2 dx ≤ C(T )|t− s|, (105)
∫ 1

0

|n(x, t)− n(x, s)|2 dx ≤ C(T )|t− s|, (106)
∫ 1

0

|u(x, t)− u(x, s)|2 dx ≤ C(T )|t− s|, (107)
∫ 1

0

c(x)β |Q(m)β+1ux(x, t)−Q(m)β+1ux(x, s)|2 dx ≤ C(T )|t− s|. (108)

Proof. We have, by Hölder’s inequality and the second equation of (48) where we tactically have
assumed s < t,

∫ 1

0

|Q(m)(x, t)−Q(m)(x, s)|2 dx =
∫ 1

0

∣∣∣
∫ t

s

Q(m)ξ(x, ξ) dξ
∣∣∣
2

dx

=
∫ 1

0

∣∣∣
∫ T

0

χ[s,t](ξ)Q(m)ξ(x, ξ) dξ
∣∣∣
2

dx

≤
∫ 1

0

(t− s)
(∫ T

0

|Q(m)t(x, t)|2 dt
)

dx = (t− s)ρ2
l

∫ T

0

∫ 1

0

Q(m)4u2
x dx dt

= (t− s)ρ2
l

∫ T

0

∫ 1

0

(c−βQ(m)3−β)cβQ(m)β+1u2
x dx dt

≤ (t− s)ρ2
l

∫ T

0

max
(Q(m)3−β

cβ

)
V (s) ds

≤ C(T )(t− s)
∫ T

0

V (s) ds ≤ C(T )(t− s),

by using Lemma 3.1 where V (s) is as defined in (94), and the fact that

Q3−β

cβ
≤ C

φ(x)(3−β)α/2

φ(x)βα/2
≤ Cφ(x)(

3
2−β)α ≤ C,

in view of the restrictions on the parameters α and β. The fact that

mt = (ρl −m)2Q(m)t,

implies that this L2 continuity estimate for Q(m) can be taken over to m as well, resulting in the
estimate (105). Moreover, the relation c(x)m(x, t) = n(x, t) also implies that (106) is obtained
from (105). Next, we focus on (107). Clearly we have

∫ 1

0

|u(x, t)− u(x, s)|2 dx =
∫ 1

0

∣∣∣
∫ t

s

uξ(x, ξ)dξ
∣∣∣
2

dx ≤ |t− s|
∫ T

0

∫ 1

0

u2
ξ(x, ξ) dx dξ ≤ C(T )|t− s|,

where we have used Lemma 3.5. What remains is to prove (108). First, we see that

∫ 1

0

cβ |Q(m)β+1ux(x, t)−Q(m)β+1ux(x, s)| dx ≤ |t− s|
∫ T

0

∫ 1

0

[cβQ(m)β+1ux]2ξ(x, ξ) dx dξ.

Furthermore, we observe that

(cβQ(m)β+1ux)t = cβQ(m)β+1uxt − ρl(β + 1)cβQ(m)β+2u2
x.
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Thus,
∫ T

0

∫ 1

0

[(cβQ(m)β+1ux)t]2 dx dt

≤ 2
∫ T

0

∫ 1

0

[cβQ(m)β+1]cβQ(m)β+1u2
xt dx dt + 2ρ2

l (β + 1)2
∫ T

0

∫ 1

0

c2βQ(m)2β+4u4
x dx dt

≤ C(T ) + C

∫ T

0

max(cβQ(m)β+3u2
x)V (t) dt,

where we have used (85) in Lemma 3.5 and Corollary 3.1 and V (t) =
∫ 1

0
cβQ(m)β+1u2

x(x, t) dx.
To estimate the last term on the right hand side we observe that

cβQ(m)β+3u2
x =

(cQ(m))1−β

c
(cβQ(m)β+1ux)2

≤ Cφ(x)α(1/2−β)
(∫ x

0

ut dx + P (c,Q)
)2

≤ C(T ),

again by application of Lemma 3.5 and Corollary 3.1 and the fact that β < 1/2. Consequently,
(108) has been proved. ¤

Remark 3.4. The use of (34) in Lemmas 3.4–3.8 implies that a certain balance must hold between
the parameters α and β. In particular, this relates the rate of the degeneracy to zero for initial
data n0 and m0 at x = 0, 1 represented by φ(x)α and the degeneracy of the viscous coefficient
ε(n,m) = nβ

(ρl−m)β+1 . This is a ”two-phase phenomenon” in the sense that such a condition is not
required for the single-phase analysis presented in [31, 28].

4. Proof of existence result

In order to construct weak solutions to the initial-boundary problem (IBVP) (21)–(25), we
apply the line method which can be described as follows [24]. For any given positive integer N , let
h = 1

N . Discretizing the derivatives with respect to x in (21), a system of ODEs of the following
form is obtained

d

dt
nh

2i(t) + [nh
2i(t)m

h
2i(t)]Dxuh

2i(t) = 0, i = 1, . . . , N − 1,

d

dt
mh

2i(t) + [mh
2i(t)]

2Dxuh
2i(t) = 0, i = 1, . . . , N − 1,

d

dt
uh

2i−1(t) + DxP (nh
2i−1(t),m

h
2i−1(t))

=
1
h

(
E(nh

2i(t),m
h
2i(t))Dxuh

2i − E(nh
2i−2(t),m

h
2i−2(t))Dxuh

2i−2

)
, i = 1, . . . , N,

(109)

with the boundary conditions

nh
0 (t) = nh

2N (t) = 0, mh
0 (t) = mh

2N (t) = 0, t ≥ 0, (110)

and initial data

nh
2i(0) = n0

(
2i

h

2

)
> 0, ρl > mh

2i(0) = m0

(
2i

h

2

)
> 0, i = 1, . . . , N − 1,

uh
2i−1(0) = u0

(
(2i− 1)

h

2

)
, i = 1, . . . , N,

(111)

where we have used the assumption (26) for the initial data n0 and m0. Here Dxai = (ai+1 −
ai−1)/h and Dxai−1 = (ai − ai−2)/h. Moreover, for i = 1, N we set uh

−1 = uh
2N+1(t) = 0

when we apply the third equation of (109), without loss of generality since E(nh
0 (t), mh

0 (t)) =
E(nh

2N (t),mh
2N (t)) = 0.
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Theory for ordinary differential equations ensure that the Cauchy problem (109)–(111) admits
a temporarily local solution in the domain

R3N−1 = {(nh
2i(t), m

h
2i(t), u

h
2j−1(t)) | i = 1, . . . , N − 1, j = 1, . . . , N}

in the regularity class C(0, T ) × C(0, T ) × C(0, T ). Let [0, T1) be the right maximal interval of
existence of this solution. The two first equations of (109) and the initial condition (111) imply
that

nh
2i(t) > 0, ρl > mh

2i(t) > 0, for 0 < t < T1 and i = 1, . . . , N − 1. (112)

The below analysis will show that T1 can be any constant.
We now consider the local solutions (n2i(t), m2i(t), u2i−1(t)) which satisfy (112) and introduce

an auxiliary semi-discrete model associated with (109) which is more amenable for analysis. More
precisely, we introduce the variable ch

2i(t) and Qh
2i(t) given by

ch
2i(t) =

nh
2i(t)

mh
2i(t)

, Qh
2i(t) = Q(mh

2i(t)), i = 1, . . . , N − 1, (113)

for Q(m) = m/(ρl−m) and observe that ch
2i(t) > 0 and Qh

2i(t) > 0 are well-defined for 0 < t < T1

and i = 1, . . . , N − 1 by application of (112). Moreover, by applying (109) we observe that the
quantities (ch

2i(t), Q
h
2i(t), u

h
2i−1(t)) are described by a system of ODEs of the form

d

dt
ch
2i(t) = 0, i = 1, . . . , N − 1,

d

dt
Qh

2i(t) + ρl[Qh
2i(t)]

2Dxuh
2i(t) = 0, i = 1, . . . , N − 1,

d

dt
uh

2i−1(t) + DxP (ch
2i−1(t), Q

h
2i−1(t))

=
1
h

(
E(ch

2i(t), Q
h
2i(t))Dxuh

2i − E(ch
2i−2(t), Q

h
2i−2(t))Dxuh

2i−2

)
, i = 1, . . . , N,

(114)

where P (c,Q) and E(c,Q) are given by (49) and (50). Boundary conditions are given by

ch
0 (t) = ch

2N (t) = 0, Qh
0 (t) = Qh

2N (t) = 0, t ≥ 0, (115)

and initial data

ch
2i(0) = c0

(
2i

h

2

)
, Qh

2i(0) = Q0

(
2i

h

2

)
, i = 1, . . . , N − 1,

uh
2i−1(0) = u0

(
(2i− 1)

h

2

)
, i = 1, . . . , N.

(116)

In the following we neglect the index h and use the notation (c2i(t), Q2i(t), u2i−1(t)). First of
all, we obtain the following basic energy estimate by mimicing the arguments used in Lemma 3.1
similar to the references [23, 24, 31, 28].

Lemma 4.1. Let (c2i(t), Q2i(t), u2i−1(t)) be the solution to (114) with boundary and initial data
given by (115) and (116), respectively. Then we have

N∑

i=1

(1
2
u2

2i−1(t) +
cγ
2i

ρl(γ − 1)
Qγ−1

2i (t)
)

h +
∫ t

0

N∑

i=1

cβ
2iQ

β+1
2i (s)(Dxu2i(s))2 h ds

=
N∑

i=1

(1
2
u2

2i−1(0) +
cγ
2i

ρl(γ − 1)
Qγ−1

2i (0)
)

h, ∀t ∈ [0, T ].

(117)

From the above a priori estimates it follows, similar to [23, 24], that the solution of (114)
with boundary and initial conditions consistent with (110) and (111), exists for 0 ≤ t < ∞ and
c2i(t) > 0 and Q2i(t) > 0 for 0 ≤ t < ∞ for any given h and i = 1, . . . , N−1. As a consequence, by
application of the variable transformation (113), the existence and uniqueness of global solutions
(n2i(t),m2i(t), u2i−1(t)) to (109)–(111) follows as well, where (112) holds for any T1 < ∞.
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In the following we list a number of estimates that hold for the approximate solutions (n2i(t), m2i(t), u2i−1(t))
that are uniform with respect to the discretization parameter h. These estimates are obtained by
combining discrete arguments similar to those used in [24] and the techniques used in Section 3
to derive estimates for the continuous model.

Lemma 4.2. Let (n2i(t),m2i(t), u2i−1(t)) be the solution to (109)-(111). Then we have

n2i(t)
ρl −m2i(t)

= c2iQ2i(t) ≤ C(T )φ(ih)α, Q2i(t) ≤ C(T )φ(ih)α/2, (118)

and
N∑

i=1

Dx

(
[c2iQ2i(t)]β

)2k

h ≤ C(T ), (119)

for any positive integer k.

Lemma 4.3. Let (n2i(t),m2i(t), u2i−1(t)) be the solution to (109)-(111). Then we have for any
positive integer k

N∑

i=1

φ(ih)
1

2k−1

Q2i(t)
h ≤ C(T ), (120)

and
N∑

i=1

u2k
2i−1(t) h + k(2k − 1)

∫ t

0

N∑

i=1

u2k−2
2i−1 (s)cβ

2iQ
1+β
2i (s)

(
Dxu2i−2(s)

)2

h ds ≤ C(T ), (121)

and
N∑

i=1

[ d

dt
u2i−1(t)

]2

h +
∫ t

0

N∑

i=1

cβ
2iQ

β+1
2i (s)

(
Dx

[ d

ds
u2i−2(s)

])2

h ds ≤ C(T ). (122)

Finally, we have
Q2i(t) ≥ C(T )φ(ih)1+k2 , i = 0, . . . , N, (123)

where k2 satisfies (38).

Lemma 4.4. Let (n2i(t),m2i(t), u2i−1(t)) be the solution to (109)-(111). Then we have
N∑

i=1

|m2i(t)−m2i−2(t)| ≤ C(T ),
N∑

i=1

|n2i(t)− n2i−2(t)| ≤ C(T ), (124)

and
N∑

i=1

|u2i+1(t)− u2i−1(t)| ≤ C(T ), (125)

and

|u2i+1(t)| ≤ C(T ), (126)

and ∣∣∣E(n2i(t), m2i(t))Dxu2i(t)
∣∣∣ ≤ C(T ), (127)

and
N∑

i=1

∣∣∣E(n2i+2(t),m2i+2(t))Dxu2i+2(t)− E(n2i(t),m2i(t))Dxu2i(t)
∣∣∣ ≤ C(T ). (128)

Moreover, we have the time continuity estimates
N∑

i=1

|m2i(t)−m2i(s)|2 h ≤ C(T )|t− s|,
N∑

i=1

|n2i(t)− n2i(s)|2 h ≤ C(T )|t− s|, (129)
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and
N∑

i=1

|u2i−1(t)− u2i−1(s)|2 h ≤ C(T )|t− s|, (130)

and
N∑

i=1

|E(n2i(t), m2i(t))Dxu2i(t)− E(n2i(s),m2i(s))Dxu2i(s)|2 h ≤ C(T )|t− s|. (131)

Following along the line of previous works, see for example [24, 31, 28], approximate solutions
(nh(x, t),mh(x, t), uh(x, t)) for (x, t) ∈ DT = [0, 1]× [0, T ] are defined as follows:

nh(x, t) = n2i(t), mh(x, t) = m2i(t),

uh(x, t) =
1
h

(
[x− (i− 1/2)h]u2i+1(t) + [(m + 1/2)h− x]u2i−1(t)

)
,

(132)

for
x ∈ ((i− 1/2)h, (i + 1/2)h), i = 0, 1, . . . , N.

In particular, we observe that for this approximate solution we have

∂xuh(x, t) =
1
h

(
u2i+1(t)− u2i−1(t)

)
= Dxu2i(t).

From estimate (124) follows that nh and mh as functions of x have total variations uniformly
bounded with respect to x for any fixed t > 0. Let {ti | i = 1, 2, . . .} be a countable dense set in
[0, T ]. By Helly’s theorem and the diagonal process we can select sequences mhj and nhj which
converge a.e. for x ∈ [0, 1] and any tj . Then mhj (and nhj ) tend to a function m (and n) in
L2(0, 1) for any ti > 0. This convergence in L2(0, 1) is uniform with respect to time t due to the
time continuity (129).

The same arguments apply to the approximations uh(x, t), thanks to the estimates (125) and
(130) as well as E(nh,mh)∂xuh in view of (128) and (131)). Thus, we can conclude that uh

converge to a limit function u a.e. in x and for any t ∈ [0, T ] and the convergence in L2(0, 1) is
uniform with respect to t. Similarly, E(nh,mh)∂xuh convergence to a limit function E(n,m)∂xu
a.e. in x and for any t ∈ [0, T ] and the convergence in L2(0, 1) is uniform with respect to t.

By standard arguments it can now be shown that the limit function (n,m, u) obtained from
(nh,mh, uh) is a weak solution in the sense of (39) of Theorem 2.1, see for example [24] for details.
This completes the proof of Theorem 2.1.
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