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Abstract. The purpose of this paper is to establish a local in time existence result for a com-
pressible gas-liquid model. The model is a drift-flux model which is composed of two continuity

equations and one mixture momentum equation supplemented with a slip relation in order to
take into account the possibility of flows with unequal fluid velocities. The model is highly rele-
vant for modeling of gas kick for oil wells, which in its worst case can lead to blowout scenarios.
The mathematical study of such kind of models is important for the development of simulation

tools that can be employed for increased control of deep-water well operations.
The liquid phase is assumed to be incompressible whereas the gas is described by a polytropic

equation of state. The model is studied in a framework previously used for investigations of
the single-phase compressible Navier-Stokes model. New challenges arise due to the appearance

of a generalized pressure term that depends on fluid masses as well as gas velocity. The local
existence result is obtained by introducing a suitable transformation along the line of the works
[8, 9] in a free boundary setting. This allows us to obtain sufficient pointwise control of the gas
and liquid masses. The estimates are rather delicate as they must be fine enough to control

a possible singular behavior associated with the pressure law as well as the slip relation. The
existence result is obtained under the assumption of a sufficient small time interval combined
with suitable assumptions on the regularity of the initial data, the parameters that control,
respectively, the behavior of the initial masses at the boundaries of the flow domain and the

decay properties of the viscosity term.
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1. Introduction

The starting point for the investigations of this work is a one-dimensional two-phase model of
the drift-flux type. This model is frequently used to simulate unsteady, compressible flow of liquid
and gas in pipes and wells [1, 2, 4, 6, 15, 18, 21, 26]. The model consists of two mass conservation
equations corresponding to each of the two phases gas (g) and liquid (l) and one equation for the
conservation of the momentum of the mixture and is given in the following form:

∂t[αgρg] + ∂x[αgρgug] = 0

∂t[αlρl] + ∂x[αlρlul] = 0

∂t[αgρgug + αlρlul] + ∂x[αgρgu
2
g + αlρlu

2
l + p] = −q + ∂x[ε∂xumix], umix = αgug + αlul,

(1)

where ε ≥ 0. The model is supposed under isothermal conditions. The unknowns are: ρl, ρg the
liquid and gas densities; αl, αg volume fractions of liquid and gas satisfying αg + αl = 1; ul, ug

fluid velocities of liquid and gas; p common pressure for liquid and gas; and q representing external
forces like gravity and friction. Since the momentum is given only for the mixture, we need an
additional closure law, a so-called hydrodynamical closure law, which connects the two phase
velocities. More generally, this law should be able to take into account the different flow regimes.
In addition, we need a thermodynamical equilibrium model which specifies the fluid properties.
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More details will be given in Section 2. We refer also to [5, 6, 11, 18, 20, 21, 22, 26] for various
numerical schemes which have been developed for the study of the drift-flux model.

Application. Various gas kick simulators have been developed for the purpose of studying well
control aspects during exploratory and development drilling subject to high pressure and temper-
ature bottomhole conditions. Precise predictions of wellbore pressures, liquid/gas volumes as well
as flow rates at the top of the well represent central issues. Clearly, the possibility of blowout
occurrences needs to be mitigated in order to avoid human casualties, financial losses (production
stop and equipment losses), and finally but not least, environmental damage. We refer to [1]
and references therein for more information pertaining to this subject. In particular, in [1] the
simulations are based on the drift-flux model (1) equipped with density-pressure relations similar
to those used in the present work as well as a slip law that is based on the formulation (32). De-
velopment of accurate and robust discretization techniques for solving the system (1) is naturally
related to a good understanding of its mathematical features (long-time behavior, estimates of
various quantities, compactness, etc.). In particular, it is clearly of interest to obtain existence,
stability, and uniqueness result of various versions of the model (1).

Previous results. Few such results seem to exist for two-phase gas-liquid models of the form
(1). In [8, 9] we studied a simplified version obtained by assuming that fluid velocities are equal,
ug = ul = u, and by neglecting the external forces, i.e., q = 0. In addition, we neglected certain gas
effects by considering a simplified momentum equation where acceleration terms depend solely on
the liquid phase. This is motivated by the fact that liquid phase density typically is much higher
than gas phase density. Consequently, we considered a model in the form

∂t[αgρg] + ∂x[αgρgu] = 0

∂t[αlρl] + ∂x[αlρlu] = 0

∂t[αlρlu] + ∂x[αlρlu
2] + ∂xp = ∂x[ε∂xu], p, ε ≥ 0.

(2)

Assuming a polytropic gas law relation p = Cργg with γ > 1 for the gas phase whereas the liquid
phase is treated as an incompressible fluid, i.e., ρl = Const, we get a pressure law of the form

p(n,m) = C
( n

ρl −m

)γ

, (3)

where we use the notation n = αgρg and m = αlρl. In particular, we see that there is a possibly
singular behavior associated with pressure at transition to pure liquid phase, i.e., αl = 1, which
yields m = ρl and n = 0. In addition, we have the possibility for vacuum as in the single-phase
gas model, i.e., that ρg = 0 which implies that n = 0 and p = 0. Different forms for the viscosity
function ε have been considered. In [8] we used

ε = ε(m) =
mβ

(ρl −m)β+1
, β ∈ (0, 1/3), (4)

whereas in [9] we considered

ε = ε(n,m) =
nβ

(ρl −m)β+1
, β ∈ (0, 1/3). (5)

More recently, Yao and Zhu [29] also studied the model (2) in a flow regime where the viscosity
coefficient ε > 0 was assumed to take the form (4). They gave a proof of the global existence
and uniqueness of weak solutions when β is in (0, 1] and thereby improved the result of [8]. They
also gave an interesting asymptotic behavior result, and obtained the regularity of the solutions
by the energy method. The same authors also presented results for the same gas-liquid model
(but constant viscosity term) when the masses m,n connected continuously to a vacuum state
m = n = 0 [30]. In a recent work we have also studied the model (2) where relevant friction and
gravity terms have been included [10]. We also note that the model (2), where both fluids were
assumed to be compressible and with a constant viscosity coefficient ε, was studied in [7]. A global
existence result was obtained for a class of weak solutions for rather general initial data.
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Why using a viscosity term that depends on volume fraction and fluid densities?
Viscosity µm for a gas-liquid mixture may not be a well-defined quantity just in terms of fluid
fractions and single phase viscosities. The mixture viscosity in fact depends strongly on dynamical
processes, including bubble size, flow regime etc. Hence, motivated by lab experiments different
examples of a viscosity term µm, where the gas-liquid mixture is considered as a single-phase fluid,
have been proposed. Some of them are, see for example [27] and references therein:

µm = µl, (Owen’s model), (6)

1

µm
=

y

µg
+

1− y

µl
, (McAdams et al.’s model), (7)

µm =
µlµg

µg + y1/4(µl − µg)
, (Lin et al’s model), (8)

µm = yµg + (1− y)µl, (Cicchitti et al.’s model), (9)

µm = αgµg + αlµl, (Dukler et al’s model), (10)

µm = αgµg + αl(1 + 2.5αg)µl, (Beattie and Whalley’s model). (11)

Here y is defined as mass flux fraction

y =
αgρgug

αgρgug + αlρlul
. (12)

For equal fluid velocities ul = ug this corresponds to y = n
n+m .

The above correlations for the mixture viscosity µm obtained from lab experiments, reflect that
there is room for dependence on both volume fractions αg, αl, densities ρl, ρg, as well as fluid
velocities ul, ug. The line we pursue in this work, as in [8, 9], is to consider a choice suggested
by the mathematical framework that is employed. However, we now briefly describe why the
coefficient used in [8] also seems relevant from a more physical point of view. In that work we
studied the model (in Lagrangian coordinates)

∂tn+ (nm)∂xu = 0

∂tm+m2∂xu = 0

∂tu+ ∂xP (n,m) = ∂x(E(m)∂xu), x ∈ (0, 1),

(13)

with

P (n,m) = k1

( n

ρl −m

)γ

, γ > 1, (14)

and

E(m) = k2

( m

ρl −m

)β+1

, 0 < β < 1/3. (15)

If we assume that n << m, then y = n
n+m ≈ n

m := c (according to the notation used in [8, 9]) for
0 ≤ y ≤ 1. Moreover, typically the liquid viscosity µl is considerable larger than the gas viscosity
µg, see (30). Consequently, µl >> µg and we may approximate as follows by using the viscosity
model of McAdams et al (7):

1

µm
=

y

µg
+

1− y

µl
≈ y

µg
=

c

µg
. (16)

Thus, directly motivated by the traditional single-phase viscosity term of the form E = (µρ)β+1 =
Cρβ+1 in Lagrangian coordinates, see for example [24, 17, 19, 28, 25, 16, 3, 31], we may propose a
similar viscosity coefficient E = (µmρm)β+1 for the gas-liquid mixture model (13) where µm is a
mixture viscosity defined by, e.g., one of the choices (6)–(11) and ρm is a suitable mixture density.
If we define a mixture density ρm as

ρm = [(αgρg)
β+1 + (αlρl)

β+1]
1

β+1 , (17)
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and combine it with (16), then E = (µmρm)β+1 corresponds to

E = (µmρm)β+1 = µβ+1
m [(αgρg)

β+1 + (αlρl)
β+1] = (µmαgρg)

β+1 + (µmαlρl)
β+1

= (αgρlµg)
β+1

(1
c

n

ρl −m

)β+1

+ (αlµg)
β+1

(ρl
c

)β+1

= (αgρlµg)
β+1

( m

ρl −m

)β+1

+ (αlµg)
β+1

(ρl
c

)β+1

:= E1 + E2,

where we have used the fact that ρg = ρl
n

ρl−m , see also (34). Recalling that ρl is constant and

that c = n
m = c(x) is constant in time, the most ”dynamic” part of this viscosity term is the first

part

E1 = (αgρlµg)
β+1

( m

ρl −m

)β+1

.

Comparing with (15) we see that E1 coincides with the one that is studied in [8] except that the
coefficient (αgµg)

β+1 has been replaced by a constant.

New results and main challenges. The main novelty of this work compared to [8, 9, 29, 30, 10]
is that the current model allows unequal fluid velocities, i.e., ug ̸= ul. As a consequence the
model, when it is rewritten in terms of Lagrangian variables, contains a generalized pressure term

P̃ = P (c, n) − h(ug)g(cn) for appropriate choices of the functions h and g. In particular, the
pressure now depends on the gas velocity ug. More precisely, we consider (1) in a free boundary
problem setting where the masses m and n initially occupy only a finite interval [a, b] ⊂ R. That
is,

n(x, 0) = n0(x), m(x, 0) = m0(x), ug(x, 0) = ug,0(x), ul(x, 0) = ul,0(x), x ∈ [a, b], (18)

and the following boundary conditions are imposed:

n(a, t) = n(b, t) = 0, m(a, t) = m(b, t) = k∗, t ≥ 0, (19)

where k∗ is a constant to be defined later which is related to the slip law. Rewriting the model
(1) in terms of Lagrangian variables (details are given in Section 2), the free boundary region
[a(t), b(t)] is converted into a fixed region [0, 1] and the variables (n,m, ug, ul) are replaced by

(c, n, u) where c = m−k∗

n and u corresponds to the gas velocity. The resulting model takes the
form

∂tc = 0

∂tn+ cn2∂xu = 0

∂tu+ ∂x[P (c, n)− |u|g(cn)] = ∂x[E(cn)∂xu], x ∈ (0, 1),

(20)

where c(x, t) = c0(x) = m0(x)−k∗

n0(x)
. The model (20), in view of (18) and (19), is subject to the

boundary conditions

c(0, t) = c(1, t) = 0, n(0, t) = n(1, t) = 0, t ≥ 0 (21)

and the initial conditions

c(x, 0) = c0(x), n(x, 0) = n0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (22)

Moreover, we have that

P (c, n) =
( n

a∗ − cn

)γ

, g(cn) = k∗
cn

cn+ k∗
, E(cn) =

[cn]β+1

(a∗ − [cn])β+1
. (23)

Here α∗
g < 1 is an upper limit for the amount of gas that can be present, α∗

l > 0 is the corresponding
lower limit of liquid, i.e., α∗

g + α∗
l = 1. Related variables are k∗ = ρlα

∗
l and a∗ = ρlα

∗
g appearing

in (23). Main challenges we have to deal with are:

• Singular behavior associated with the pressure law (23) similar to the previous works
[8, 9, 29].
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• Singular behavior associated with the slip law. The gas fraction αg must not be smaller
than a critical lower gas volume fraction α∗

g. This is new compared with the previous
works [8, 9, 29].

• The appearance of the term |u|g(cn) in (20) due to the use of a more general slip law
creates new difficulties. Owing to some technical challenges we have in this work made
use of the approximation that u2 ≈ |u| for small velocities when we derive (20) from (1).

We obtain an existence result (Theorem 3.1) for the model (20)–(23) for a class of weak solutions
and for a flow regime where the viscosity coefficient ε in (1) is of the form

ε = ε(m) =
(m− k∗)β

(ρl −m)β+1
, β ∈ (0, 1), (24)

which in turn leads to the expression E(cn) given in (23). Note that this viscosity coefficient (24)
is a natural generalization of (4) studied in [8, 29] which corresponds to the case k∗ = 0. In fact,
if α∗

g = 1, then α∗
l = 0 and consequently, a∗ = ρl and k∗ = 0. Then the model (20) reduces to the

one studied in [8, 29] with the only difference that c was defined as c = n/m and not c = m/n.
The main tool in this analysis is the introduction of a suitable variable transformation in

combination with the continuation method and the pointwise estimate techniques to deal with the
singularity of the solution near the free boundary. The transformation allows for application of
ideas and techniques similar to those used in [24, 17, 19, 28, 25, 16, 3, 31] in previous studies of
the single-phase Navier-Stokes equations.

Overview. The rest of this paper is organized as follows. In Section 2 we give more details relevant
for the model (1). In particular, we derive the Lagrangian variant (20) from (1). In Section 3
we state the main theorem with its assumptions. In Section 4 we derive the basic a priori energy
estimate Lemma 4.1 and state two lemmas that give pointwise control on, respectively, the masses
m,n (Lemma 4.2) and fluid velocity u (Lemma 4.3). In Section 5 we derive various lemmas needed
for the proof of Lemma 4.2 and Lemma 4.3. Then, in Section 6, armed with the results of Section
5, we return to these proofs. More estimates are then derived that allows us to make use of
standard compactness arguments to prove existence of local (in time) weak solutions .

2. Development of the model

The purpose of this section is to give further details relevant for the drift-flux model (1).
Ultimately this will lead us to the simpler model (20).

2.1. Specification of the model (1). To close the system (1), we need to include the following
additional equations: The volume fractions are related by

αl + αg = 1. (25)

Thermodynamical laws specify fluid properties such as densities ρl, ρg and viscosities µl, µg. In
particular we will assume that the liquid density has the following form

ρl = ρl,0 +
p− pl,0

a2l
, (26)

where al = 1000 [m/s] is the velocity of sound in the liquid phase and ρl,0 and pl,0 are given
constants. Here we will assume that ρl,0 = 1000 [kg/m3] and pl,0 = 1 [bar]. It is often assumed
that the liquid is incompressible, i.e.

ρl = ρl,0. (27)

We assume that we consider a polytropic, isentropic ideal gas characterized by

p(ρg) = a2gρ
γ
g , γ > 1. (28)

In other words, we have

ρg =

(
p

a2g

)1/γ

, γ > 1, (29)
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where ag = 316 [m/s] is the velocity of sound in the gas phase. Furthermore, the viscosity for
liquid and gas are assumed to be

µl = 5 · 10−2 [Pa s], µg = 5 · 10−6 [Pa s]. (30)

Since we only have one momentum equation for the mixture of the two phases, the model must
be supplemented with an additional hydrodynamical closure law whose purpose is to determine
the fluid velocities ul, ug through a so-called slip relation. We may assume that the slip relation
can be expressed by a general relation

f(αg, ul, ug, ρg, ρl) = 0. (31)

A commonly used slip relation, see for example [12, 6, 1], is given by

f(αg, ul, ug, ρg, ρl) = ug − c0umix − c1 = 0, (32)

where

umix = αlul + αgug,

and c0, c1 are flow dependent coefficients. c0 is the so-called profile parameter (or distribution
coefficient) whereas c1 is the drift velocity. The gas concentration tends to be highest in the center
of the pipe/well for many flow scenarios, where the local mixture velocity is also fastest. Thus,
when integrated across the area of the the pipe/well, the average velocity of the gas tends to be
greater than that of the liquid. This effect is represented by the c0 parameter. c1, on the other
hand, represents the buoyancy effect. Important characteristics of the different flow patterns can
be captured through appropriate choices for these two parameters. We refer to the work [10] for
numerical examples that illustrate typical flow cases with unequal fluid velocities.

For the source term q we have two components

q = Ff + Fg,

where Fg = g(αlρl + αgρg)sinθ represents the gravity where g is the gravitational constant and θ
is the inclination. Moreover, Ff represents friction forces between the wall and the fluids.

In order to see how pressure p is related to the masses m = αlρl and n = αgρg we observe that
the relation (25) can be written as

n

ρg(p)
+

m

ρl(p)
= 1. (33)

Using this, we can express the pressure p as a function P of n and m, i.e.

p = P (n,m).

In particular, assuming that liquid is incompressible, ρl = ρl,0, we get from (33) that

ρg = ρl
n

ρl −m
, (34)

which can be plugged into (28) yielding

p(ρg) = a2gρ
γ
l

( n

ρl −m

)γ

= k1

( n

ρl −m

)γ

=: P (n,m), k1 = a2gρ
γ
l . (35)

We will use this pressure law where we for simplicity has set k1 = 1 for the model we derive in the
next section.

2.2. A simplified viscous two-phase model. As a first step, instead of working directly with
the full two-phase model (1) we suggest to replace it by a simpler one. We follow along the
line of [8, 9] and introduce a simplification by replacing the mixture momentum equation by the
momentum equation of the liquid phase only. This is motivated by the fact that the liquid phase
density is much higher than for the gas phase, typically to the order of ρg/ρl ∼ 0.001. The liquid
phase therefore plays the dominating role in the mixture momentum conservation equation, as
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long as the amount of gas does not become too high. We also neglect external forces like friction
and gravity. To sum up, we consider the model

∂tn+ ∂x[nug] = 0

∂tm+ ∂x[mul] = 0

∂t[mul] + ∂x[mu2
l + P (n,m)] = ∂x[ε(m)∂xumix], umix = αgug + αlul,

(36)

where the pressure law P (n,m) and viscosity term ε(n,m) are given by

P (n,m) =
( n

ρl −m

)γ

, ε(m) =
(m− k∗)β

(ρl −m)β+1
, γ > 1, β > 0, (37)

together with the constitutive relations

αl + αg = 1, ug − c0umix − c1 = 0, ρl = ρl,0, ρg = ρg(P ), (38)

where c0 and c1 are assumed to be constants. As will be explained in the following the slip law
ug − c0umix − c1 = 0 requires that the liquid mass is above a critical lower limit k∗, i.e., m ≥ k∗.
This information is taken into account in the viscosity coefficient ε(m). Similarly, the upper limit
for the liquid mass m ≤ ρl is also accounted for in the viscosity term (as well as the pressure term)
in the same manner as for (4) and (5) employed in previous works. We note that ε(m) in (37) is
a natural extension of (4).

We now want to rewrite the model (36) into a form more amenable for analysis. Our approach
is inspired by the work [12]. Given the slip relation

ug = c0umix + c1 (39)

we introduce α∗
g, α

∗
l given by

α∗
g =

1

c0
, α∗

l = 1− α∗
g. (40)

In the following we will assume that
c0 > 1, (41)

implying that α∗
g < 1. This is consistent with previous applications of the slip velocity (39) in the

context of gas-liquid and liquid-oil flow modeling where c0 typically is ranging between 1.0 and
1.5. Moreover, in view of (39) it follows that

ug =
c0αlul + c1
1− c0αg

=
αlul + c1α

∗
g

α∗
g − αg

=
αlul + c1(1− α∗

l )

αl − α∗
l

(42)

It is implicitly assumed that αg < α∗
g (or equivalently, that αl > α∗

l ) for this slip law to be valid.
From (42) we get

αlul = ug(αl − α∗
l )− (1− α∗

l )c1. (43)

Next, we introduce the variable c defined by

c =
m− ρlα

∗
l

n
=

ρl(αl − α∗
l )

n
. (44)

We assume that the liquid is incompressible ρl=constant, i.e.,

c =
m− k∗

n
, (45)

where k∗ = ρlα
∗
l is constant. We then apply (43), (44), and (45) and derive the following relations:

m = cn+ k∗ (46)

cnug = ρl(αl − α∗
l )ug = ρl[αlul + (1− α∗

l )c1] = mul + ρl(1− α∗
l )c1 = mul + d, (47)

where d = ρl(1− α∗
l )c1 is constant. In other words, mul = cnug − d. Employing (46) and (47) in

(36) we arrive at the following form for the system in question:

∂tn+ ∂x[nug] = 0

∂t[cn] + ∂x[cnug] = 0

∂t[cnug] + ∂x[cnu
2
g] + ∂x[mu2

l − cnu2
g] + ∂x[P (n,m)] = ∂x[ε(m)∂xumix].

(48)
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We note that

mu2
l − cnu2

g = αlρlu
2
l − ρl(αl − α∗

l )u
2
g = αlρl[u

2
l − u2

g] + k∗u2
g. (49)

Next, we observe in view of (43) that

αl(ul − ug) = −ugα
∗
l − (1− α∗

l )c1 (50)

αl(ul + ug) = ug(2αl − α∗
l )− (1− α∗

l )c1. (51)

Combining these two relations we get

α2
l (u

2
l − u2

g) = −u2
gα

∗
l [2αl − α∗

l ] + c1[. . .]. (52)

In the following, similar to the work [12] we restrict us to the case that

α∗
l ̸= 0 (α∗

l > 0), c1 = 0. (53)

In other words, we neglect gas buoyancy effects represented through c1 and relevant for vertical
flow. This is also consistent with the fact that gravity effects have been neglected in the momentum
equation in (36), i.e., we consider horizontal flow. Then we have

αlρl(u
2
l − u2

g) = −ρlu
2
gα

∗
l [2− α∗

l /α] = ρlu
2
gα

∗
l

[
−2 +

α∗
l

αl

]
. (54)

In view of (49) and (54) we get

G(n,m, ug) := [mu2
l − cnu2

g] = ρlα
∗
l u

2
g

[
−2 +

α∗
l

αl

]
+ ρlα

∗
l u

2
g

= ρlα
∗
l u

2
g

[
−1 +

α∗
l

αl

]
= α∗

l u
2
g

k∗ −m

αl
= −ρlα

∗
l u

2
g

cn

cn+ ρlα∗
l

= −k∗u2
g

cn

cn+ k∗
= −u2

gg(nc),

(55)

noting from (44) that

αl =
cn

ρl
+ α∗

l ,

and where we have defined the function g(·) as

g(nc) = k∗
cn

cn+ k∗
. (56)

For the pressure law we have

P (n,m) =
( n

ρl −m

)γ

=
( n

[ρl − k∗]− cn

)γ

=
( n

a∗ − cn

)γ

:= P (c, n), (57)

where a∗ = ρl − k∗ = ρlα
∗
g. For the viscosity term ε(m) we have

ε(m) =
(m− k∗)β

(ρl −m)β+1
=

[cn]β

(a∗ − [cn])β+1
:= ε(cn). (58)

Hence, setting ug := u, using (39) with the restriction (53) (c1 = 0) as well as (55) in the
momentum equation of (48), we obtain a gas-liquid model of the following form:

∂tn+ ∂x[nu] = 0

∂t[cn] + ∂x[cnu] = 0

∂t[cnu] + ∂x[cnu
2] + ∂x[P (c, n)− u2g(cn)] =

1

c0
∂x[ε(cn)∂xu].

(59)

In the following we may absorb the constant 1/c0 into the viscosity term ε without loss of any
generality.
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Lagrangian coordinates. Following the approach of the works [8, 9, 29], which in turn is mo-
tivated by studies for the single-phase gas model, we suggest to study the model (59), described
in terms of the variables (c, n, u), in a free boundary setting.

∂tn+ ∂x[nu] = 0

∂t[cn] + ∂x[cnu] = 0

∂t[cnu] + ∂x[cnu
2] + ∂x[P (c, n)− u2g(cn)] = ∂x[ε(cn)∂xu], for a(t) < x(t) < b(t),

(60)

and t > 0. Initial data are

n(x, t = 0) = n0(x), c(x, t = 0) = c0(x) =
m0(x)− k∗

n0(x)
, u(x, t = 0) = u0(x), (61)

for x ∈ [a0, b0] where a0 = a(t = 0) and b0 = b(t = 0). Boundary conditions are set to be as
follows:

n(a(t), t) = n(b(t), t) = 0, c(a(t), t) = c(b(t), t) = 0. (62)

Here a(t) and b(t) are free boundaries, i.e., the particle path separating the gas-liquid mixture and
the vacuum like state corresponding to n = 0 and c = 0, satisfying

da

dt
= u(a(t), t), n(a(t), t) = c(a(t), t) = 0, (63)

db

dt
= u(b(t), t), n(b(t), t) = c(b(t), t) = 0. (64)

Let us introduce Lagrangian coordinates by using the transformation (x, t) → (ξ, τ) given by

ξ =

∫ x

a(t)

cn(z, t) dz, τ = t, (65)

observing that ∫ b(t)

a(t)

cn(z, t) dz =

∫ b0

a0

cn(z, t = 0) dz = constant = 1.

This implies that [a(t), b(t)] is converted into the fixed interval [0, 1] and

∂

∂t
+ u

∂

∂x
=

∂

∂τ
,

∂

∂x
= [cn]

∂

∂ξ
.

Applying this transformation in (60) gives

∂τn+ n∂xu = 0

∂τ [cn] + [cn]∂xu = 0

[cn]∂τu+ ∂x[P (c, n)− u2g(cn)] = ∂x[ε(cn)∂xu], in 0 < ξ < 1.

(66)

In other words,

∂τn+ cn2∂ξu = 0

∂τ [cn] + [cn]2∂ξu = 0

∂τu+ ∂ξ[P (c, n)− u2g(cn)] = ∂ξ[ε(cn)[cn]∂ξu], in 0 < ξ < 1.

(67)

We now replace (τ, ξ) by (t, x). Moreover, an easy calculation shows that (67) corresponds to

∂tc = 0

∂tn+ cn2∂xu = 0

∂tu+ ∂x[P (c, n)− u2g(cn)] = ∂x[E(cn)∂xu], in 0 < x < 1.

(68)

with boundary conditions

c(0, t) = c(1, t) = 0, n(0, t) = n(1, t) = 0, t ≥ 0, (69)

and with initial conditions

c(x, 0) = c0(x), n(x, 0) = n0(x), u(x, 0) = u0(x), x ∈ [0, 1], (70)
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where c(x, t) = c0(x) =
m0(x)−k∗

n0(x)
. Moreover, we have from (57) and (58) that

P (c, n) =
( n

a∗ − cn

)γ

, g(cn) = k∗
cn

cn+ k∗
, E(cn) = ε(cn)[cn] =

[cn]β+1

(a∗ − [cn])β+1
. (71)

Finally, we shall in this work make use of the approximation that |u| ≈ u2, which is reasonable for
small u, such that we replace u2g(cn) by |u|g(cn) in the third equation of (68). The motivation for
using this approximation is to avoid some technical difficulties not yet solved. Hence, the model
(68)–(71) is now consistent with the model (20)–(23).

Reformulation. For the analysis of the model (20) it will be convenient to introduce the function
Q(c, n) given by

Q(c, n) =
n

a∗ − cn
, which corresponds to n = a∗

Q

1 + cQ
. (72)

A similar approach was also used in [8, 9], however, for a different model with equal fluid velocities.
The following nice relation holds for Q(c, n):

Q(c, n)t = Qcct +Qnnt = Qnnt

=
( 1

a∗ − cn
+

cn

(a∗ − cn)2

)
nt =

a∗

(a∗ − cn)2
nt

= − a∗cn2

(a∗ − cn)2
ux = −a∗cQ(c, n)2ux.

Hence, the system (20) can be replaced by

∂tc = 0

∂tQ+ a∗cQ2∂xu = 0

∂tu+ ∂x[P (Q)− |u|g(cQ)] = ∂x[E(cQ)∂xu], in 0 < x < 1.

(73)

with

P (Q) = Q(c, n)γ , E(c, n) = ε(c, n)[cn] = [cQ]β+1 := E(cQ),

g(cn) = k∗
cn

cn+ k∗
= a∗k∗

cQ

k∗ + (a∗ + k∗)cQ
:= g(cQ),

(74)

since

cn = a∗
cQ

1 + cQ
.

Clearly, g as a function of cQ possesses the same features as g(cn). Most importantly, it is always
bounded as a function of its argument cQ. This feature of g will be crucial for the analysis that
follows in Section 4. Boundary conditions for our system (73)–(74) are (in view of (72) and (69)):

c(0, t) = c(1, t) = 0, Q(0, t) = Q(1, t) = 0, t ≥ 0. (75)

Initial conditions are (in view of (72) and (70)):

c(x, 0) = c0(x), Q(x, 0) = Q0(x) =
n0

a∗ − c0n0
, u(x, 0) = u0(x), x ∈ [0, 1]. (76)

3. A local existence result

In this section we give the main theorem of this paper, a local existence result for the model
(20)–(23). Before we state the main result we describe the notation we apply throughout the
paper. W 1,2(I) = H1(I) represents the usual Sobolev space defined over I = (0, 1) with norm
∥ · ∥W 1,2 . Moreover, Lp(K,B) with norm ∥ · ∥Lp(K,B) denotes the space of all strongly measurable,
pth-power integrable functions from K to B where K typically is subset of R and B is a Banach
space. In addition, let Cα[0, 1] for α ∈ (0, 1) denotes the Banach space of functions on [0, 1] which
are uniformly Hölder continuous with exponent α. Similarly, let Cα,α/2(DT ) represent the Banach
space of functions on DT = [0, 1]× [0, T ] which are uniformly Hölder continuous with exponent α
in x and α/2 in t.



WEAK SOLUTIONS FOR A VISCOUS LIQUID-GAS MODEL 11

Now we will give a precise description of the assumptions on the initial data (c0, n0, u0) that are
required for the existence result to hold. For the analysis that follows in Section 4-6 we need more
precise information about how fast n0 is decreasing towards zero and how fast m0 will decrease
towards the lower limit k∗. We now specify this more precisely as well as information about
regularity properties of the initial data (c0, n0, u0). In addition, information about the constraints
on the parameters α, β, and γ will be given. Here α > 0 is related to the decay towards the
boundary points x = 0, 1, β > 0 is related to the viscosity term E(cn), and γ > 1 is relevant for
the pressure law P (c, n), see (23).

3.1. Assumptions. The analysis throughout the whole paper depends on a set of assumptions.

(A1) The following assumptions are made regarding upper and lower limits on the initial masses
m0(x), n0(x):

A1ϕ(x)
α ≤ m0(x)− k∗ ≤ A2ϕ(x)

α (77)

B1ϕ(x)
3α/4 ≤ n0(x) ≤ B2ϕ(x)

3α/4, (78)

for some constants A1, A2, B1, B2, α > 0 and ϕ(x) = x(1 − x). These bounds can then
be translated into upper and lower limits for the variable c which is used in our model
(20) instead of m. In particular, this implies that for suitable choices of C1 and C2, for
instance, C1 = A1/B2 and C2 = A2/B1

C1ϕ(x)
α/4 ≤ c0(x) ≤ C2ϕ(x)

α/4. (79)

Clearly, c(x, t) = c0(x), hence these estimates hold for c(x, t) for all times t.
(A2) We must ensure that the pressure law P = Qγ is well-defined at initial time. For that

purpose we here assume that the initial gas phase does not vanish at some point (no
transition to pure liquid flow only), i.e.,

α∗
l ≤ αl,0(x) ≤ 1− δ, (80)

for some δ > 0. In view of (72) and (78) we may assume that there are positive constants
A,B such that (see remark below)

AC2

C1
ϕ(x)3α/4 ≤ Q0 = Q(c0, n0) ≤

BC1

C2
ϕ(x)3α/4. (81)

Thus, it follows that

AC2ϕ(x)
α ≤ c0Q0 ≤ BC1ϕ(x)

α. (82)

(A3) Assumptions on α, β ∈ (0, 1) and γ > 1 are as follows:

γ ≥ 4

3
α, γ ≥ β +

1

3
, γ ≥ 4

3
β,

3

4
γ > 1 + β − 1

α
,

α(3β + 1) ≤ 2, αβ <
3

4
, α(β + 1) <

3

2
.

(A4) Regularity assumptions on the initial data are as follows:

c0, u0 ∈ H1([0, 1]), [c0Q0]
β ∈ H1([0, 1]), (83)

In particular, we note that
Qγ−1

0

c0
∈ L1([0, 1]) due to (79) and (81) since

∫ 1

0
ϕ(x)s dx < ∞

for s > −1.

Remark 3.1. Note that the first assumption (77) ensures that the initial liquid volume fraction
αl,0 is above the lower critical limit α∗

l throughout the whole domain except at the boundary points
x = 0, 1 where αl,0 = α∗

l , i.e., αg,0 = α∗
g.

The second equation (78) puts an additional constraint on the pressure behavior at the end
points x = 0, 1 by assuming that a vacuum state p = 0 occurs.
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Concerning the inequalities (81) we note that a∗ − cn0 = ρl −m0 = ρl(1− αl,0), from which it
follows from (80) that ρlδ ≤ a∗ − cn0 ≤ ρlα

∗
g. Hence, in light of (72) and (78)

B1

ρlα∗
g

ϕ(x)3α/4 ≤ n0

ρlα∗
g

≤ Q0 =
n0

a∗ − cn0
≤ n0

ρlδ
≤ B2

ρlδ
ϕ(x)3α/4.

From this relation we can find constants A and B such that the inequalities (81) hold.

3.2. Main result. Under the above assumptions, our main result can be stated as follows:

Theorem 3.1. Under the assumptions (A1)–(A4), there exists a positive time constant T1 > 0
(small time) such that the free boundary value problem (20)–(23) admits a weak solution (c, n, u)(x, t)
on [0, 1]× [0, T1] in the sense that

(A) we have the following regularity:

c, n, u ∈ L∞([0, 1]× [0, T1]) ∩ C1([0, T1];L
2(0, 1)),

E(cn)ux ∈ L∞([0, 1]× [0, T1]) ∩ C1/2([0, T1];L
2(0, 1)).

(84)

Moreover, the following pointwise estimate holds for n:

a∗Aϕ(x)3α/4

2 + c0(x)A
≤ n(x, t) ≤ min

{
a∗

3

2
Bϕ(x)3α/4,

a∗ − µ

c0(x)

}
, ∀t ∈ [0, T1], (85)

where µ = µ(B,C2, T1) > 0 is a small constant determined in Corollary 4.1.

(B) Moreover, the following equations hold,

ct = 0, nt + cn2ux = 0,

(c, n)(x, 0) = (c0(x), n0(x)), for a.e. x ∈ (0, 1) and any t ≥ 0,∫ T1

0

∫ 1

0

[
uϕt +

(
P (c, n)− |u|g(cn)− E(cn)ux

)
ϕx

]
dx dt+

∫ 1

0

u0(x)ϕ(x, 0) dx = 0

(86)

for any test function ϕ(x, t) ∈ C∞
0 ([0, 1]× [0, T1)).

4. Basic estimates

Below we derive a priori estimates for (c, n, u) which are assumed to be smooth solutions of
the initial boundary value problem (20)–(23). Then the method of lines can be used to construct
approximate solutions of (20) and derive corresponding estimates.

In the following we will frequently take advantage of the fact that the model (20) can be
rewritten in the form (73)–(76) which is more amenable for deriving various useful estimates.

Some words about the notation used for constants. We shall use C and Ci (i = 1, . . .) to denote
positive constants that only depend on the initial data and other known constants as stated
in the assumptions given in Section 3. Some places we also use D,E, F,K and Di, Ei, Fi,Ki

(i = 1, . . .) for the same purpose. In particular, these constants, C,D,E, F,K, are independent

of the positive constant M which appears in Lemma 4.3. On the other hand, we use C̃ and C̃i

(i = 1, . . .) (similarly for D,E, F,K) to represent constants that also, however, include dependence
on the positive constant M .

4.1. A priori estimates. Now we derive a priori estimates for (c, n, u) by making use of the
reformulated model (73)–(76) described in terms of (c,Q, u). We start with the standard energy
estimate which is slightly more involved in our case compared to a standard single-phase model
due to the appearance of the new term |u|g(cQ).

Lemma 4.1 (Energy estimate). We have, under the assumption (A4), for each T > 0 the basic
energy estimate∫ 1

0

(1
2
u2 +

1

a∗c(γ − 1)
Q(c, n)γ−1

)
dx+

∫ t

0

∫ 1

0

[cQ(c, n)]β+1(ux)
2 dx ds ≤ C(T ), (87)

where 0 < t < T and C(T ) is a constant that depends only on the the regularity of u0 and Q0 as
stated in Assumption (A4).
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Proof. We multiply the third equation of (73) by u and integrate over [0, 1] in space. Applying
the boundary condition (75), the fact that g(0) = 0 = E(0), and the equation

1

a∗c(γ − 1)
(Qγ−1)t +Qγux = 0, (88)

obtained from the second equation of (73) by multiplying with Qγ−2, we get

d

dt

∫ 1

0

(1
2
u2 +

1

a∗c(γ − 1)
Qγ−1

)
dx+

∫ 1

0

E(cQ)(ux)
2 dx = −

∫ 1

0

|u|g(cQ)ux dx. (89)

We may consider the splitting

|u|g(cQ)ux = |u|[cQ]−(β+1)/2g(cQ) · [cQ](β+1)/2ux = a · b.
In light of the Cauchy’s inequality with ε, ab ≤ (1/4ε)a2 + εb2, we may conclude that∫ 1

0

|u|g(cQ)ux dx ≤ (1/4ε)

∫ 1

0

u2[cQ]−(β+1)g(cQ)2 dx+ ε

∫ 1

0

[cQ]β+1(ux)
2 dx. (90)

For the first term on the right hand side of (90) we observe that

[cQ]−(β+1)g(cQ)2 = (a∗k∗)2
[cQ]1−β

(k∗ + (a∗ + k∗)cQ)2
≤ C1, (91)

since the function g(y) = y1−β/(k∗+(a∗+k∗)y)2 clearly is bounded for all y > 0 where 0 < β < 1.
Hence, ∫ 1

0

|u|g(cQ)ux dx ≤ (1/4ε)C1

∫ 1

0

u2 dx+ ε

∫ 1

0

E(cQ)(ux)
2 dx. (92)

We plug (92) into the right hand side of (89) and observe that the first term on the right hand
side of (92) is handled by application of Gronwall’s lemma. Moreover, by an appropriate choice
of ε the second term can be adsorbed in the corresponding term appearing in the left hand side
of (89). From this, (87) follows. �
Remark 4.1. Note that the special properties of g(·), it is bounded and goes through zero, plays
a crucial role in the above proof of the fundamental energy estimate (87).

The next lemma deals with upper and lower estimates for Q(c, n). In view of the fact that

n = a∗ Q
1+cQ these estimates can directly be translated into corresponding estimates for n. Along

the line of [3, 31] we use the continuation method, in combination with semidiscrete versions of
the various lemmas derived below, to obtain pointwise control on Q (and n).

Lemma 4.2. Under the assumptions of Theorem 3.1 there exists a time T1 = T1(A,B,M, ∥u0∥H1)
such that if

1

3
Aϕ(x)3α/4 ≤ Q(c, n) ≤ 2Bϕ(x)3α/4, ∀t ∈ [0, T ], (93)

where T ∈ (0, T1] is any fixed positive constant, then we have the following estimate

1

2
Aϕ(x)3α/4 ≤ Q(c, n) ≤ 3

2
Bϕ(x)3α/4, ∀t ∈ [0, T ]. (94)

The proof will be given in Section 6 after a set of useful lemmas has been derived. We also note
here that T1 is defined as

T1 = min{T̃1, T̃2, T̃3, T̃4, 1}, (95)

where T̃1 is given by (144), T̃2 by (148), T̃3 by (154), and T̃4 by (126). We use the ’tilde’ notation
to indicate that these constants depend on the positive constant M appearing in Lemma 4.3.

Corollary 4.1. If Q(c, n) satisfies the lower and upper bounds of (94), then the following bounds
hold for n:

a∗Aϕ(x)3α/4

2 + c0(x)A
≤ n(x, t) ≤ min

{
a∗

3

2
Bϕ(x)3α/4,

a∗ − µ

c0(x)

}
, ∀t ∈ [0, T ], (96)

where µ = µ(B,C2, T1) > 0 is a small positive constant.
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Proof. We observe that Q(c, n) is a strictly increasing function with respect to n for a fixed c and
its inverse is given by Q−1(c, y) = a∗ y

1+cy , which also is an increasing function. Consequently,

n ≤ Q−1(
3

2
Bϕ(x)3α/4) = a∗

3
2Bϕ(x)3α/4

1 + 3
2c(x)Bϕ(x)3α/4

≤ 3

2
a∗Bϕ(x)3α/4.

At the same time it is clear from the upper bound of Q given by (94) and the expression (72) for
Q, that

cQ =
cn

a∗ − cn
< C(B,C2, T1).

In other words, since cn
a∗−cn tends to infinity as cn → a∗−, cn must be a certain distance µ > 0

below of a∗, and µ only depends on B, C2, and T1, i.e., cn < a∗ − µ(B,C2, T1). Similarly,

n ≥ Q−1(
1

2
Aϕ(x)3α/4) = a∗

1
2Aϕ(x)3α/4

1 + 1
2c(x)Aϕ(x)3α/4

≥
1
2a

∗Aϕ(x)3α/4

1 + 1
2c(x)A

.

�

The next lemma concerns the pointwise control of the fluid velocity u. It involves a positive
constant M such that M > {1, ∥u0∥∞} and is determined by the inequality (132). The proof of
Lemma 4.3 will also be given in Section 6.

Lemma 4.3. Under the assumptions of Theorem 3.1 and (93), if

∥u∥L∞ ≤ M, ∀t ∈ [0, T ], (97)

then we get

∥u∥L∞ ≤ 1

2
M, ∀t ∈ [0, T ]. (98)

5. Proof of some lemmas

Before we return to Lemmas 4.2 and 4.3 and give proofs we shall derive some more regularity
estimates. These results will be derived under assumptions (93) and (97). In other words, we
assume the following estimates:

1

3
Aϕ(x)

3
4α ≤ Q(x, t) ≤ 2Bϕ(x)

3
4α, ∀t ∈ [0, T ], (99)

∥u(·, t)∥∞ ≤ M, ∀t ∈ [0, T ], (100)

for an appropriate time T to be specified later. The results in this section are obtained for constants
C3, C5, and C6 that are independent of M when

t ≤ T ≤ min{1, 1

M
}. (101)

However, the constant C̃4 appearing in Lemma 5.2 depends on M . Consistent with what we have

said before we shall in the following calculations use the convention that C̃i represents a constant
that depends on M , whereas Ci only depends on known constants and constants appearing in the
Assumptions (A1)–(A4).

Lemma 5.1 (Additional regularity). Under the assumptions of Theorem 3.1 as well as (99) and
(100) we have, for t ∈ [0, T ], the estimate∫ 1

0

(
∂x([cQ]β)

)2

dx ≤ C3, (102)

for a constant C3 = C3(∥[c0Q0]
β∥H1 , ∥c0∥H1 , ∥u0∥L2 , B, C,C1, C2, T ).

Proof. From the second equation of (73) we derive the equation

1

βa∗
([cQ]β)t + [cQ]β+1ux = 0. (103)
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Using (103) in the third equation of (73) and integrating in time over [0, t] we arrive at

u(x, t)− u0(x) +

∫ t

0

∂x

(
P (Q)− |u|g(cQ)

)
ds = − 1

βa∗

(
∂x([cQ]β)− ∂x([c0Q0]

β)
)
. (104)

Multiplying (104) by βa∗(∂x[cQ]β) and integrating over [0, 1] in x, we get∫ 1

0

(∂x[cQ]β)2 dx

=

∫ 1

0

(∂x[cQ]β)(∂x[c0Q0]
β) dx

− βa∗
∫ 1

0

(∂x[cQ]β)
[
(u− u0) +

∫ t

0

∂x

(
P (Q)− |u|g(cQ)

)
ds
]
dx

≤ ε1

∫ 1

0

(∂x[cQ]β)2 dx+K1

∫ 1

0

(∂x[c0Q0]
β)2 dx

+ ε2

∫ 1

0

(∂x[cQ]β)2 dx+K2

∫ 1

0

(u− u0)
2 dx

+ ε3

∫ 1

0

(∂x[cQ]β)2 dx+K3

∫ 1

0

(∫ t

0

∂x

(
P (Q)− |u|g(cQ)

)
ds
)2

dx,

(105)

where we have used Cauchy’s inequality ε > 0, ab ≤ (1/4ε)a2 + εb2. For the last term we can

apply Hölder’s inequality for the term
∫ t

0
(P (Q)− |u|g(cQ))x ds and estimate as follows:∫ 1

0

(∫ t

0

∂x

(
P (Q)− |u|g(cQ)

)
ds
)2

dx ≤ t

∫ t

0

∫ 1

0

(
∂x[P (Q)− |u|g(cQ)]

)2

dx ds (106)

Moreover, we have for P (Q) = Qγ :∫ 1

0

([Qγ ]x)
2 dx =

∫ 1

0

[γQγ−1Qx]
2 dx =

∫ 1

0

[γQγ−1(cQ · 1
c
)x]

2 dx

=

∫ 1

0

[
γ
Qγ−1

c
(cQ)x − γ

cQγ

c2
cx

]2
dx

=

∫ 1

0

[
γ
Qγ−1

βc
[cQ]1−β([cQ]β)x − γ

Qγ

c
cx

]2
dx

=

∫ 1

0

[
γ
Qγ−β

βcβ
([cQ]β)x − γ

Qγ

c
cx

]2
dx

≤ K4

∫ 1

0

[
([cQ]β)x

]2
dx+K5

∫ 1

0

[cx]
2 dx.

(107)

The first term on the right hand side of (107) is controlled by use of Gronwall’s lemma, the second
by assuming c ∈ H1,i.e., Assumption (A4). Here we have also used Assumption (A1) which
ensures that

C−1
2 ϕ(x)−α/4 ≤ 1

c
≤ C−1

1 ϕ(x)−α/4,

and in view of (99) we conclude that

Qγ−β

cβ
≤ K4(B,C1)ϕ(x)

3
4α(γ−β)− 1

4αβ = K4(B,C1)ϕ(x)
α( 3

4γ−β) ≤ K4(B,C1),

for γ ≥ 4
3β. Moreover,

Qγ

c
≤ K5(B,C1)ϕ(x)

3
4αγ−

1
4α = K5(B,C1)ϕ(x)

α( 3
4γ−

1
4 ) ≤ K5(B,C1),



16 EVJE

if γ ≥ 1/3, which clearly is satisfied. Similarly, we have∫ 1

0

([|u|g(cQ)]x)
2 dx ≤ 2

∫ 1

0

(|u|x)2g(cQ)2 dx+ 2

∫ 1

0

|u|2g′(cQ)2([cQ]x)
2 dx

= 2

∫ 1

0

[cQ]β+1(ux)
2g(cQ)2[cQ]−(β+1) dx+

2

β2

∫ 1

0

|u|2g′(cQ)2[cQ]2(1−β)
[
([cQ]β)x

]2
dx

≤ K6

∫ 1

0

E(cQ)(ux)
2 dx+K7M

2

∫ 1

0

[
([cQ]β)x

]2
dx,

(108)

where we have used that g(cQ)2[cQ]−(β+1) and g′(cQ)2[cQ]2(1−β) are bounded even independent
of the bound (99), in view of the special form of the function g(·). We also note that we have used
the estimate (100).

The conclusion of combining (105)–(108), where we also apply (87) for estimating the first term
of the right hand side of (108) as well as the fourth term on the right hand side of (105), is that∫ 1

0

(∂x[cQ]β)2 dx ≤ K8 +

∫ t

0

(
K8t(1 +M2)

∫ 1

0

(∂x[cQ]β)2 dx
)
ds

≤ K8 +

∫ t

0

(
K8(1 +M)

∫ 1

0

(∂x[cQ]β)2 dx
)
ds,

where K8 = K8(B,C,C1, ∥[c0Q0]
β∥H1 , ∥c0∥H1 , ∥u0∥L2 , T ) and we have employed (101). Thus,

application of Gronwall’s inequality gives the estimate∫ 1

0

(∂x[cQ]β)2 dx ≤ K8 exp{(1 +M)t} ≤ C3,

where we again have used (101). By this, (102) has been proved. �
Lemma 5.2 (Additional regularity). Under the assumptions of Theorem 3.1, (99) and (100) we
have, for t ∈ [0, T ], the estimate∫ 1

0

[cQ]β+3(∂xu)
4 dx ≤ C̃4 + C5

(∫ 1

0

(∂tu)
2 dx

)2

(109)

for constants C̃4 = C̃4(C1, A,B,M, T ) and C5 = C5(C1, A,B, T ) determined by (113).

Proof. Integrating the third equation of (73) over the interval [x, 1] and using the boundary con-
dition (75) we get ∫ 1

x

ut dy − (Qγ − |u|g(cQ)) = −E(cQ)ux.

This corresponds to

ux = − 1

E(cQ)

∫ 1

x

ut dy +
Qγ

E(cQ)
− |u|g(cQ)

E(cQ)

= −[cQ]−β−1

∫ 1

x

ut dy + c−β−1Qγ−β−1 − |u|[cQ]−β−1g(cQ).

Consequently, we can estimate as follows:

(ux)
4[cQ]β+3 ≤ K9[cQ]β+3

(
[cQ]−4β−4

(∫ 1

x

ut dy
)4

+ c−4β−4Q4γ−4β−4 + u4[cQ]−4β−4g(cQ)4
)

≤ K9

(
[cQ]−3β−1

(∫ 1

x

ut dy
)4

+ c−3β−1Q4γ−3β−1 + u4[cQ]−3β−1g(cQ)4
)
.

Hence, integrating over [0, 1] gives us∫ 1

0

(ux)
4[cQ]β+3 dx

≤ K9

∫ 1

0

(
[cQ]−3β−1

(∫ 1

x

ut dy
)4

+ c−3β−1Q4γ−3β−1 + u4[cQ]−3β−1g(cQ)4
)
dx.

(110)
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Clearly, the last term on the right hand side is bounded in view of (100), the properties of g(·),
and 0 < β < 1. Similarly, the middle term is bounded, in view of Assumption (A1) and (99) since

c−3β−1Q4γ−3β−1 ≤ C−1
1 Bϕ(x)−

1
4α(3β+1)ϕ(x)

3
4α(4γ−3β−1) = BC−1

1 ϕ(x)α(3γ−1−3β) ≤ BC−1
1 ,
(111)

if

α(3γ − 1− 3β) ≥ 0,

that is, γ ≥ β+ 1
3 . For the first term on the right hand side of (110) we have by Young’s inequality:∫ 1

0

[cQ]−3β−1
(∫ 1

x

ut dy
)4

dx ≤ K10

∫ 1

0

[cQ]−3β−1
(∫ 1

0

(ut)
2 dy

)2

ϕ(x)2 dx

≤ K10

(∫ 1

0

(ut)
2 dy

)2

,

(112)

for a suitable choice of K10. For the last choice of K10 = K10(C1, A) we have used that

[cQ]−(3β+1)ϕ(x)2 ≤ [C−1
1 A−1]3β+1ϕ(x)−α(3β+1)+2 ≤ [C−1

1 A−1]3β+1,

if the following relation holds

−α(3β + 1) + 2 ≥ 0, i.e. 2 ≥ α(3β + 1).

If 0 < β < 1 it follows that α must satisfy that 0 < α < 1/2. Thus, from (110)–(112) it follows∫ 1

0

(ux)
4[cQ]β+3 dx ≤ K11(1 +M4) +K11

(∫ 1

0

(∂tu)
2 dx

)2

, (113)

where K11 = K11(C1, A,B, T ).
�

Lemma 5.3 (Additional regularity). Under the assumptions of Theorem 3.1, (99) and (100) we
have, for t ∈ [0, T ], the estimate∫ 1

0

(∂tu)
2 dx+

∫ t

0

∫ 1

0

E(cQ)(utx)
2 dx ds ≤ C6, (114)

for a constant C6 = C6(C,C1, A,B, T ).

Proof. We have from (73) that

ut + (P (Q)− |u|g(cQ))x = (E(cQ)ux)x,

which gives

utt =
(
E(cQ)ux − P (Q) + |u|g(cQ)

)
xt

=
(
E(cQ)tux + E(cQ)uxt − P (Q)t

)
x
+
(
|u|tg(cQ) + |u|g(cQ)t

)
x
,

Multiplying by ut, integrating over [0, 1] and performing integration by parts, where we use the
boundary condition (75), we get∫ 1

0

∂t

(1
2
u2
t

)
dx = −

∫ 1

0

(
E(cQ)tux + E(cQ)uxt − P (Q)t

)
utx dx

−
∫ 1

0

(
|u|tg(cQ) + |u|g(cQ)t

)
utx dx.

(115)

The following equations can be obtained from the second equation of (73):

P (Q)t = −γa∗cQγ+1ux, (116)

and

g(cQ)t = g′(cQ)cQt = −a∗g′(cQ)[cQ]2ux, (117)

and

E(cQ)t = cβ+1(Qβ+1)t = (β + 1)cβ+1QβQt = −(β + 1)a∗[cQ]β+2ux. (118)
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Note that we in fact have used the equations (116)–(118) when we conclude that the contribution
from boundary terms appearing in (115) is zero. Thus, it follows that

d

dt

∫ 1

0

(1
2
u2
t

)
dx+

∫ 1

0

E(cQ)(uxt)
2 dx

= −
∫ 1

0

E(cQ)tuxutx dx+

∫ 1

0

P (Q)tutx dx−
∫ 1

0

|u|tg(cQ)utx dx−
∫ 1

0

|u|g(cQ)tutx dx

= (β + 1)a∗
∫ 1

0

[cQ]β+2(ux)
2utx dx− γa∗

∫ 1

0

cQγ+1uxutx dx

−
∫ 1

0

g(cQ)sgn(u)ututx dx+ a∗
∫ 1

0

|u|g′(cQ)[cQ]2uxutx dx.

(119)

For the first term on the right hand side of (119) we use the splitting

[cQ]β+2(ux)
2utx =

(
[cQ](β+3)/2(ux)

2
)(

[cQ](β+1)/2utx

)
.

Hence, ∫ 1

0

[cQ]β+2(ux)
2utx dx ≤ 1

4ε1

∫ 1

0

[cQ](β+3)(ux)
4 dx+ ε1

∫ 1

0

E(cQ)(utx)
2 dx, (120)

by application of Cauchy’s inequality ε > 0, ab ≤ (1/4ε)a2 + εb2. The last term on the right hand
side of (120) can be adsorbed on the left hand side of (119), whereas the first is bounded by (109).

Similarly, for the second term on the right hand side of (119) we have

cQγ+1uxutx = c1−
3β+5

4 Qγ+1− 3β+5
4

(
[cQ](β+3)/4ux

)(
[cQ](β+1)/2utx

)
. (121)

Two times applications of Cauchy’s inequality ε > 0, ab ≤ (1/4ε)a2 + εb2 then give us∫ 1

0

cQγ+1uxutx dx

≤ 1

4ε2

∫ 1

0

c2(1−
3β+5

4 )Q2(γ+1− 3β+5
4 )[cQ](β+3)/2(ux)

2 dx+ ε2

∫ 1

0

E(cQ)(utx)
2 dx

≤ 1

8ε2

∫ 1

0

c4(1−
3β+5

4 )Q4(γ+1− 3β+5
4 ) dx+

1

8ε2

∫ 1

0

[cQ](β+3)(ux)
4 dx+ ε2

∫ 1

0

E(cQ)(utx)
2 dx

≤ K13 +
1

8ε2

∫ 1

0

[cQ](β+3)(ux)
4 dx+ ε2

∫ 1

0

E(cQ)(utx)
2 dx,

(122)

where we have used assumption (A1) and (99) to estimate as follows:∫ 1

0

c4(1−
3β+5

4 )Q4(γ+1− 3β+5
4 ) dx ≤ K12

∫ 1

0

ϕ(x)α(1−
3β+5

4 ) · ϕ(x)3α(γ+1− 3β+5
4 ) dx ≤ K13,

if

α
[
1− 3β + 5

4
+ 3(γ + 1− 3β + 5

4
)
]
> −1,

that is,

3(γ − β) > 1− 1

α
,

which clearly holds for α ∈ (0, 1) and γ > β. As far as the third term on the right hand side of
(119) is concerned, we note that

g(cQ)ututx = a∗k∗
(
[cQ](β+1)/2utx

)( [cQ](1−β)/2

k∗ + (a∗ + k∗)[cQ]
ut

)
. (123)
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Hence, we conclude again from Cauchy’s inequality and the fact that β ∈ (0, 1) that∫ 1

0

g(cQ)sgn(u)ututx dx

≤ K14(ε3)

∫ 1

0

[cQ](1−β)

(k∗ + (a∗ + k∗)[cQ])2
(ut)

2 dx+ ε3

∫ 1

0

E(cQ)(utx)
2 dx

≤ K14(ε3)

∫ 1

0

(ut)
2 dx+ ε3

∫ 1

0

E(cQ)(utx)
2 dx

≤ K14(ε3)

2
+

K14(ε3)

2

(∫ 1

0

(ut)
2 dx

)2

+ ε3

∫ 1

0

E(cQ)(utx)
2 dx.

(124)

Finally, for the fourth term on the right hand side of (119) we have

|u|g′(cQ)[cQ]2uxutx =
(
|u|g′(cQ)[cQ]2−

β+1
2 ux

)(
[cQ]

β+1
2 utx

)
.

We can repeat the arguments similar to those of the estimate of (121) leading to (122).∫ 1

0

|u|g′(cQ)[cQ]2uxutx dx

≤ 1

4ε4

∫ 1

0

|u|2g′(cQ)2[cQ]3−β(ux)
2 dx+ ε4

∫ 1

0

E(cQ)(utx)
2 dx

≤ 1

8ε4

∫ 1

0

|u|4g′(cQ)4[cQ]3+β−4β dx+
1

8ε4

∫ 1

0

[cQ]β+3(ux)
4 dx+ ε4

∫ 1

0

E(cQ)(utx)
2 dx

≤ M4

8ε4

∫ 1

0

g′(cQ)4[cQ]3(1−β) dx+
1

8ε4

∫ 1

0

[cQ]β+3(ux)
4 dx+ ε4

∫ 1

0

E(cQ)(utx)
2 dx

≤ K15M
4 +

1

8ε4

∫ 1

0

[cQ]β+3(ux)
4 dx+ ε4

∫ 1

0

E(cQ)(utx)
2 dx,

(125)

where we have used the splitting

[cQ]3−β = [cQ]
3+β
2 · [cQ]

3+β
2 −2β

and the properties of g′(·). Clearly, ε1, ε2, ε3, ε4 can be chosen such that the associated term∫ 1

0
E(cQ)(uxt)

2 dx on the right hand side of (120), (122), (124), and (125) can be incorporated in
the corresponding term on the left hand side of (119).

Consequently, in view of (119), (120), (122), (124), and (125) in combination with (109)
(Lemma 5.2), see also (113), we have

d

dt

∫ 1

0

(ut)
2 dx+

∫ 1

0

E(cQ)(uxt)
2 dx

≤ K16(1 +M4) +K17

(∫ 1

0

(ut)
2 dx

)2

,

for appropriate constants K16 and K17. That is,∫ 1

0

(ut)
2 dx+

∫ t

0

∫ 1

0

E(cQ)(uxt)
2 dx ds

≤ K16(1 +M4)t+K17

∫ t

0

(∫ 1

0

(ut)
2 dx

)2

ds.

Following the arguments of [3, 31] we may conclude that by choosing T̃4(M) > 0 sufficiently small

such that for all t ∈ [0, T̃4] we have

1
1

K16(1+M4)T̃4
−K17T̃4

≤ C6, (126)
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where C6 is independent of M . Hence, for t ∈ [0, T ], recall that T ∈ (0, T1] and by (95) it follows

that T1 ≤ T̃4, we then have∫ 1

0

(ut)
2 dx+

∫ t

0

∫ 1

0

E(cQ)(uxt)
2 dx ds

≤ K16(1 +M4)T̃4 +K17

∫ t

0

(∫ 1

0

(ut)
2 dx

)2

ds.

Application of (a nonlinear version of) Gronwall’s inequality then gives∫ 1

0

(ut)
2 dx+

∫ t

0

∫ 1

0

E(cQ)(uxt)
2 dx ds ≤ 1

1

K16(1+M4)T̃4
−K17t

≤ 1
1

K16(1+M4)T̃4
−K17T̃4

≤ C6,

where C6 has been defined by (126). �

6. Proof of Lemma 4.2 and Lemma 4.3

Equipped with the results of Section 5, we shall return to the proof of Lemma 4.2 and Lemma 4.3.
First we give a proof of Lemma 4.3 where we rely on the result of Lemma 5.3. Then we shall derive
Lemma 6.1 and 6.2, the first one provides control over the L2 continuity in time of u, i.e., estimate

of ∥u(·, t)−u0(·)∥2, whereas the second one gives control over the quantity |
∫ t

0

∫ x

0
ut dx dt|. Finally,

armed with these estimates we can give a proof of Lemma 4.2. We end this section by Lemma 6.3
which provides more L2 continuity type of estimates with respect to time for, respectively, Q, u,
and Eux. Then, Lemma 6.4 gives an upper pointwise bound for Eux as well as BV estimates for
Eux, u, and Q.

6.1. Proof of Lemma 4.3.

Proof. We obtain from the third equation of (73) by integrating over [x, 1] and employing the
boundary condition (75)

ux = − 1

E(cQ)

∫ 1

x

ut dy +
Qγ

E(cQ)
− |u|g(cQ)

E(cQ)
.

This implies that∫ 1

0

|ux| dx ≤
∫ 1

0

1

E(cQ)

∣∣∣∫ 1

x

ut dy
∣∣∣ dx+

∫ 1

0

Qγ

E(cQ)
dx+

∫ 1

0

|u|g(cQ)

E(cQ)
dx := A1 +A2 +A3. (127)

Then we estimate as follows:

A2 =

∫ 1

0

Qγ−β−1c−β−1 dx ≤ C
−(β+1)
1

∫ 1

0

ϕ(x)−
1
4α(β+1)Qγ−β−1 dx

≤ D2

∫ 1

0

ϕ(x)−
1
4α(β+1) · ϕ(x) 3

4α(γ−β−1) dx = D2

∫ 1

0

ϕ(x)−
1
4α(β+1)+ 3

4α(γ−β−1) dx

= D2

∫ 1

0

ϕ(x)
1
4α[−β−1+3γ−3β−3)] dx = D2

∫ 1

0

ϕ(x)α[
3
4γ−β−1] dx ≤ D2(C1, A,B),

(128)

for some constant D2 which is independent of M and where we have used assumption (A1) which
implies that

C−1
2 ϕ(x)−α/4 ≤ c−1 ≤ C−1

1 ϕ(x)−α/4, i.e. c−(β+1) ≤ C
−(β+1)
1 ϕ(x)−

α
4 (β+1),

together with estimate (93). Here we must also assume that α[34γ − β − 1] > −1, that is,

3

4
γ > 1 + β − 1

α
,

which follows from Assumption (A3). Furthermore, by combining Assumption (A1) and (93) we
obtain

1

2BC2
ϕ(x)−αβ ≤ [cQ]−β ≤ 3

C1A
ϕ(x)−αβ . (129)
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Using this estimate together with (97) we can estimate as follows:

A3 =

∫ 1

0

|u|g(cQ)

E(cQ)
dx =

∫ 1

0

|u| a∗k∗[cQ]−β

k∗ + (a∗ + k∗)cQ
dx ≤ D3

∫ 1

0

|u|[cQ]−β dx

≤ D3

∫ 1

0

|u|ϕ(x)−αβ dx ≤ D3M
1/2

∫ 1

0

ϕ(x)−αβ · |u|1/2 dx

≤ D3M
1/2

(∫ 1

0

ϕ(x)−αβq dx
)1/q(∫ 1

0

|u| 12p dx
)1/p

, (p, q) = (4,
4

3
),

≤ D3M
1/2

(∫ 1

0

|u|2 dx
)1/4

≤ D3(A,C1, C)M1/2,

(130)

where we have used Hölder’s inequality with p = 4 and q = 4
3 , estimate (87) of Lemma 4.1, and the

fact that −αβq = −αβ 4
3 > −1 or αβ < 3

4 . As above D3 is a suitable constant that is independent
of M but may depend on C1, C2, A, and B. Finally, we see that

A1 =

∫ 1

0

1

E(cQ)

∣∣∣∫ 1

x

ut dy
∣∣∣ dx

≤ D1

∫ 1

0

[cQ]−β−1ϕ(x)1/2
(∫ 1

0

|ut|2 dy
)1/2

dx ≤ D1

∫ 1

0

[cQ]−(β+1)ϕ(x)1/2 dx

≤ D1

∫ 1

0

ϕ(x)1/2−α(β+1) dx ≤ D1(C6, A, C1),

(131)

for a suitable constantD1 = D1(C6, A, C1) (note dependence on C6 since we have used Lemma 5.3),
if 1/2−α(β+1) > −1, that is, α(β+1) < 3

2 . Hence, in view of (127), (128), (130), and (131) the
conclusion is that ∫ 1

0

|ux| dx ≤ D +DM1/2

for a constant D which is independent of M . In other words, in view of Sobolev’s embedding
theorem that W 1,1([0, 1]) ↪→ L∞([0, 1]) and Lemma 4.1

∥u∥∞ ≤
∫ 1

0

|u| dx+

∫ 1

0

|ux| dx ≤
√
2C +D +DM1/2.

Clearly, for positive constants D4 =
√
2C +D and D5 = D then

1

M
(D4 +D5M

1/2) ≤ 1

2
, (132)

for a suitable large M . Hence, ∥u∥∞ ≤ 1
2M for a suitable choice of M , and the lemma has been

proved. �

6.2. More lemmas under the assumption of (93).

Lemma 6.1. Under the assumptions of Theorem 3.1 and (93), there exists a positive constant
D1 = D1(C,C1, C2, A,B, ∥u0∥H1 , T ) such that, for all t ∈ [0, T ]∫ 1

0

|u(x, t)− u0(x)|2 dx ≤ D1t. (133)

Proof. Clearly, from the third equation of (73) we get

(u− u0)t + (Qγ − |u|g(cQ))x = (E(cQ)ux)x.

Multiplying by (u−u0) and integrating over the spatial domain [0, 1] together with application of
integration by parts and use of the boundary conditions (75) and the fact that g(0) = 0, we arrive
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at the following form

d

dt

∫ 1

0

1

2
(u− u0)

2 dx+

∫ 1

0

E(cQ)(ux)
2 dx

=

∫ 1

0

E(cQ)uxu0,x dx+

∫ 1

0

Qγux dx−
∫ 1

0

|u|g(cQ)ux dx

−
∫ 1

0

Qγu0,x dx+

∫ 1

0

|u|g(cQ)u0,x dx.

(134)

We can estimate as follows:

E(cQ)uxu0,x = E(cQ)1/2u0,x · E(cQ)1/2ux,

hence, by Cauchy’s inequality and use of (93) we get∫ 1

0

E(cQ)uxu0,x dx ≤ 1

4ε

∫ 1

0

E(cQ)u2
0,x dx+ ε

∫ 1

0

E(cQ)u2
x dx

≤ 1

4ε
max(E(cQ))

∫ 1

0

u2
0,x dx+ ε

∫ 1

0

E(cQ)u2
x dx

≤ Dε + ε

∫ 1

0

E(cQ)u2
x dx.

(135)

The first term on the right hand side of (135) is bounded due to (93), Assumption (A1), and
Assumption (A4). Moreover, for the second term on the right hand side of (134) we have

Qγux = Qγ [cQ]−(β+1)/2 · [cQ](β+1)/2ux.

Hence, ∫ 1

0

Qγux dx ≤ 1

4ε

∫ 1

0

Q2γ [cQ]−(β+1) dx+ ε

∫ 1

0

E(cQ)u2
x dx

≤ Dε

∫ 1

0

ϕ(x)α(
3
2γ−β−1) dx+ ε

∫ 1

0

E(cQ)u2
x dx.

(136)

For the first term on the right hand side of (136) we have used an estimate similar to (129) which
implies that

Q2γ [cQ]−(β+1) ≤ D(C1, A)ϕ(x)
3
2γαϕ(x)−α(β+1) ≤ D(C1, A)ϕ(x)α(

3
2γ−β−1).

Consequently, the first term on the right hand side of (136) is bounded if α( 32γ−β−1) > −α > −1,

i.e., γ > 2
3β. For the third term on the right hand side of (134) we have∫ 1

0

|u|g(cQ)ux dx ≤
∫ 1

0

|u− u0|g(cQ)ux dx+

∫ 1

0

|u0|g(cQ)ux dx (137)

The first term on the right hand side of (137) can be treated by the same technique as for
Lemma 4.1, the second term can be handled similarly by employing that u0 ∈ L2([0, 1]). The two
last terms on the right hand side of (134) can obviously be estimated in the same manner. Using
these estimates in combination with (134) implies (133). �

Lemma 6.2. Under the assumptions of Theorem 3.1 and (93), there exists a positive constant

Ẽ1 = Ẽ1(M,D1, T ) and a positive integer m with m > 1
1−αβ > 1 such that, for all t ∈ [0, T ]∣∣∣∫ t

0

∫ x

0

∂tu dy ds
∣∣∣ ≤ Ẽ1ϕ(x)

m−1
m t1/m, 0 ≤ x ≤ 1

2
. (138)
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Proof. We can estimate as follows by using Hölder’s inequality:∣∣∣∫ t

0

∫ x

0

∂tu dy ds
∣∣∣ = ∣∣∣∫ x

0

[u(y, t)− u0(y)] dy
∣∣∣

≤
∫ x

0

|u(y, t)− u0(y)| dy ≤
∫ 1

0

χ[0,x](y)|u(y, t)− u0(y)| dy

≤ 2
m−1
m ϕ(x)

m−1
m

(∫ 1

0

|u(y, t)− u0(y)|m dy
) 1

m

, x ∈ [0,
1

2
],

≤ 2
m−2
m · 2

m−1
m ϕ(x)

m−1
m M

m−2
m

(∫ 1

0

|u(y, t)− u0(y)|2 dy
) 1

m

≤ 2
2m−3

m D
1
m
1 ϕ(x)

m−1
m M

m−2
m t

1
m = Ẽ1(M,D1, T )ϕ(x)

m−1
m t

1
m ,

where we use p = m and q = m/(m − 1). Moreover, we have used that ∥u0∥∞, ∥u∥∞ ≤ M from
Lemma 4.3 as well as the estimate of Lemma 6.1.

�

Remark 6.1. In a similar manner we can obtain the estimate∣∣∣∫ t

0

∫ 1

x

∂tu dy ds
∣∣∣ ≤ Ẽ1ϕ(x)

m−1
m t1/m,

1

2
≤ x ≤ 1. (139)

Note that theM dependence of Ẽ1 (as well as other constants) will be controlled in the following
proof of Lemma 4.2 by the ”small” time T > 0 where T < T1 and T1 is defined by (95). In

particular, suitable small times T̃1, T̃2, and T̃3 will be introduced in the proof below to eliminate
dependence on M .

6.3. Proof of Lemma 4.2. Now we are in a position where we can give a proof of Lemma 4.2.

Proof. We start with the following equality which follows directly by combing the second and third
equation of (73)

[cQ]β + a∗β

∫ t

0

Qγ ds = [cQ]β0 − a∗β

∫ t

0

∫ x

0

ut dy ds+ a∗β

∫ t

0

|u|g(cQ) ds. (140)

Here we have combined
1

a∗β
([cQ]β)t + E(cQ)ux = 0,

and ∫ x

0

ut dy + [Qγ − |u|g(cQ)] = E(cQ)ux.

First, we observe that from Lemma 6.2 we have∣∣∣∫ t

0

∫ x

0

ut dy ds
∣∣∣ ≤ Ẽ1(M)ϕ(x)

m−1
m t1/m. (141)

Moreover, ∣∣∣∫ t

0

|u|g(cQ) ds
∣∣∣ ≤ a∗M

∫ t

0

[cQ] ds ≤ 2a∗BC2Mϕ(x)αt = Ẽ2(M)ϕ(x)αt. (142)

Consequently, in view of (140) where we set a∗β = 1 without loss of generality, we can employ
(82) from Assumption (A2) together with (141) and (142) and estimate as follows:

[cQ]β +

∫ t

0

Qγ ds ≥ [C2A]
βϕ(x)βα − Ẽ1ϕ(x)

m−1
m t1/m − Ẽ2tϕ(x)

α

≥ [C2A]
βϕ(x)βα − Ẽ1ϕ(x)

αβt1/m − Ẽ2t
1/mϕ(x)αβ

=
(
[C2A]

β − [Ẽ1 + Ẽ2]t
1/m

)
ϕ(x)βα,

(143)
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since ϕ(x)α ≤ ϕ(x)αβ and ϕ(x)(m−1)/m ≤ ϕ(x)αβ since m > 1/(1− αβ), that is, (m− 1)/m > αβ
as assumed in Lemma 6.2. We have also used that t1/m > t for t < 1 and m > 1. Now we can
define

T̃1 =
( [C2A]

β − ( 23 [C2A])β

Ẽ1 + Ẽ2

)m

> 0. (144)

For 0 ≤ t ≤ T̃1 we get from (143)

[cQ]β +

∫ t

0

Qγ ds ≥
(2
3
[C2A]

)β

ϕ(x)αβ . (145)

To ensure the lower limit of [cQ] from (145) we must determine an upper limit for
∫ t

0
Qγ ds for

sufficient small t. For this purpose we set

Z(t) =

∫ t

0

Qγ(x, s) ds. (146)

Then an inequality equation for Z(t) can be derived. However, first we note that similar to the
proof of (143) we get

[cQ]β +

∫ t

0

Qγ ds ≤
(
[C1B]β + [Ẽ1 + Ẽ2]t

1/m
)
ϕ(x)βα, (147)

Now we can define

T̃2 =
( ( 32 [C1B])β − [C1B]β

Ẽ1 + Ẽ2

)m

> 0. (148)

For 0 ≤ t ≤ T̃2 we get from (147)

[cQ]β ≤
(3
2
[C1B]

)β

ϕ(x)βα (149)

Now we return to the task of deriving a lower limit for [cQ]. We again follow along the line of
[3, 31]. From (147) and (146) we get

cβZ ′(t)
β
γ + Z(t) ≤ K̃(t)ϕ(x)βα,

that is,

Z ′(t)
β
γ + c−βZ(t) ≤ K̃(t)ϕ(x)βαc−β ≤ C−β

1 K̃(t)ϕ(x)βαϕ(x)−αβ/4 ≤ C−β
1 K̃(t)ϕ(x)

3
4βα := K̃2(t),

for K̃(t) = ([C1B]β + [Ẽ1 + Ẽ2]t
1/m). Clearly, Z(0) = 0 and then we can deduce, by assuming

that 0 < β < γ that

Z ′(t)
β
γ +K1Z(t) ≤ K̃2(t) ≤ K̃2(T̃2), K1 = c−β , K̃2 = C−β

1 K̃(t)ϕ(x)
3
4βα, (150)

for t ∈ [0, T̃2]. That is, we have an ODE inequality of the form

Z ′(t)1/p +AZ(t) ≤ B, p =
γ

β
> 1. (151)

The solution of Z ′(t)1/p +AZ(t) = B can be found by writing this ODE in the form

Z ′(t) = (B −AZ(t))p.

Introducing U(t) = B −AZ(t) we get

U ′(t) = −AUp, U(t = 0) = B.

This gives the solution
1

1− p
U1−p

∣∣∣U
B
= −At,

that is,

B
(
1− 1

[1 + (p− 1)AtBp−1]
1

p−1

)
= AZ.
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From this it follows that the following inequality holds

AZ ≤ B
(
1− 1

[1 + (p− 1)AtBp−1]
1

p−1

)
, t ∈ [0, T̃2]. (152)

In view of (150), (151) and (152) we get the inequality

Z(t) ≤ cβ [C−β
1 K̃(T̃2)ϕ(x)

3
4αβ ]

(
1− 1

(1 + (p− 1)[c−β ][C−β
1 K̃(T̃2)ϕ(x)

3
4αβ ]p−1t)

1
p−1

)
≤ Cβ

2C
−β
1 K̃(T̃2)ϕ(x)

αβ
(
1− 1

(1 + (p− 1)[c−β ][C−β
1 K̃(T̃2)ϕ(x)

3
4αβ ]p−1t)

1
p−1

)
.

(153)

Now we observe that p− 1 = γ−β
β > 0, hence

[c−β ][ϕ(x)
3
4αβ ]

γ−β
β ≤ C−β

1 ϕ(x)−
αβ
4 ϕ(x)

3
4α(γ−β) ≤ C−β

1 ϕ(x)α(
3
4γ−β) ≤ C−β

1 ,

for γ ≥ 4
3β. From this estimate it’s clear that we can get the expression

(1 + (p− 1)[c−β ][C−β
1 K̃(T̃2)ϕ(x)

3
4αβ ]p−1t)

1
p−1

as close to 1 (from above) as desirable for a small enough time interval (that depends on M due

to the appearance of K̃). Thus, is is also clear that for small enough times, let’s say, t ∈ [0, T̃3] for

T̃3 = T̃3(M) > 0 we have for the right hand side of (153)

Cβ
2 C

−β
1 K̃(T̃2)

(
1− 1

(1 + (p− 1)[c−β ][C−β
1 K̃(T̃2)ϕ(x)

3
4αβ ]p−1t)

1
p−1

)
≤

(2
3
[C2A]

)β

−
(1
2
[C2A]

)β

.

(154)

Inserting this in (153) gives that

−Z(t) ≥ −ϕ(x)αβ
[(2

3
[C2A]

)β

−
(1
2
[C2A]

)β]
.

Employing this in (145) we get

[cQ]β ≥ −Z(t) +
(2
3
[C2A]

)β

ϕ(x)αβ ≥
(1
2
[C2A]

)β

ϕ(x)αβ . (155)

In view of (155) and (149) we have(1
2
[AC2]

)β

ϕ(x)αβ ≤ [cQ]β ≤
(3
2
[BC1]

)β

ϕ(x)βα.

In other words, (1
2
[AC2]

)
ϕ(x)α ≤ [cQ] ≤

(3
2
[BC1]

)
ϕ(x)α,

which clearly, in view of the assumption (79), gives us(1
2
A
)
ϕ(x)

3
4α ≤ Q ≤

(3
2
B
)
ϕ(x)

3
4α.

Hence, the desired estimate (94) has been obtained. �
6.4. More regularity results in space and time under the assumptions of Theorem 3.1.
In the next lemma we obtain L2-continuity in time estimates for the quantities (Q, u,E).

Lemma 6.3. Under the assumptions of Theorem 3.1, we have for 0 < s < t < T1 and appropriate

constants F̃1, F2, and F̃3 the following estimates:∫ 1

0

|Q(x, t)−Q(x, s)|2 dx ≤ F̃1|t− s|2, (156)∫ 1

0

|u(x, t)− u(x, s)|2 dx ≤ F2|t− s|2, (157)∫ 1

0

|E(cQ)ux(x, t)− E(cQ)ux(x, s)|2 dx ≤ F̃3|t− s|. (158)
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Proof. We have, by using the second equation of (73) and Hölder’s inequality where we tactically
have assumed s < t,∫ 1

0

|Q(x, t)−Q(x, s)|2 dx =

∫ 1

0

∣∣∣∫ t

s

Qξ(x, ξ) dξ
∣∣∣2 dx

= a∗
∫ 1

0

∣∣∣∫ T1

0

χ[s,t](ξ)(cQ
2ux)(x, ξ) dξ

∣∣∣2 dx
≤ a∗

∫ 1

0

(t− s)
(∫ t

s

|(cQ2ux)(x, ξ)|2 dξ
)
dx = a∗|t− s|

∫ t

s

∫ 1

0

c2Q4u2
x dx dξ

= a∗|t− s|
∫ t

s

∫ 1

0

(c
1−β
2 Q

5−β
2 )[cQ]

β+3
2 (ux)

2 dx dξ

≤ a∗

2
|t− s|

[∫ t

s

(∫ 1

0

c1−βQ5−β dx+

∫ 1

0

[cQ]β+3(ux)
4 dx

)
dξ

]
≤ F1(B,C2)|t− s|

∫ t

s

(∫ 1

0

ϕ(x)α(4−β) dx+

∫ 1

0

[cQ]β+3(ux)
4 dx

)
dξ

≤ F̃1(B,C2, C̃4, C5, C6)|t− s|2.

(159)

Here we have employed Young’s inequality, Lemma 5.2, and Lemma 5.3 as well as Assumption
(A2) and the pointwise estimate of Q given by Lemma 4.2. Next, we consider (157). We get by
Hölder’s inequality ∫ 1

0

|u(x, t)− u(x, s)|2 dx =

∫ 1

0

∣∣∣∫ t

s

uξ(x, ξ) dξ
∣∣∣2 dx

≤ |t− s|
∫ t

s

∫ 1

0

u2
ξ dxdξ ≤ C6|t− s|2,

where we have used Lemma 5.3 again. Finally, for (158) we estimate as follows by using Young’s
inequality: ∫ 1

0

|E(cQ)ux(x, t)− E(cQ)ux(x, s)|2 dx =

∫ 1

0

∣∣∣∫ t

s

∂ξ(E(cQ)ux)(x, ξ) dξ
∣∣∣2 dx

≤ |t− s|
∫ 1

0

∣∣∣∫ t

s

(
E(cQ)ξux + E(cQ)uxξ

)
(x, ξ)dξ

∣∣∣ dx
= |t− s|

∫ 1

0

∣∣∣∫ t

s

(
−(β + 1)a∗[cQ]β+2(ux)

2 + E(cQ)uxξ

)
(x, ξ)dξ

∣∣∣ dx
≤ F3|t− s|

∫ T1

0

∫ 1

0

[
[cQ]β+1[cQ]β+3(ux)

4 + E(cQ)E(cQ)(uxt)
2
]
dx dt

≤ F̃3(B,C2, C̃4, C5, C6)|t− s|,

by using Lemma 5.2, and Lemma 5.3 and the pointwise upper bound for [cQ] to obtain the last
inequality. �

Corollary 6.1. Under the assumptions of Theorem 3.1, we get for 0 < s < t < T1 that∫ 1

0

|n(x, t)− n(x, s)|2 dx ≤ (a∗)4F̃1|t− s|2, (160)

where F̃1 is the constant from (156).

Proof. First we recall from (68) that n satisfies the equation nt+ cn2ux = 0 and that n and Q are
related by

n

Q
= a∗ − cn, (161)
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see (72), and that Corollary 4.1 implies that

cn ≤ a∗. (162)

Hence, we can follow along the same line as for the estimate (156) and calculate as follows:∫ 1

0

|n(x, t)− n(x, s)|2 dx =

∫ 1

0

∣∣∣∫ t

s

nξ(x, ξ) dξ
∣∣∣2 dx

=

∫ 1

0

∣∣∣∫ T1

0

χ[s,t](ξ)(cn
2ux)(x, ξ) dξ

∣∣∣2 dx
≤

∫ 1

0

(t− s)
(∫ t

s

|(cn2ux)(x, ξ)|2 dξ
)
dx ≤ |t− s|max

( n

Q

)4
∫ t

s

∫ 1

0

c2Q4u2
x dx dξ

≤ (a∗)4F1(B,C2)|t− s|
∫ t

s

(∫ 1

0

ϕ(x)α(4−β) dx+

∫ 1

0

[cQ]β+3(ux)
4 dx

)
dξ

≤ (a∗)4F̃1(B,C2, C̃4, C5, C6)|t− s|2,

where we have used (161) and (162) and the calculations of the last part of (159). �

Lemma 6.4. Under the assumptions of Theorem 3.1 and for t ∈ [0, T1], we get

∥E(cQ)ux(x, t)∥L∞([0,1]×[0,T1]) ≤ F̃4, (163)∫ 1

0

|∂x(E(cQ)∂xu)| dx ≤ F̃5, (164)∫ 1

0

|∂xu| dx ≤ F̃6, (165)∫ 1

0

|∂xQ| dx ≤ F7. (166)

Proof. The estimate (165) follows as a byproduct of the proof of Lemma 4.3. The estimate (163)
follows from (164) since

|[E(cQ)ux](x, t)| = |
∫ x

0

(E(cQ)uy)y dy| ≤
∫ 1

0

|(E(cQ)uy)y| dy ≤ F̃5, t ∈ [0, T1].

From the momentum equation we have

(E(cQ)ux)x = ut − (Qγ)x + (|u|g(cQ))x, (167)

The estimate (164) can be obtained by observing:∫ 1

0

|(E(cQ)ux)x| dx ≤
∫ 1

0

|ut| dx+

∫ 1

0

|(Qγ)x| dx+

∫ 1

0

|u|xg(cQ) dx+

∫ 1

0

|u||g(cQ)x| dx

≤
√
C6 + γ

∫ 1

0

|Qγ−1Qx| dx+max g(cQ)

∫ 1

0

|ux| dx+

∫ 1

0

|u|g′(cQ)[cQ]x dx

≤
√
C6 +

γ

β

∫ 1

0

|Qγ−β([cQ]βc−β)x| dx+ F̃6 +
1

β

∫ 1

0

|u|g′(cQ)[cQ]1−β([cQ]β)x dx

≤
√
C6 +

γ

β

∫ 1

0

|Qγ−βc−β([cQ]β)x| dx+ γ

∫ 1

0

|Qγc−1cx| dx

+ F̃6 +
1

2β

∫ 1

0

|u|2g′(cQ)2[cQ]2−2β dx+
1

2β

∫ 1

0

([cQ]β)2x dx

≤
√
C6 + F9(B,C,C1, C3) + F̃6 := F̃5.
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Here Cauchy’s inequality has been used repeatedly, Lemma 4.1, Lemma 4.2, Lemma 5.1, Lemma 5.3,
and Assumptions (A1)–(A4). Finally, the estimate (166) follows since∫ 1

0

|Qx| dx ≤
∫ 1

0

|[cQ]x
1

c
| dx+

∫ 1

0

|[cQ](c−1)x| dx

≤ 1

β

∫ 1

0

|c−βQ1−β([cQ]β)x| dx+

∫ 1

0

c−1Q|cx| dx

≤ 1

2β

∫ 1

0

([cQ]β)2x dx+
1

2β

∫ 1

0

c−2βQ2−2β dx+

∫ 1

0

c−1Q|cx| dx ≤ F7,

where we have used Lemma 4.2, Lemma 5.1, and Assumptions (A1)–(A4). �

Corollary 6.2. Under the assumptions of Theorem 3.1 and for t ∈ [0, T1], we get∫ 1

0

|∂xn| dx ≤ F8. (168)

Proof. We have that cQ = cn/(a∗ − cn), consequently,

∂x([cQ]β) = β
( cn

a∗ − cn

)β−1 a∗

(a∗ − cn)2
∂x[cn], (169)

from which we get

∂xn =
1

a∗β
(a∗ − cn)β+1n

1−β

cβ
∂x([cQ]β)− n

c
∂xc.

Hence, it follows easily that∫ 1

0

|∂xn| dx ≤ F81

∫ 1

0

ϕ(x)
1
2α|∂xc| dx+ F82

∫ 1

0

|∂x([cQ]β)|ϕ(x)α( 3
4−β) dx

≤ F81 + F82

(∫ 1

0

(∂x([cQ]β))2 dx
)1/2(∫ 1

0

ϕ(x)2α(
3
4−β) dx

)1/2

≤ F8,

(170)

since β, α ∈ (0, 1) and by application of Lemma 5.1, Corollary 4.1, and Assumptions (A1)–(A4).
�

6.5. The proof of Theorem 3.1. In order to construct a weak solution to the initial boundary
value problem we can directly adopt the standard approach and apply the line method as described
in [13, 14, 3, 31, 9], see also the important references within these papers for more details. Since
this will not introduce new elements to what is already found in these papers we leave the details
to the readers. Here we just note that having formulated a semidiscrete version of the model
(68)–(71), the basic theory of ordinary differential equations then guarantees the local existence
of smooth solutions (ci, ni, ui), for i = 0, . . . , N such that

0 < ci(t) < ∞, 0 < ni(t) < ∞, |ui(t)| < ∞.

Let [0, Th] be the maximal time interval on which the smooth solution exist. For the analysis
below we must show that the solutions are actually locally defined on [0, T1] where T1 is defined
by (95). In particular, it can be ensured that Th > T1, see [3, 31], and (ci, ni, ui) are well defined for
i = 0, . . . , N , for all t ∈ [0, T1]. Based on the work of Section 4, 5, and 6 we can obtain semidiscrete
versions of the various lemmas. By defining appropriate approximate solutions (cN , nN , uN )(x, t)
and using Helly’s theorem, we can prove Theorem 3.1.
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