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Abstract. This paper deals with a two-phase compressible gas-liquid model relevant for mod-
eling of gas-kick flow scenarios in oil wells. To make the model more realistic we include a nat-
ural pressure-dependent well-formation interaction term allowing for modeling of dynamic gas in-
flux/efflux. More precisely, the interaction between well and surrounding formation is controlled by
a term of the form A = qw(Pw −P ) which appears in the gas continuity equation where qw is a rate
constant, Pw is a critical pressure whereas P is pressure in the well. Consequently, an additional
coupling mechanism is added to the mass and momentum equations. We obtain a global existence
result for the new model. One consequence of the existence result is that as long as the well initially
is filled with a mixture of gas and liquid, the system will regulate itself (in finite time) in such a way
that there does not exist any point along the well where all the gas vanishes, e.g., by escaping into
the formation. Similarly, the result guarantees that neither will any pure gas region appear in finite
time, despite that gas is free to enter the well from the formation as long as the well pressure P is
lower than the critical pressure Pw.
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1. Introduction. In this work we study a compressible gas-liquid two-phase
model where we have included a pressure-controlled gas influx/efflux term relevant
for the study of gas-kick flow scenarios in oil wells. In Lagrangian variables the model
takes the following form

∂tn+ (n[ρ− n])∂xu = qwn[Pw − P (n, ρ)]

∂tρ+ (ρ[ρ− n])∂xu = qwn[Pw − P (n, ρ)]

g(n, ρ)∂tu+ ∂xP (n, ρ) = ∂x(E(n, ρ)∂xu), x ∈ (0, 1).

(1)

Here n is the gas mass, ρ is the total mass (sum of gas and liquid mass), u is fluid
velocity which is the same for both the gas and liquid phase, qw is a constant that
characterizes the well-formation interaction, Pw is a constant reference pressure (crit-
ical pressure) that determines whether gas will enter the well from the surrounding
formation (Pw > P ) or gas from the well will flow into the formation (Pw < P ).
Moreover, the function g(n, ρ) appearing in the mixture momentum equation is given
by

(2) g(n, ρ) =
ρ

ρ− n
,

and is produced when we go from Eulerian to Lagrangian variables, we refer to Section
2 for details. Pressure P (n, ρ) takes the form

(3) P (n, ρ) =
( n

ρl − [ρ− n]

)γ

, γ > 1,
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where ρl is liquid density assumed to be constant. The mixture viscosity coefficient
E(n, ρ) is given by

(4) E(n, ρ) =
( ρ

ρl − [ρ− n]

)β+1

, 0 < β < 1/3.

Moreover, boundary conditions are given by

(5) P (n, ρ) = E(n, ρ)ux, at x = 0, 1, t ≥ 0,

whereas initial data are

(6) n(x, 0) = n0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1].

The model is derived from a general drift-flux formulation. Details are provided in
the next section.

In a recent paper [5] we studied a similar model but where the well-formation
interaction was characterized by a rate function A(x, t) assumed to possess certain
properties like L∞([0, 1]) boundedness and H1([0, 1]) regularity. More precisely, the
model took the following form:

∂tn+ (nρ)∂xu = nA

∂tρ+ ρ2∂xu = nA

∂tu+ ∂xP (n, ρ) = −un
ρ
A+ ∂x(E(n, ρ)∂xu), x ∈ (0, 1).

(7)

The main difference between the model (7) and (1) is the pressure dependent well-
formation term

(8) A(x, t) = qw[Pw − P (n, ρ)].

In many application it is much more realistic to assume a pressure sensitive well-
formation interaction term as given by (8). For example, when drilling a well, control
of pressure in the open hole section is crucial for the operation. The pressure should
remain below the fracture pressure and above the pore pressure of the formation. If
the pressure in a section drops below the pore pressure, formation gas may leak into
the well. This is called a kick and has to be handled with care in order to avoid a
blow-out situation [1]. In this context Pw corresponds to the given fracture pressure
or pore pressure. However, the term (8) also introduces a tighter coupling between
the continuity equations and the momentum equation adding new challenges as far
as existence, uniqueness, and stability issues are concerned.

We obtain an existence result (Theorem 3.1) for the model (1)–(6), equipped
with the interaction term (8), for a class of weak solutions under suitable regularity
conditions on the initial data n0, ρ0, and u0. The key point leading to this result is
the possibility to obtain sufficient pointwise control on the gas mass n and total mass
ρ, upper as well as lower limits. More precisely, by assuming initially that the gas
mass n and liquid mass m (i.e., liquid mass m = ρ− n) do not disappear or blow up
on [0, 1], that is,

C−1 ≤ n(x, 0) ≤ C, 0 < µ ≤ m(x, 0) = ρ(x, 0)− n(x, 0) ≤ ρl − µ < ρl,

for a suitable constant C > 0 and µ > 0, then the same will be true for the masses n
and m = ρ− n for all t ∈ [0, T ] for any specified time T > 0. This nice feature allows
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us to obtain various estimates which ultimately ensure convergence to a weak solution.
A main tool in this analysis is the introduction of a suitable variable transformation
allowing for application of ideas and techniques inspired by those used in [16, 14, 19,
17, 12] in previous studies of the single-phase Navier-Stokes equations. More precisely,
we introduce the quantities c and Q(ρ, c) defined by

(9) c =
n

ρ
, Q =

ρ

ρl − [1− c]ρ
.

Consequently, the model (1) described in terms of (n, ρ, u) is converted into a system
described in terms of (c,Q, u). In this sense the approach of this work follows along
the same line as [9, 10, 20]. Special challenges we deal with in this work are:

• The energy estimate gives an upper bound of terms of the form

qw
∫ t

0

∫ 1

0
u2h(c)[cQ]γ dx ds and qw

∫ t

0

∫ 1

0
h(c)[cQ]2γ−1 dx ds with h(c) = c

1−c .
These terms appear due to the well-formation term (8) and the control of
these is directly exploited to obtain a pointwise upper bound of Q. In this
sense the model (1) relies on new arguments compared to the model without
well-formation interaction terms [9, 10, 20, 21]. It is also quite different from
the arguments used in [5] where we take advantage of the fact that we know
that the term A(x, t) in (7) is pointwise bounded.

• In order to show that c and Qβ is in W 1,2(I) for I = (0, 1), we rely on argu-
ments where the estimates of cx and (Qβ)x in L2(I) are coupled together, see
Lemma 4.3 and 4.4. Again this is due to the fact that we do not control the
well formation term (8) appearing in (1). It lives its own life dictated by the
pressure behavior P (n, ρ), in contrast to the analysis of the model (7) where
we assume that we have the necessary control of A(x, t), i.e., A(·, t) ∈W 1,2(I).

The rest of this paper is organized as follows. In Section 2 we derive the model (1)
starting from a general drift-flux model. In Section 3 we state precisely the main
theorem and its assumptions. In Section 4 we describe a priori estimates for the
auxiliary model obtained from (1) by using the variable transformation (9). In Section
5 we briefly explain how these estimates then imply convergence to a weak solution.

2. Derivation of the model. Many well operations in the context of petroleum
engineering involve gas-liquid flow in a wellbore where there is some interaction with
the surrounding reservoir. For examples of such models in the context of single-phase
flow we refer to [7, 8] and references therein. In this paper we consider a compressible,
transient two-phase gas-liquid model with inclusion of well-reservoir interaction. For
instance, gas-kick refers to a situation where gas flows into the well from the formation
at some regions along the wellbore. As this gas ascends in the well it will typically
experience a lower pressure. This leads to decompression of the gas, which in turn,
potentially can provoke blow-out like scenarios, see [1, 5, 6] and references therein for
more details.

The dynamics of the two-phase well flow is supposed to be dictated by a com-
pressible gas-liquid model of the drift-flux type. More precisely, this model is given
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as

∂t[αgρg] + ∂x[αgρgug] = [αgρg]A(x, t)

∂t[αlρl] + ∂x[αlρlul] = 0

∂t[αlρlul + αgρgug] + ∂x[αgρgu
2
g + αlρlu

2
l + P ] = −F + ∂x[ε∂xumix],

(10)

where umix = αgug + αlul and ε ≥ 0. This formulation allows us to study tran-
sient flows in a well together with possible flow of gas between well and surrounding
reservoir represented by the rate term A(x, t) = qw[Pw − P (n,m)] given in (8). The
model is supposed under isothermal conditions. The unknowns are ρl, ρg the liquid
and gas densities, αl, αg volume fractions of liquid and gas satisfying αg + αl = 1,
ul, ug velocities of liquid and gas, P common pressure for liquid and gas, and F rep-
resenting external forces like gravity and friction. Since the momentum is given only
for the mixture, we need an additional closure law which connects the two phase fluid
velocities. For more general information concerning two-phase flow dynamics we refer
to [5] and references therein.

In this work we consider the special case where a no-slip condition is assumed,
i.e.,

(11) ug = ul = u.

We use the notation n = αgρg and m = αlρl. Assuming a polytropic gas law relation
P = Cργg with γ > 1 and incompressible liquid ρl = Const, we get a pressure law of
the form

(12) P (n,m) = C
( n

ρl −m

)γ

,

since ρg = n/αg = n/(1 − αl) = ρl · n/(ρl −m). In particular, we see that pressure
becomes singular at transition to pure liquid phase, i.e., αl = 1 and αg = 0, which
yields m = ρl and n = 0. Another possibility is that the gas density ρg vanishes which
implies vacuum, i.e., P = 0. In order to treat this difficulty we shall consider (10) in
a free boundary problem setting where the masses m and n initially occupy only a
finite interval [a, b] ⊂ R. That is,

n(x, 0) = n0(x) > 0, m(x, 0) = m0(x) > 0, u(x, 0) = u0(x), x ∈ [a, b],

and n0 = m0 = 0 outside [a, b]. The viscosity coefficient ε is assumed to be a functional
of the masses m and n, i.e. ε = ε(n,m). More precisely, we assume that

(13) ε(n,m) = D
(n/m+ 1)(n+m)β

(ρl −m)β+1
, β ∈ (0, 1/3),

for a constant D, which is a natural generalization of the viscosity coefficient that was
used in [9, 20] to the case where we consider the full momentum equation. We refer
to [6] for more information concerning the choice of the viscosity coefficient.

We neglect external force terms (friction and gravity). We then rewrite the model
(10) slightly by adding the two continuity equations and introducing the total mass
ρ given by

(14) ρ = n+m.
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Hence, we consider the compressible gas-incompressible liquid two-phase model writ-
ten in the following form:

∂tn+ ∂x[nu] = nA

∂tρ+ ∂x[ρu] = nA

∂t[ρu] + ∂x[ρu
2] + ∂xP (n, ρ) = ∂x[ε(n, ρ)∂xu],

(15)

with A given by (8). Note that this system also takes the form

∂tn+ ∂x[nu] = nA

∂tρ+ ∂x[ρu] = nA,

u(∂tρ+ ∂x[ρu]) + ρ(∂tu+ u∂xu) + ∂xP (n, ρ) = ∂x[ε(n, ρ)∂xu],

(16)

which corresponds to

(∂tn+ u∂xn) + n∂xu = nA

(∂tρ+ u∂xρ) + ρ∂xu = nA,

ρ(∂tu+ u∂xu) + ∂xP (n, ρ) = −unA+ ∂x[ε(n, ρ)∂xu].

(17)

Setting the constants C and D appearing, respectively, in (12) and (13), to one, we
get

P (n, ρ) =
( n

ρl −m

)γ

=
( n

ρl − [ρ− n]

)γ

, γ > 1,(18)

ε(n, ρ) =
(n/m+ 1)(n+m)β

(ρl −m)β+1
=

1

[ρ− n]

( ρ

(ρl − [ρ− n])

)β+1

, β ∈ (0, 1/3).(19)

As indicated above, motivated by previous studies of the single-phase Navier-Stokes
model [16, 14, 19, 17, 12], we study (15) in a free-boundary setting where the total
mass ρ and gas mass n are of compact support initially and connect to the vacuum
regions (where n = ρ = 0) discontinuously. In other words, we shall study the Cauchy
problem (15) with initial data

(n, ρ, ρu)(x, 0) =

{
(n0, ρ0, ρ0u0) x ∈ [a, b],

(0, 0, 0) otherwise,

where minx∈[a,b] n0 > 0, minx∈[a,b] ρ0 > 0, and n0(x), ρ0(x) are in H1. Letting a(t)
and b(t) denote the particle paths initiating from (a, 0) and (b, 0), respectively, in the
x-t coordinate system, these paths represent free boundaries, i.e., the interface of the
gas-liquid mixture and the vacuum. These are determined by the equations

d

dt
a(t) = u(a(t), t),

d

dt
b(t) = u(b(t), t),

(−P (n, ρ) + ε(n, ρ)ux) (a(t)
+, t) = 0, (−P (n, ρ) + ε(n, ρ)ux) (b(t)

−, t) = 0.
(20)

We introduce a new set of variables (ξ, τ) by using the coordinate transformation

(21) ξ =

∫ x

a(t)

m(y, t) dy, τ = t.



6 STEINAR EVJE

Thus, ξ represents a convenient rescaling of x. In particular, the free boundaries
x = a(t) and x = b(t), in terms of the new variables ξ and τ , take the form

(22) ã(τ) = 0, b̃(τ) =

∫ b(t)

a(t)

m(y, t) dy = const,

where
∫ b

a
m0(y) dy is the total liquid mass initially, which we normalize to 1. In other

words, the interval [a, b] in the x-t system appears as the interval [0, 1] in the ξ-τ
system.

Remark 2.1. Note that we avoid imposing any conditions on the well-formation
term A by making use of the liquid mass in (22), which indeed is a conserved mass
in our system as described by the model (10). The price to pay is that the resulting
model takes a more complicated form as we will see below. In the work [5] we had to

impose a constraint of the form
∫ b(t)

a(t)
[nA](y, t) dy = 0 to ensure that the total mass ρ

is conserved.
Next, we rewrite the model itself (15) in the new variables (ξ, τ). First, in view

of the particle paths Xτ (x) given by

dXτ (x)

dτ
= u(Xτ (x), τ), X0(x) = x,

the system (17) now takes the form

dn

dτ
+ nux = nqw[Pw − P (n, ρ)]

dρ

dτ
+ ρux = nqw[Pw − P (n, ρ)]

ρ
du

dτ
+ P (n, ρ)x = −unqw[Pw − P (n, ρ)] + (ε(n, ρ)ux)x.

Applying (21) to shift from (x, t) to (ξ, τ) we get

nτ + (n[ρ− n])uξ = nqw[Pw − P (n, ρ)]

ρτ + (ρ[ρ− n])uξ = nqw[Pw − P (n, ρ)]( ρ

ρ− n

)
uτ + P (n, ρ)ξ = −u

( n

ρ− n

)
qw[Pw − P (n, ρ)] + (ε(n, ρ)[ρ− n]uξ)ξ,

for (ξ, τ) ∈ (0, 1)× [0,∞) with boundary conditions, in view of (20), given by

P (n, ρ) = ε(n, ρ)[ρ− n]uξ, at ξ = 0, 1, τ ≥ 0.

In addition, we have the initial data

n(ξ, 0) = n0(ξ), ρ(ξ, 0) = ρ0(ξ), u(ξ, 0) = u0(ξ), ξ ∈ [0, 1].

In the following we replace the coordinates (ξ, τ) by (x, t) such that the model now
takes the form

∂tn+ (n[ρ− n])∂xu = nqw[Pw − P (n, ρ)]

∂tρ+ (ρ[ρ− n])∂xu = nqw[Pw − P (n, ρ)]

g(n, ρ)∂tu+ ∂xP (n, ρ) = −uh(n, ρ)qw[Pw − P (n, ρ)] + ∂x(E(n, ρ)∂xu),

(23)
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for x ∈ (0, 1) where g(n, ρ) = ρ
ρ−n , h(ρ) =

n
ρ−n , and E(n, ρ) = ε(n, ρ)[ρ− n].

Typically, n ≪ ρ (if αg is not very close to 1) since the relation between gas
density ρg and liquid density ρl is of the order ρl/ρg = O(1000). Hence, for many
cases h(c) is close to 0, and we may neglect the term −uh(n, ρ)qw[Pw−P (n, ρ)], which
introduces a minor change of the mixture momentum due to the gas flow between well
and formation. For the applications we have in mind where the gas volume fraction
does not get too close to 1 since gas is dispersed in liquid, this approximation is indeed
reasonable. In other words, we consider the following model:

∂tn+ (n[ρ− n])∂xu = qwn[Pw − P (n, ρ)]

∂tρ+ (ρ[ρ− n])∂xu = qwn[Pw − P (n, ρ)]

g(n, ρ)∂tu+ ∂xP (n, ρ) = ∂x(E(n, ρ)∂xu), x ∈ (0, 1).

(24)

Here

(25) P (n, ρ) =
( n

ρl − [ρ− n]

)γ

, γ > 1,

and

(26) E(n, ρ) =
( ρ

ρl − [ρ− n]

)β+1

, 0 < β < 1/3.

Moreover, boundary conditions are given by

(27) P (n, ρ) = E(n, ρ)ux, at x = 0, 1, t ≥ 0,

whereas initial data are

(28) n(x, 0) = n0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1].

We observe that the model problem (24)–(28) coincides with the model (1)–(6) stated
in the introduction part.

3. A global existence result. Before we state the main result for the model
(24)–(28), we describe the notation we apply throughout the paper. W 1,2(I) = H1(I)
represents the usual Sobolev space defined over I = (0, 1) with norm ∥ · ∥W 1,2 . More-
over, Lp(K,B) with norm ∥ · ∥Lp(K,B) denotes the space of all strongly measurable,
pth-power integrable functions from K to B where K typically is subset of R and B
is a Banach space.

Theorem 3.1 (Main Result). Assume that γ > 1 and β ∈ (0, 1/3) respectively in
(25) and (26), and that the initial data (n0,m0, u0) satisfy (note that corresponding
constraint on ρ0 = n0 +m0 can be obtained from this)

(i) inf [0,1] n0 > 0, sup[0,1] n0 <∞, inf [0,1]m0 > 0, and sup[0,1]m0 < ρl;

(ii) n0,m0 ∈W 1,2(I);
(iii) u0 ∈ L2q(I), for q ∈ N.

As a consequence, the function c0 = n0

n0+m0
satisfies that

(29) inf
[0,1]

c0 > 0, sup
[0,1]

c0 < 1, c0 ∈W 1,2(I).

Moreover, the function Q0 = n0+m0

ρl−m0
satisfies that

(30) inf
[0,1]

Q0 > 0, sup
[0,1]

Q0 <∞, Q0 ∈W 1,2(I).
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In addition, we assume that Q0(x = 0) and c0(x = 0) are chosen such that

(31) P0(0) = [c0Q0]
γ(0) > Pw,

where Pw is the reference pressure which controls whether there is inflow or efflux of
gas at x = 0 at initial time. In other words, we assume efflux of gas at x = 0 at initial
time. Then the initial-boundary problem (24)–(28) possesses a global weak solution
(n, ρ, u) in the sense that for any T > 0, the following holds:

(A) We have the estimates:

n, ρ ∈ L∞([0, T ],W 1,2(I)), nt, ρt ∈ L2([0, T ], L2(I)),

u ∈ L∞([0, T ], L2q(I)) ∩ L2([0, T ],H1(I)).

More precisely, we have ∀(x, t) ∈ [0, 1]× [0, T ] that

0 < inf
x∈[0,1]

c(x, t), sup
x∈[0,1]

c(x, t) < 1, c :=
n

ρ
,

0 < µ inf
x∈[0,1]

(c) ≤ n(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c) <∞,

0 < µ ≤ ρ ≤ ρl − µ

1− supx∈[0,1](c)
<∞,

(32)

for a positive constant µ = µ(∥c0∥W 1,2(I), ∥Qβ
0∥W 1,2(I), ∥u0∥L2q(I), inf [0,1] c0, sup[0,1] c0,

inf [0,1]Q0, sup[0,1]Q0, T ) > 0.

(B) Moreover, the following equations hold,

nt + n[ρ− n]ux = qwn[Pw − P (n, ρ)],

ρt + ρ[ρ− n]ux = qwn[Pw − P (n, ρ)],

with (n, ρ)(x, 0) = (n0(x), ρ0(x)), for a.e. x ∈ (0, 1) and∫ ∞

0

∫ 1

0

[
ug(n, ρ)ϕt + [P (n, ρ)− E(n, ρ)ux]ϕx + qwuh(n, ρ)[Pw − P (n, ρ)]ϕ

]
dxdt

+

∫ 1

0

u0(x)g(n0(x), ρ0(x))ϕ(x, 0) dx = 0,

(33)

for any test function ϕ(x, t) ∈ C∞
0 (D), with D := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}

and where g(n, ρ) and h(n, ρ) are defined as

(34) g(n, ρ) =
ρ

ρ− n
, h(n, ρ) =

n

ρ− n
.

Note that g and h do not blow up due to the estimates in (32).

4. Estimates. Below we derive a priori estimates for (n, ρ, u) which are assumed
to be a smooth solution of (24)–(28). We then construct the approximate solutions of
(24) in Section 5 by mollifying the initial data n0, ρ0, u0 and obtain global existence
by taking the limit. More precisely, similar to [12, 9] we first assume that (n, ρ, u) is
a solution of (24)–(28) on [0, T ] satisfying

n, nt, nx, ntx, ρ, ρx, ρt, ρtx, u, ux, ut, uxx ∈ Cα,α/2(DT ) for some α ∈ (0, 1),

n(x, t) > 0, ρ(x, t) > 0, [ρ− n](x, t) < ρl on DT = [0, 1]× [0, T ].
(35)
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In the following we will frequently take advantage of the fact that the model (24) can
be rewritten in a form convenient for deriving various estimates. We first describe
this reformulation, and then present a number of a priori estimates.

4.1. A reformulation of the model (24). We introduce the variable

(36) c =
n

ρ
,

and see that (24) corresponds to

ρ∂tc+ c∂tρ+ (ρ2c[1− c])∂xu = qw[cρ][Pw − P (c, ρ)]

∂tρ+ (ρ2[1− c])∂xu = qw[cρ][Pw − P (c, ρ)]( 1

1− c

)
∂tu+ ∂xP (c, ρ) = ∂x(E(c, ρ)∂xu), x ∈ (0, 1),

that is,

∂tc = qwc[1− c][Pw − P (c, ρ)]

∂tρ+ ρ2[1− c]∂xu = qwcρ[Pw − P (c, ρ)]( 1

1− c

)
∂tu+ ∂xP (c, ρ) = ∂x(E(c, ρ)∂xu), x ∈ (0, 1),

which, in turn can be reformulated as

∂tc = c(1− c)A,

∂tρ+ ρ2[1− c]∂xu = cρA

g(c)∂tu+ ∂xP (c, ρ) = ∂x(E(c, ρ)∂xu),

(37)

where

(38) A = qw[Pw − P (c, ρ)], g(c) =
1

1− c
,

and

(39) P (c, ρ) = cγ
( ρ

ρl − [1− c]ρ

)γ

, γ > 1,

and

(40) E(c, ρ) =
( ρ

ρl − [1− c]ρ

)β+1

, 0 < β < 1/3.

Moreover, boundary conditions are given by

(41) P (c, ρ) = E(c, ρ)ux, at x = 0, 1, t ≥ 0,

whereas initial data are

(42) c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1].

Corollary 4.1. Under the assumptions of Theorem 3.1, it follows that for
t ∈ [0, T ] for a given time T > 0

(43) 0 ≤ inf
x∈[0,1]

c(x, t), sup
x∈[0,1]

c(x, t) < 1.
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Consequently, we have that

(44) 1 ≤ inf
x∈[0,1]

g(c) ≤ sup
x∈[0,1]

g(c) <∞, 0 ≤ inf
x∈[0,1]

h(c) ≤ sup
x∈[0,1]

h(c) <∞,

for g(c) = 1
1−c and h(c) = c

1−c .
Proof. Note that from (37) we have

ct = c(1− c)A(x, t),

which corresponds to

1

c(1− c)
ct = A(x, t), c ∈ (0, 1),

i.e.

G(c)t = A(x, t), G(c) = log
( c

1− c

)
.

This implies that

c(x, t)

1− c(x, t)
=

c0(x)

1− c0(x)
exp

(∫ t

0

A(x, s) ds
)
.

Note also that the inverse of h(c) = c/(1 − c) is h−1(d) = d/(1 + d), such that
h−1 : [0,∞) → [0, 1) and is one-to-one. Consequently,

(45) c(x, t) = h−1
( c0(x)

1− c0(x)
exp

(∫ t

0

A(x, s) ds
))
.

Clearly, for A = qw[Pw − P (c, ρ)] we have that

A ≤ qwPw,

since P ≥ 0. From the assumptions on n0, m0 given in Theorem 3.1, it follows that

(46) 0 < inf
[0,1]

c0(x), sup
[0,1]

c0(x) < 1.

Hence, in view of (45) it follows that supx∈[0,1] c(x, t) < 1. However, since we have
no upper limit on P (c, ρ), A can become an arbitrary large negative number which
implies, in view of (45), that there is no positive lower limit for c. We can only
conclude that and 0 ≤ infx∈[0,1] c(x, t). The estimates (44) follows directly from (43).

Remark 4.1. Note that the consequence of (43) is that for a finite time T > 0, no
pure gas regions (m = 0) will appear since supx∈[0,1] c < 1, although gas will enter the
well as long as well pressure P is lower than critical pressure Pw. However, at this
stage we cannot conclude anything about the possibility for getting pure liquid zones
(n = 0 corresponding to c = 0) due to flow of gas from well into the surrounding
formation, which takes place when well pressure P is higher than the critical pressure
Pw.

In order to obtain the a priori estimates, it will be convenient to introduce a
new reformulation of the model (37)–(42). This reformulation allows us to deal with
the potential singular behavior associated with the pressure law (39) and viscosity
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coefficient (40). A similar approach was employed in [9, 10, 20]. However, compared
to those works we now also have to take into account additional terms due to the
dynamic well-formation interaction and the fact that a full momentum equation is
used in the model. For that purpose, we introduce the variable

(47) Q(ρ, k) =
ρ

ρl − kρ
, k = 1− c,

and observe that

ρ =
ρlQ

1 + kQ
,

1

ρ
=

1

ρlQ
+
k

ρl
.(48)

Consequently, we get

Q(ρ, k)t = Qρρt +Qkkt

=
( 1

ρl − kρ
+

ρk

(ρl − kρ)2

)
ρt +

ρ2

(ρl − kρ)2
kt

=
ρl

(ρl − kρ)2
ρt +

ρ2

(ρl − kρ)2
kt

=
ρl

(ρl − kρ)2
[cρA− (1− c)ρ2ux] +

ρ2

(ρl − kρ)2
kt (using second equation of (37))

=
ρlcρA

(ρl − kρ)2
− ρl(1− c)ρ2

(ρl − kρ)2
ux +Q2kt

=
ρlcρ

2A

ρ(ρl − kρ)2
− ρl(1− c)Q2ux −Q2ct

= ρlcA
( 1

ρlQ
+
k

ρl

)
Q2 − ρl(1− c)Q2ux −Q2ckA (using (48) and first equation of (37))

= cA
(
Q+ kQ2

)
− ρl(1− c)Q2ux −Q2ckA

= cAQ+ cAkQ2 − ρl(1− c)Q2ux −Q2ckA

= cAQ− ρl(1− c)Q2ux.

Thus, we may rewrite the model (37) in the following form

∂tc = c(1− c)A, A = qw[Pw − P (cQ)],

∂tQ+ ρl(1− c)Q2ux = cAQ

g(c)∂tu+ ∂xP (cQ) = ∂x(E(Q)∂xu),

(49)

with

(50) P (cQ) = cγQγ , γ > 1,

and

(51) E(Q) = Qβ+1, 0 < β < 1/3.

This model is then subject to the boundary conditions

(52) P (cQ) = E(Q)ux, at x = 0, 1, t ≥ 0.

In addition, we have the initial data

(53) c(x, 0) = c0(x), Q(x, 0) = Q0(x), u(x, 0) = u0(x), x = [0, 1].
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4.2. A priori estimates. Now we derive a priori estimates for (c,Q, u) by mak-
ing use of the reformulated model (49)–(53).

Lemma 4.2 (Energy estimate). We have the basic energy estimate∫ 1

0

(g(c)
2
u2 +

h(c)[cQ]γ−1

ρl(γ − 1)

)
dx+

qw
2

∫ t

0

∫ 1

0

u2h(c)[cQ]γ dx ds

+
qwγ

ρl(γ − 1)

∫ t

0

∫ 1

0

h(c)[cQ]2γ−1 dx ds+

∫ t

0

∫ 1

0

Qβ+1(ux)
2 dx ds ≤ C1,

(54)

where C1 = C1(sup[0,1]Q0, ∥u0∥L2(I), ∥c0∥Lγ(I)). Moreover,

Q(x, t) ≤ C2, ∀(x, t) ∈ [0, 1]× [0, T ],(55)

where C2 = C2(sup[0,1]Q0, ∥u0∥L2(I), ∥c0∥Lγ(I), T ). Moreover, for any positive integer
q,

(56)

∫ 1

0

u2q(x, t) dx+ q(2q − 1)

∫ t

0

∫ 1

0

u2q−2Q1+β(ux)
2 dx ds ≤ C3,

where C3 = C3(∥u0∥L2q(I), T, q, C2).
Proof. We consider the proof in three steps.

Estimate (54): We multiply the third equation of (49) by u and integrate over [0, 1]
in space. Applying the boundary condition (52) and the fact that the first equation
of (49) is equivalent to

(57) g(c)t = h(c)A,

we get

(58)

∫ 1

0

(g(c)
2
u2

)
t
dx−

∫ 1

0

1

2
u2h(c)Adx−

∫ 1

0

P (cQ)ux dx = −
∫ 1

0

E(Q)(ux)
2 dx

Moreover, from the second equation of (49) we get

(59)
g(c)cγ

ρl(γ − 1)
(Qγ−1)t + cγQγux =

1

ρl
h(c)cγQγ−1A,

by multiplying with 1
ρl(1−c)c

γQγ−2. This equation also corresponds to

(60)
1

ρl(γ − 1)
(g(c)cγQγ−1)t −

Qγ−1

ρl(γ − 1)
(g(c)cγ)t + cγQγux =

1

ρl
h(c)cγQγ−1A,

which in turn can be rewritten as

(61)
1

ρl(γ − 1)
(g(c)cγQγ−1)t + P (cQ)ux =

γ

ρl(γ − 1)
(g(c)cγQγ−1)A,

where we have used the first equation of (49) as well as (57). Integrating (61) over
[0, 1] and combining it with (58), we get

d

dt

∫ 1

0

(g(c)
2
u2 +

g(c)cγQγ−1

ρl(γ − 1)

)
dx− qw

2

∫ 1

0

u2h(c)[Pw − P (cQ)] dx

+

∫ 1

0

E(Q)(ux)
2 dx =

qwγ

ρl(γ − 1)

∫ 1

0

g(c)cγQγ−1[Pw − P (cQ)] dx.



GAS-LIQUID MODEL 13

In other words, we obtain the following integral equality

d

dt

∫ 1

0

(g(c)
2
u2 +

g(c)cγQγ−1

ρl(γ − 1)

)
dx+

qw
2

∫ 1

0

u2h(c)P (cQ) dx

+
qwγ

ρl(γ − 1)

∫ 1

0

g(c)cγQγ−1P (cQ) dx+

∫ 1

0

E(Q)(ux)
2 dx

=
qwPw

2

∫ 1

0

u2h(c) dx+
qwPwγ

ρl(γ − 1)

∫ 1

0

g(c)cγQγ−1 dx.

Using that sup c < 1, 1 ≤ g(c) <∞, and 0 ≤ h(c) <∞, in view of Corollary 4.1, appli-

cation of Gronwall’s inequality, respectively, for the term
∫ 1

0
u2h(c) dx ≤

∫ 1

0
g(c)u2 dx

and
∫ 1

0
g(c)cγQγ−1 dx appearing on the right hand side, gives (54).

Estimate (55): In order to obtain a pointwise upper bound for Q we will need the
boundedness of the (new) higher order terms

∫∫
u2h(c)[cQ]γdxds and

∫∫
h(c)[cQ]2γ−1dxds

obtained from (54). From the second equation of (49) we deduce the equation

(62)
g(c)

ρl
(Qβ)t + βQβ+1ux =

β

ρl
h(c)QβA.

In view of (57) this corresponds to

(63) (g(c)Qβ)t + βρlQ
β+1ux = (β + 1)h(c)QβA.

Integrating over [0, t], we get

(64) g(c)Qβ(x, t) = g(c0)Q
β(x, 0)− βρl

∫ t

0

Qβ+1ux ds+ (β + 1)

∫ t

0

h(c)QβAds.

Then, we integrate the third equation of (49) over [0, x] and get

∫ x

0

g(c)ut(y, t) dy + P (cQ)− P (cQ(0, t)) + (E(Q)ux)(0, t) = E(Q)ux = Qβ+1ux.

Using the boundary condition (52) and inserting the above relation into the right
hand side of (64), we get after an application of (57)

g(c)Qβ(x, t)− g(c)Qβ(x, 0)

= −βρl
∫ t

0

(∫ x

0

g(c)ut(y, t) dy + P (cQ)
)
ds+ (β + 1)

∫ t

0

h(c)QβAds

= −βρl
∫ x

0

(g(c)u(y, t)− g(c0)u0(y)) dy + βρl

∫ t

0

∫ x

0

uh(c)Ady ds

− βρl

∫ t

0

P (cQ) ds+ (β + 1)

∫ t

0

h(c)QβAds.

(65)



14 STEINAR EVJE

Consequently, since P (cQ) ≥ 0 and using that A = qw[Pw − P (cQ)], we get

g(c)Qβ(x, t)

≤ g(c0)Q
β
0 (x) + βρl

∫ 1

0

|g(c)u(y, t)| dy + βρl

∫ 1

0

|g(c0)u0(y)| dy

+ βρlqw

∫ t

0

∫ x

0

uh(c)[Pw − P (cQ)] dy ds+ (β + 1)qw

∫ t

0

h(c)Qβ [Pw − P (cQ)] ds

≤ g(c0)Q
β
0 (x) + βρl sup

x∈[0,1]

g(c)

∫ 1

0

|u(y, t)| dy + βρl sup
x∈[0,1]

g(c0)

∫ 1

0

|u0(y)| dy

+ βρlqwPw sup
x∈[0,1]

h(c)

∫ t

0

∫ x

0

|u| dy ds+ βρlqw

∫ t

0

∫ x

0

|u|h(c)P (cQ) dy ds

+ (β + 1)qwPw sup
x∈[0,1]

(c)

∫ t

0

g(c)Qβ ds.

Applying Hölder’s inequality and (54) as well as assumptions on initial data u0 we

can bound
∫ 1

0
|u| dy and

∫ 1

0
|u0| dy. Moreover, the term

∫ t

0
g(c)Qβ ds can be controlled

by means of Gronwall’s inequality.
Consequently, the upper bound (55) then follows if we can show that

∫ t

0

∫ x

0
|u|h(c)P (cQ) dy ds

is bounded. For that purpose we introduce the splitting |u|h(c)P (cQ) = |u|h(c)1/2[cQ]γ/2·
h(c)1/2[cQ]γ/2 in combination with Young’s inequality:∫ t

0

∫ 1

0

|u|h(c)P (cQ) dx ds

≤ 1

2

∫ t

0

∫ 1

0

|u|2h(c)[cQ]γ dx ds+
1

2

∫ t

0

∫ 1

0

h(c)[cQ]γ dx ds

≤ C1 +
1

2

∫ t

0

∫ 1

0

h(c)[cQ]γ dx ds,

(66)

where we have used (54). To estimate the last term we see that

h(c)[cQ]γ = h(c)1/p[cQ]γ · h(c)1−1/p, p > 1.

By choosing p = 2γ−1
γ = 2 − 1

γ > 1, that is, q = 2γ−1
γ−1 (such that 1

p + 1
q = 1) we see

that application of Young’s inequality allows us to estimate as follows:∫ t

0

∫ 1

0

h(c)[cQ]γ dx ds ≤ 1

p

∫ t

0

∫ 1

0

h(c)[cQ]γp dx ds+
1

q

∫ t

0

∫ 1

0

h(c) dx ds

=
γ

2γ − 1

∫ t

0

∫ 1

0

h(c)[cQ]2γ−1 dx ds+
γ − 1

2γ − 1

∫ t

0

∫ 1

0

h(c) dx ds ≤ C,

in view of (54) and Corollary 4.1 and for an appropriate choice of C. Thus, the
estimate (55) has been proved. In particular, the following estimate holds:

(67) |A| ≤ qw(Pw + Cγ
2 ) :=M.

Estimate (56): Multiplying the third equation of (49) by 2qu2q−1, integrating over
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[0, 1]× [0, t] and integration by parts together with application of the boundary con-
ditions (52) and the equation (57), we get

∫ 1

0

g(c)u2q dx+ 2q(2q − 1)

∫ t

0

∫ 1

0

Qβ+1(ux)
2u2q−2 dx ds

=

∫ 1

0

g(c0)u
2q
0 dx+ 2q(2q − 1)

∫ t

0

∫ 1

0

[cQ]γu2q−2ux dx ds+

∫ t

0

∫ 1

0

h(c)u2qAdxds.

(68)

For the second term on the right hand side of (68) we apply Cauchy’s inequality with
ε,

(69) ab ≤ (1/4ε)a2 + εb2,

and get∫ t

0

∫ 1

0

[cQ]γu2q−2ux dx ds

≤ 1

4ε

∫ t

0

∫ 1

0

c2γQ2γ−β−1u2q−2 dx ds+ ε

∫ t

0

∫ 1

0

Qβ+1u2q−2(ux)
2 dx ds

≤ 1

4ε
sup

x∈[0,1]

(c2γ)

∫ t

0

∫ 1

0

Q2γ−β−1u2q−2 dx ds+ ε

∫ t

0

∫ 1

0

Qβ+1u2q−2(ux)
2 dx ds.

The last term clearly can be absorbed in the second term of the left-hand side
of (68) by the choice ε = 1/2. Finally, let us see how we can bound the term∫ t

0

∫ 1

0
u2q−2Q2γ−1−β dx ds. In view of Young’s inequality ab ≤ (1/p)ap+(1/r)br where

1/p+ 1/r = 1, we get for the choice p = q and r = q/(q − 1)∫ t

0

∫ 1

0

u2q−2Q2γ−1−β dx ds ≤ 1

q

∫ t

0

∫ 1

0

Q(2γ−1−β)q dx ds+
q − 1

q

∫ t

0

∫ 1

0

u2q dx ds

≤ C
(2γ−1−β)q
2

q
t+

q − 1

q

∫ t

0

∫ 1

0

u2q dx ds,

by using (55). To sum up, we get

∫ 1

0

g(c)u2q dx+ q(2q − 1)

∫ t

0

∫ 1

0

Qβ+1(ux)
2u2q−2 dx ds−

∫ 1

0

g(c0)u
2q
0 dx

≤ 2q(2q − 1)
1

4ε

[C(2γ−1−β)q
2

q
t+

q − 1

q

∫ t

0

∫ 1

0

u2q dx ds
]
+M

∫ t

0

∫ 1

0

g(c)u2q dx ds

= (2q − 1)
[
C

(2γ−1−β)q
2 t+ (q − 1)

∫ t

0

∫ 1

0

u2q dx ds
]
+M

∫ t

0

∫ 1

0

g(c)u2q dx ds,

(70)

where we have used (67) and c ≤ 1. In view of Corollary 4.1, application of Gronwall’s

inequality then allows us to handle the term
∫ t

0

∫ 1

0
u2q dx ds appearing twice on the

right hand side of (70). Here we also use that 1
g(c) ≤ 1 and sup g(c) <∞. Hence, the

estimate (56) follows.
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Remark 4.2. As a consequence of estimate (55), we can conclude that |A| ≤ M
as described by (67). A revisit of Corollary 4.1, see (45) and (29), then implies that

(71) 0 < inf
x∈[0,1]

c(x, t),

as stated in Theorem 3.1, Part (A). In other words, when the well initially is filled
with a mixture of gas and liquid as described by the assumptions of Theorem 3.1, there
exists no points in the well where all the gas will disappear in finite time, despite the
fact that the gas is ”free” to flow into the surrounding formation as long as the well
pressure P is higher than the critical pressure Pw.

The next lemma represents a first step toward an estimate of c(x, t) in W 1,2(I).
Lemma 4.3. We have the estimate

(72)

∫ 1

0

(cx)
2 dx ≤

∫ 1

0

(c0,x)
2 dx+ C4

∫ t

0

∫ 1

0

[
(cx)

2 + (Qβ)2x

]
dx ds,

for a constant C4 = C4(C2, T ).
Proof. We set w = cx and differentiate the first equation of (49) with respect to

x which yields

wt = w(1− c)A− cwA+ c(1− c)Ax

= w(1− 2c)qw[Pw − P (cQ)]− c(1− c)qwγ(cQ)γ−1[wQ+ cQx]

=
(
(1− 2c)qw[Pw − P (cQ)]− (1− c)qwγ(cQ)γ

)
w − c(1− c)cγQγ−β qwγ

β
(Qβ)x

= C(c,Q)w +D(c,Q)(Qβ)x,

for appropriate choices of the constants C and D and where we have used the fact
that 1

βQ
1−β(Qβ)x = Qx. Hence, multiplying by w and integrating over [0, 1] we get∫ 1

0

(
1

2
w2)t dx =

∫ 1

0

Cw2 dx+

∫ 1

0

Dw(Qβ)x dx.(73)

Clearly, in view of the pointwise upper bound on Q given by (55) and the bound on
c from Corollary 4.1, we see that

1

2

d

dt

∫ 1

0

w2 dx ≤ sup
x∈[0,1]

|C|
∫ 1

0

w2 dx+
1

2
sup

x∈[0,1]

|D|
∫ 1

0

w2 dx+
1

2
sup

x∈[0,1]

|D|
∫ 1

0

(Qβ)2x dx

≤ C4

2

∫ 1

0

[w2 + (Qβ)2x] dx.

where we have used Cauchy’s inequality and an appropriate choice of the constant
C4.

In the following lemma, whose proof is along the line of previous works [9, 20],
the estimate of (Qβ)x and cx in L2(I) is coupled together by exploiting the result of
Lemma 4.3.

Lemma 4.4. We have the estimate

(74)

∫ 1

0

[
(cx)

2 + (Qβ)2x

]
dx ≤ C5,

for a constant C5 = C5(∥Qβ
0∥W 1,2(I), ∥c0∥W 1,2(I), ∥u0∥L2(I), ∥u0∥L4(I), C1, C2, C4, T ).
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Proof. From (63) we get

(75) (g(c)Qβ)t + βρlQ
β+1ux = (β + 1)h(c)QβA.

Using (75) in the third equation of (49) and integrating in time over [0, t] we arrive
at

∫ t

0

g(c)ut ds+

∫ t

0

P (cQ)x ds =

∫ t

0

(E(Q)ux)x ds

=
1

βρl

∫ t

0

(
(β + 1)h(c)QβA− (g(c)Qβ)t

)
x
ds.

(76)

This corresponds to

βρl[g(c)u− g(c0)u0]− βρl

∫ t

0

uh(c)Ads+ βρl

∫ t

0

P (cQ)x ds

=

∫ t

0

(
(β + 1)h(c)QβA

)
x
ds− (g(c)Qβ)x + (g(c0)Q

β
0 )x,

(77)

where we have used (57). Dividing on g(c) ≥ 1 we arrive at

βρl[u− g(c0)

g(c)
u0]−

βρl
g(c)

∫ t

0

uh(c)Ads+
βρl
g(c)

∫ t

0

P (cQ)x ds

=
(β + 1)

g(c)

∫ t

0

(
h(c)QβA

)
x
ds− g(c)x

g(c)
Qβ − (Qβ)x +

g(c0)x
g(c)

Qβ
0 +

g(c0)

g(c)
(Qβ

0 )x.

(78)

That is,

(Qβ)x = −g(c)x
g(c)

Qβ +
g(c0)x
g(c)

Qβ
0 +

g(c0)

g(c)
(Qβ

0 )x

− βρl

[
u− g(c0)

g(c)
u0

]
+
βρlqw
g(c)

∫ t

0

uh(c)[Pw − P (cQ)] ds− βρl
g(c)

∫ t

0

P (cQ)x ds

+
qw(β + 1)

g(c)

∫ t

0

(
h(c)Qβ [Pw − P (cQ)]

)
x
ds.

(79)
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Multiplying (79) by (Qβ)x and integrating over [0, 1] in x, we get

∫ 1

0

(Qβ)2x dx

= −
∫ 1

0

(g(c)cxQ
β)(Qβ)x dx+

∫ 1

0

(g(c0)2c0,x
g(c)

Qβ
0

)
(Qβ)x dx+

∫ 1

0

(g(c0)
g(c)

(Qβ
0 )x

)
(Qβ)x dx

− βρl

∫ 1

0

(Qβ)x

[
(u− g(c0)

g(c)
u0) +

1

g(c)

∫ t

0

P (cQ)x ds−
qw
g(c)

∫ t

0

uh(c)[Pw − P (cQ)] ds
]
dx

+
qw(β + 1)

g(c)

∫ 1

0

(Qβ)x

[∫ t

0

(
h(c)Qβ [Pw − P (cQ)]

)
x
ds
]
dx

≤
(∫ 1

0

(Qβ)2x dx
)1/2(

∥g(c)Qβcx∥L2(I) +
∥∥∥g(c0)2c0,x

g(c)
Qβ

0

∥∥∥
L2(I)

+
∥∥∥ g(c0)

g(c)
(Qβ

0 )x

∥∥∥
L2(I)

+ βρl

∥∥∥u− g(c0)

g(c)
u0

∥∥∥
L2(I)

+ βρl

∥∥∥ 1

g(c)

∫ t

0

P (cQ)x ds
∥∥∥
L2(I)

+ βρlqw

∥∥∥ 1

g(c)

∫ t

0

uh(c)[Pw − P (cQ)] ds
∥∥∥
L2(I)

+ (β + 1)qw

∥∥∥ 1

g(c)

∫ t

0

(
h(c)Qβ [Pw − P (cQ)]

)
x
ds
∥∥∥
L2(I)

)
:= ab,

(80)

where we have used Hölder’s inequality and g′(c) = g(c)2. Cauchy’s inequality ab ≤
a2/2 + b2/2 then gives

∫ 1

0

(Qβ)2x dx ≤ 1

2

∫ 1

0

(Qβ)2x dx

+
1

2

(
∥g(c)Qβcx∥L2(I) +

∥∥∥g(c0)2c0,x
g(c)

Qβ
0

∥∥∥
L2(I)

+
∥∥∥ g(c0)

g(c)
(Qβ

0 )x

∥∥∥
L2(I)

+ βρl

∥∥∥u− g(c0)

g(c)
u0

∥∥∥
L2(I)

+ βρl

∥∥∥ 1

g(c)

∫ t

0

P (cQ)x ds
∥∥∥
L2(I)

+ βρlqw

∥∥∥ 1

g(c)

∫ t

0

uh(c)[Pw − P (cQ)] ds
∥∥∥
L2(I)

+ (β + 1)qw

∥∥∥ 1

g(c)

∫ t

0

(
h(c)Qβ [Pw − P (cQ)]

)
x
ds
∥∥∥
L2(I)

)2

.

(81)

The following estimates can be obtained where the constants Ai, i = 0, . . . , 9 only
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depend on the constants C1, C2, C3, C4, T , and initial data :

∥g(c)Qβcx∥2L2(I) ≤ A0 +A1

∫ t

0

∫ 1

0

[
(cx)

2 + (Qβ)2x

]
dx ds,(82) ∥∥∥g(c0)2c0,x

g(c)
Qβ

0

∥∥∥2
L2(I)

≤ A2,(83) ∥∥∥ g(c0)

g(c)
(Qβ

0 )x

∥∥∥2
L2(I)

≤ A3,(84) ∥∥∥u− g(c0)

g(c)
u0

∥∥∥2
L2(I)

≤ A4,(85) ∥∥∥ 1

g(c)

∫ t

0

P (cQ)x ds
∥∥∥2
L2(I)

≤ A5

∫ t

0

∫ 1

0

(Qβ)2x dx ds+A6

∫ t

0

∫ 1

0

(cx)
2 dx ds,(86) ∥∥∥ 1

g(c)

∫ t

0

uh(c)[Pw − P (cQ)] ds
∥∥∥2
L2(I)

≤ A7,(87) ∥∥∥ 1

g(c)

∫ t

0

(
h(c)Qβ [Pw − P (cQ)]

)
x
ds
∥∥∥2
L2(I)

(88)

≤ A8

∫ t

0

∫ 1

0

(Qβ)2x dx ds+A9

∫ t

0

∫ 1

0

(cx)
2 dx ds.

For estimate (82) we have used (72) of Lemma 4.3 together with estimate (55) of
Lemma 4.2 and Corollary 4.1. Estimates (83) and (84) follow from Corollary 4.1
and assumptions on initial data c0 and Q0. Moreover, estimate (85) is obtained
by application of (54) of Lemma 4.2. Similarly, estimate (87) follows by first using
Hölder’s inequality, followed by application of Cauchy’s inequality

(uh(c)[Pw − P (cQ)])2 ≤ 1

2
u4 +

1

2
h(c)4[Pw − P (cQ)]4,

in combination with estimates (56) and (55) of Lemma 4.2, as well as the pointwise
upper bound on h(c). Estimate (86) is obtained as follows:∫ t

0

∫ 1

0

P (cQ)2x dx ds =

∫ t

0

∫ 1

0

(
Qγ(cγ)x + cγ(Qγ)x

)2

dx ds

≤ 2
(∫ t

0

∫ 1

0

Q2γ(cγ)2x dx ds+

∫ t

0

∫ 1

0

c2γ(Qγ)2x dx ds
)

≤ 2( sup
x∈[0,1]

Q)2γ
∫ t

0

∫ 1

0

(cγ)2x dx ds+ 2( sup
x∈[0,1]

c)2γ
∫ t

0

∫ 1

0

(Qγ)2x dx ds

≤ 2C2γ
2

∫ t

0

∫ 1

0

(cγ)2x dx ds+ 2

∫ t

0

∫ 1

0

(Qγ)2x dx ds,

(89)

in view of estimate (55) and Corollary 4.1. Moreover,∫ t

0

∫ 1

0

(Qγ)2x dx ds =

(
γ

β

)2 ∫ t

0

∫ 1

0

Q2(γ−β)(Qβ)2x dx ds

≤
(
γ

β

)2

C
2(γ−β)
2

∫ t

0

∫ 1

0

(Qβ)2x dx ds

(90)
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and ∫ t

0

∫ 1

0

(cγ)2x dx ds = γ2
∫ t

0

∫ 1

0

c2(γ−1)(cx)
2 dx ds ≤ γ2

∫ t

0

∫ 1

0

(cx)
2 dx ds,(91)

in light of Corollary 4.1 and Lemma 4.2. Thus, (89)–(91) implies estimate (86).
Furthermore, as a consequence of the well-reservoir interaction we must also estimate
the following term

∫ t

0

∫ 1

0

(
h(c)Qβ [Pw − P (cQ)]

)2

x
dx ds

=

∫ t

0

∫ 1

0

[
g(c)2cxQ

β [Pw − P (cQ)] + h(c)[Pw − P (cQ)](Qβ)x − h(c)QβP (cQ)x

]2
dx ds

≤ B1

∫ t

0

∫ 1

0

(cx)
2 dx ds+B2

∫ t

0

∫ 1

0

(Qβ)2x dx ds+B3

∫ t

0

∫ 1

0

P (cQ)2x dx ds,

(92)

where we have used that h′(c) = g(c)2, Corollary 4.1, and Lemma 4.2 and the con-
stants B1, B2, B3 have been chosen in a suitable manner. Now, estimate (88) follows
from (92) and (89)–(91). Combining (81) with estimates (82)–(88), we get

1

2

∫ 1

0

(Qβ)2x dx ≤ C +D

∫ t

0

∫ 1

0

(Qβ)2x dx ds+ E

∫ t

0

∫ 1

0

(cx)
2 dx ds.

Adding 1
2

∫ 1

0
(cx)

2dx to both sides of the above inequality and employing estimate (72)
of Lemma 4.3, we get an inequality of the following form

1

2

∫ 1

0

[(cx)
2 + (Qβ)2x] dx ≤ C + C

∫ t

0

∫ 1

0

[(cx)
2 + (Qβ)2x] dx ds,

for an appropriate choice of the constant C. Thus, application of Gronwall’s inequality
gives the estimate (74).

The result of Lemma 4.6 is crucial. We follow along the idea of previous works [12,
9, 20], however, the proof becomes more involved due to the appearance of additional
well-formation interaction terms. Thanks to the fact that we have the estimate (67)
of the well-formation term A = qw[Pw−P (cQ)], the proof can borrow arguments from
the one presented in [5] with some modifications. In particular, more care is needed
for the estimate of Q−1 at the boundary point x = 0. For that purpose we make use
of the following lemma.

Lemma 4.5. We consider the following ODE system for z(t), y(t):

dz

dt
= z(1− z)[Pw − (zy)γ ]

dy

dt
= −(1− z)zγy1+γ−β + zy[Pw − (zy)γ ],

(93)

where Pw, γ, and β are given as described in Theorem 3.1. For a given time T > 0,
if

(94) 0 < inf
t∈[0,T ]

z(t), sup
t∈[0,T ]

z(t) < 1,
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and initial data z0, y0 is chosen such that

(95) (z0y0)
γ > Pw,

then we can conclude that

(96) (zy)(t) ≥ K :=
(Pw

2

) 1
γ

, t ∈ [0, T ].

That is,

(97)
1

y(t)
≤ 1

K
sup

t∈[0,T ]

z(t) ≤ 1

K
, t ∈ [0, T ].

Proof. First, we observe that (93) can be reformulated as

d ln(z)

dt
= (1− z)[Pw − (zy)γ ]

d ln(y)

dt
= −(1− z)zγyγ−β + z[Pw − (zy)γ ],

(98)

by multiplying the first equation by z−1 and the second by y−1. Summing these two
equations yields

d ln(zy)

dt
= −(1− z)zβ(zy)γ−β + [Pw − (zy)γ ].

Let v = ln(zy) and write this equation in the following form

(99)
dv

dt
= −a(t)ev(γ−β) − evγ + Pw := h(t, v),

where a(t) = (1− z(t))z(t)β ∈ (0, 1) in view of (94). We want to prove the following
statement for a constant M > 0 and time interval [0, T ]:

(100) If h(t, v) ≥ 0 for v ≤M , then v(t) ≥ min{v(0),M}.

For that purpose, let us assume that there is a time t2 ∈ [0, T ] such that

(101) v(t2) < min{v(0),M}.

Due to continuity of v(t) it follows that there must be a time t1 ∈ [0, t2) such that

v(t) ≤ min{v(0),M} ≤M, t ∈ (t1, t2]

and v(t1) = min{v(0),M}.

It follows from the assumption of statement (100) that h(t, v) ≥ 0 for t ∈ (t1, t2).
Now we integrate (99) over (t1, t2) and get

v(t2) = v(t1) +

∫ t2

t1

h(s, v) ds ≥ v(t1) = min{v(0),M}.

This contradicts (101) which ensures that (100) is true. The final step is to find an
appropriate choice of M > 0 such that h(t, v) ≥ 0 for v ≤M . Clearly, we have that

h(t, v) ≥ Pw − 2evγ ≥ 0,
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if evγ ≤ 1/2Pw, that is, v ≤ (1/γ) ln(Pw/2) :=M . Then, we conclude from (100) and
(95) that

v(t) ≥ min{v(0),M} =M, since v(0) = ln(z0y0) >
1

γ
ln(Pw) > M,

from which (96) follows.
Lemma 4.6 (Pointwise lower limit). Let 0 < β < 1/3. Then we have a pointwise

lower limit on Q(x, t) of the form

(102) Q(x, t) ≥ C6, ∀(x, t) ∈ [0, 1]× [0, T ],

where the constant C6 = C6(C2, C3, C5, inf [0,1]Q0, sup[0,1]Q0, ∥u0∥L2(I), inf [0,1] c0, T ).

Proof. We first define

v(x, t) =
1

Q(x, t)
, V (t) = max

[0,1]×[0,t]
v(x, s).

We calculate as follows:

v(x, t)− v(0, t) =

∫ x

0

∂xv dx ≤
∫ 1

0

|∂xQ|v2 dx =
1

β

∫ 1

0

vβ+1|∂xQβ | dx

≤ 1

β

(∫ 1

0

|∂xQβ |2 dx
)1/2(∫ 1

0

v2(β+1) dx
)1/2

≤ C
1/2
5

β

(∫ 1

0

v dx
)1/2(

(max
[0,1]

v(·, t))2β+1
)1/2

≤ C
1/2
5

β

(∫ 1

0

v dx
)1/2(

max
[0,1]

v(·, t)
)β+1/2

,

(103)

where we have used (74). Next, we focus on how to estimate
∫ 1

0
v dx. The starting

point is the observation that the second equation of (49) can be written as

vt − ρl([1− c]u)x − ρlcxu = −[cA]v.

Integrating over [0, 1]× [0, t] we get

∫ 1

0

v(x, t) dx =

∫ 1

0

v(x, 0) dx+ ρl

∫ t

0

[(1− c)u(1, s)− (1− c)u(0, s)] ds

+ ρl

∫ t

0

∫ 1

0

cxu dx ds−
∫ t

0

∫ 1

0

[cA]v dx ds

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

∫ t

0

max
[0,1]

|u(·, s)| ds+ ρl
2

∫ t

0

∫ 1

0

[c2x + u2] dx ds+M

∫ t

0

∫ 1

0

v dx ds

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

√
t
(∫ t

0

∥u2(s)∥L∞(I) ds
)1/2

+
ρlt

2
(C5 + 2C1) +M

∫ t

0

∫ 1

0

v dx ds,

(104)

where we have used Hölder’s inequality, Cauchy’s inequality, and the results of Lemma 4.2
and Lemma 4.4, as well as estimate (67). In light of Sobolev’s inequality ∥f∥L∞(I) ≤
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C∥f∥W 1,1(I) it follows that the second term on the right hand side of (104) can be
estimated as follows:∫ t

0

∥u2(s)∥L∞(I) ds

≤ C

∫ t

0

∥u2(s)∥W 1,1(I) ds = C
(∫ t

0

∫ 1

0

u2 dx ds+

∫ t

0

∫ 1

0

|(u2)x| dx ds
)

≤ CtC1 + 2C

∫ t

0

∫ 1

0

Q
1+β
2 |u||ux|v

1+β
2 dx ds

≤ CtC1 + 2C
(∫ t

0

∫ 1

0

Q1+βu2xu
2 dx ds

)1/2(∫ t

0

∫ 1

0

v1+β dx ds
)1/2

≤ CtC1 + 2CC
1/2
3

(∫ t

0

∫ 1

0

v1+β dx ds
)1/2

,

(105)

where we have used (54) and (56) with q = 2 and Hölder’s inequality. Combining
(104) and (105) we get∫ 1

0

v(x, t) dx

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

√
t
[
CtC1 + 2CC

1/2
3

(∫ t

0

∫ 1

0

v1+β dx ds
)1/2]1/2

+
ρlt

2
(C5 + 2C1) +M

∫ t

0

∫ 1

0

v dx ds

≤ C + C
(∫ t

0

∫ 1

0

v1+β dx ds
)1/4

+M

∫ t

0

∫ 1

0

v dx ds

= C + C
(∫ t

0

∫ 1

0

v2βv1−β dx ds
)1/4

+M

∫ t

0

∫ 1

0

v dx ds

≤ C + CV (t)2β/4
(∫ t

0

∫ 1

0

v1−β dx ds
)1/4

+MV (t)β
∫ t

0

∫ 1

0

v1−β dx ds,

(106)

where C = C(inf [0,1]Q0, C1, T ). Now we focus on estimating
∫ t

0

∫ 1

0
v1−β dx ds. For

that purpose, we note that the second equation of (49), by multiplying with Q
β−1
2 −1,

can be written as

(Q
β−1
2 )t = ρl

1− β

2
(1− c)Q

β+1
2 ux − 1− β

2
[cA]Q

β−1
2 .

Integrating this equation over [0, t] we get

Q
β−1
2 (x, t) = Q

β−1
2 (x, 0) + ρl

1− β

2

∫ t

0

(1− c)Q
β+1
2 ux ds−

1− β

2

∫ t

0

[cA]Q
β−1
2 ds.

Consequently, using the inequality (a+ b)2 ≤ 2a2 + 2b2 we get

Qβ−1(x, t) ≤ 2Qβ−1(x, 0) + 4ρ2l

(1− β

2

)2(∫ t

0

Q
β+1
2 ux ds

)2

+ 4
(1− β

2

)2(∫ t

0

[cA]Q
β−1
2 ds

)2

≤ 2Qβ−1(x, 0) + ρ2l t(1− β)2
∫ t

0

Qβ+1u2x ds+M2t(1− β)2
∫ t

0

Qβ−1 ds,
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by Hölder’s inequality. Integrating over [0, 1] in space yields

∫ 1

0

v1−β dx =

∫ 1

0

Qβ−1 dx

≤ 2

∫ 1

0

v1−β(x, 0) dx+ ρ2l t(1− β)2
∫ 1

0

∫ t

0

Qβ+1u2x ds dx+M2t(1− β)2
∫ 1

0

∫ t

0

Qβ−1 ds dx

≤ C +M2t(1− β)2
∫ t

0

∫ 1

0

v1−β dx ds,

(107)

with C = C(inf [0,1]Q0, C1, T ) where we have used (54). Thus, by Gronwall’s inequal-
ity we conclude that

(108)

∫ 1

0

v1−β dx ≤ C( inf
[0,1]

Q0, C1,M, T ).

Consequently, (106) and (108) imply that∫ 1

0

v(x, t) dx ≤ C +D[V (t)β/2 + V (t)β ] ≤ E[1 + V (t)β/2 + V (t)β ],(109)

for appropriate constants C,D and E that depend essentially on inf [0,1]Q0,M, T,C1.
Substituting (109) into (103) we get

v(x, t)− v(0, t) ≤ C
1/2
5

β

(∫ 1

0

v dx
)1/2(

max
[0,1]

v(·, t)
)β+1/2

≤ (C5E)1/2

β
[1 + V (t)β/2 + V (t)β ]1/2V (t)β+1/2

≤ F [1 + V (t)β/4 + V (t)β/2]V (t)β+1/2

≤ F max(CV (t)(3/2)β+1/2, 3),

(110)

for F = F (C5, E). Here we have used the inequality (1 + xβ/4 + xβ/2)xβ+1/2 ≤
Cx(3/2)β+1/2 which holds for x ≥ 1 and an appropriate constant C ≥ 3. This follows
by observing that

f(x) = Cx(3/2)β+1/2 − xβ+1/2(1 + xβ/4 + xβ/2) = xβ+1/2((C − 1)xβ/2 − 1− xβ/4)

≥ xβ+1/2((C − 1)xβ/2 − 1− xβ/2) = xβ+1/2((C − 2)xβ/2 − 1) ≥ 0,

for x ≥ 1 and C ≥ 3.
We must check that v(0, t) remains bounded in [0, T ]. From the boundary condi-

tion (52) we have

(cQ)γ −Qβ+1ux

∣∣∣
x=0

= 0.

Using this in combination with the second equation of (49) gives us the following
equation at x = 0:

(111) Qt + ρl(1− c)Q1−β(cQ)γ = cQ[Pw − (cQ)γ ],
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whereas the first equation of (49) corresponds to

(112) ct = c(1− c)[Pw − (cQ)γ ], for x = 0.

Setting that

z(t) = c(x = 0, t), y(t) = Q(x = 0, t),

and without loss of generality we may set ρl = 1, then we see that the ODE system
(111) and (112) corresponds to the ODE system of Lemma 4.5. In view of Corollary 4.1
we see that the assumption (94) is fulfilled. In view of assumption (31) of Theorem 3.1,
it is also clear that assumption (95) is fulfilled. Consequently, we can conclude that

v(0, t) ≤ K−1, t ∈ [0, T ].

In conclusion, from (110) we have

V (T ) ≤ K−1 + 3F max
(
V (T )(3/2)β+1/2, 1

)
.

Since β < 1/3 we see that (3/2)β+1/2 < 1. Therefore, it is clear from the inequality
x ≤ C(1 + xξ) with 0 < ξ < 1, that x ≤ G for some constant G. Consequently,
V (T ) ≤ G where (in view of the above estimates)

G = G(C2, C3, inf
[0,1]

Q0, sup
[0,1]

Q0, ∥u0∥L2(I), T ).

Thus, the result (102) follows.
Now, we can directly deduce the following pointwise estimates which ensure that

no transition to single-phase flow occurs.
Corollary 4.7. There is a constant µ = µ(C2, C6) > 0 such that for (x, t) ∈

[0, 1]× [0, T ], we have

0 <µ ≤ [1− c]ρ(x, t), [1− c]ρ(x, t) ≤ ρl − µ < ρl(113)

0 <µ inf
x∈[0,1]

(c) ≤ n(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c) <∞,(114)

for c = n/ρ.
Proof. In view of (47) and the bounds (55) and (102) it is clear that there is a

µ > 0 such that (113) holds. Consequently,

0 < µ inf
x∈[0,1]

(c) ≤ n = cρ ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c) <∞,

where we have used the estimates (43) of Corollary 4.1 as well as the refined lower
limit (71).

Corollary 4.8. We have the estimates∫ 1

0

(∂xρ)
2 dx ≤ C7,

∫ 1

0

(∂xn)
2 dx ≤ C8,(115)

for a constant C7 = C7(C2, C4, C5, C6) and C8 = C8(C2, C4, C5, C6).
Proof. It follows that

∂xQ(ρ, k)β = βQ(ρ, k)β−1[Qρ∂xρ+Qk∂xk] = βQ(ρ, k)β+1
[ ρl
ρ2
∂xρ+ ∂xk

]
.
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In view of this calculation and the pointwise upper and lower limits for Q(ρ, k), as well
as ρ, given by (55), (102), and Corollary 4.7, it follows by application of Lemma 4.4
that the first estimate of (115) holds. The second follows directly from the relation

∂xn = ρ∂xc+ c∂xρ, since n = cρ,

and the corresponding estimate∫ 1

0

(∂xn)
2 dx ≤ 2( sup

x∈[0,1]

ρ)2
∫ 1

0

(∂xc)
2 + 2( sup

x∈[0,1]

c)2
∫ 1

0

(∂xρ)
2 dx ≤ C8,

where we use the first estimate of (115), Lemma 4.4 and Corollary 4.7.

5. Proof of existence result. Equipped with the estimates of Section 4 we
apply arguments similar to those used in [12, 11, 13, 9] to show compactness, i.e.,
convergence of a sequence of approximate solutions of (24) (obtained by regularization
of initial data) to limit functions (n, ρ, u). The final step is to show that these are
solutions in the sense of (33) of Theorem 3.1.

First, we introduce the Friedrichs mollifier jδ(x). Let ψ(x) ∈ C∞
0 (R) satisfy

ψ(x) = 1 when |x| ≤ 1/2 and ψ(x) = 0 when |x| ≥ 1, and define ψδ := ψ(x/δ).

Mollifying. We extend n0, ρ0, u0 to R by using

n0(x) :=


n0(1), x ∈ (1,∞),

n0(x), x ∈ [0, 1],

n0(0), x ∈ (−∞, 0),

ρ0(x) :=


ρ0(1), x ∈ (1,∞),

ρ0(x), x ∈ [0, 1],

ρ0(0), x ∈ (−∞, 0),

whereas we extend u0(x) to R by defining it to be zero outside the interval [0, 1].
Approximate initial data (nδ0, ρ

δ
0, u

δ
0) to (n0, ρ0, u0) are now defined as follows:

nδ0(x) = (n0 ∗ jδ)(x), ρδ0(x) = (ρ0 ∗ jδ)(x),
uδ0 = (u0 ∗ jδ)(x)[1− ψδ(x)− ψδ(1− x)] + (u0 ∗ jδ)(0)ψδ(x) + (u0 ∗ jδ)(1)ψδ(1− x)

+ (cδ0)
γQ(ρδ0)

γ−β−1(0)

∫ x

0

ψδ(y) dy − (cδ0)
γQ(ρδ0)

γ−β−1(1)

∫ 1

x

ψδ(1− y) dy.

(116)

Then it follows that nδ0, ρ
δ
0 ∈ C1+s[0, 1], uδ0 ∈ C2+s[0, 1] for any 0 < s < 1, and nδ0, ρ

δ
0

and uδ0 are compatible with the boundary conditions (27). Moreover, it follows that

|(u0 ∗ jδ)(0)|2q
∫ 1

0

ψ2q
δ dx ≤ Cδ

(∫ δ

0

u0(x)jδ(x) dx
)2q

≤ Cδ

∫ δ

0

u2q0 dx
(∫ δ

0

j
2q/(2q−1)
δ (x) dx

)2q−1

≤ C

∫ δ

0

u2q0 (x) dx→ 0 as δ → 0.

Similarly, it follows that |(u0 ∗ jδ(1)|2q
∫ 1

0
ψ2q
δ (1− x) dx→ 0. Therefore, recalling the

definition of uδ0(x) we see that as δ → 0,

(117) uδ0 → u0 in L2q(I).
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In addition,

(118) nδ0 → n0, ρδ0 → ρ0 uniformly in [0, 1],

as δ → 0.
Now, we consider the initial boundary value problem (24)–(28) with the initial

data (n0, ρ0, u0) replaced by (nδ0, ρ
δ
0, u

δ
0). For this problem standard arguments can be

used (the energy estimates and the contraction mapping theorem) to obtain the exis-
tence of a unique local solution (nδ, ρδ, uδ) with nδ, nδ

t , n
δ
x, n

δ
tx, ρ

δ, ρδx, ρ
δ
t , ρ

δ
tx, u

δ, uδx, u
δ
t ,

uδxx ∈ Cα,α/2([0, 1]× [0, T ∗]) for some T ∗ > 0.
In view of the estimates of Section 4.2, obtained by relying on the reformulated

model (49)–(53), it follows that nδ and ρδ are pointwise bounded from above and
below, (uδ)q, nδx, and ρδx are bounded in L∞([0, T ], L2(I)) and uδx is bounded in
L2((0, T ), L2(I)) for any T > 0. Furthermore, we can differentiate the equations
in (49) and apply the energy method to derive bounds of high-order derivatives of
(nδ, ρδ, uδ). Then the Schauder theory for linear parabolic equations can be applied
to conclude that the Cα,α/2(DT )-norm of nδ, nδt , n

δ
x, n

δ
tx, ρ

δ, ρδx, ρ
δ
t , ρ

δ
tx, u

δ, uδx, u
δ
t , u

δ
xx

is a priori bounded. Therefore, we can continue the local solution globally in time and
obtain that there exists a unique global solution (nδ, ρδ, uδ) of (24)–(28) with initial
data (nδ0, ρ

δ
0, u

δ
0) such that for any T > 0, the regularity of (35) holds.

Estimates and Compactness. Clearly, in view of the estimates of Section 4
and the model itself (24), we have

∫ 1

0

(uδ)2q(x, t) dx+

∫ 1

0

(nδx)
2(x, t) dx+

∫ 1

0

(ρδx)
2(x, t) dx ≤ C, t ∈ [0, T ], q ∈ N,

0 < µ ≤ ρδ(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
,

0 < µ inf
x∈[0,1]

(c) ≤ nδ(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c), (x, t) ∈ [0, 1]× [0, T ],∫ T

0

∫ 1

0

[
(uδx)

2 + (nδt )
2 + (ρδt )

2
]
(x, s) dx ds ≤ C,

(119)

where the constants C, µ > 0 do not depend on δ. Note that the boundedness of ρδt
and nδt in L2([0, T ], L2(I)) follows in view of the equation ρδt + (ρδ[ρδ − nδ])uδx = nA
and nδt +(nδ[ρδ−nδ])uδx = nA, the estimates of Corollary 4.7, and the energy estimate
(54) of Lemma 4.2. Hence, we can extract a subsequence of (nδ, ρδ, uδ), still denoted
by (nδ, ρδ, uδ), such that as δ → 0,

uδ ⇀ u weak-* in L∞([0, T ], L2q(I)),

nδ ⇀ n weak-* in L∞([0, T ],W 1,2(I)),

ρδ ⇀ ρ weak-* in L∞([0, T ],W 1,2(I)),

(nδt , ρ
δ
t , u

δ
x)⇀ (nt, ρt, ux) weakly in L2([0, T ], L2(I)).

(120)

Next, we show that (n, ρ, u) obtained in (120) in fact is a weak solution of (24)–(28).
The classical Sobolev imbedding (Morrey’s inequality) W 1,2q(0, 1) ↪→ C1−1/(2q)[0, 1]
applied with q = 1 gives that for any x1, x2 ∈ (0, 1) and t ∈ [0, T ]

(121) |ρδ(x1, t)− ρδ(x2, t)| ≤ C|x1 − x2|1/2.
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To control continuity in time, in view of the sequence of imbeddings W 1,2(0, 1) ↪→
L∞(0, 1) ↪→ L2(0, 1), we can apply Lions-Aubin lemma (see for example [15], Section
1.3.12) for a constant ν > 0 (arbitrary small) to find a constant Cν such that

∥ρδ(t1)− ρδ(t2)∥L∞(I) ≤ ν∥ρδ(t1)− ρδ(t2)∥W 1,2(I) + Cν∥ρδ(t1)− ρδ(t2)∥L2(I)

≤ 2ν∥ρδ(t)∥W 1,2(I) + Cν |t1 − t2|1/2∥ρδt∥L2([0,T ],L2(I))

≤ Cν + CνC|t1 − t2|1/2,

(122)

where we have used (119) to derive the last two inequalities. Consequently, (121)
and (122) together with the triangle inequality show that {ρδ} is equi-continuous on
DT = [0, 1] × [0, T ]. Hence, by Arzela-Ascoli’s theorem and a diagonal process for t,
we can extract a subsequence of {ρδ}, such that

(123) ρδ(x, t) → ρ(x, t) strongly in C0(DT ).

The same arguments apply to n yielding

(124) nδ(x, t) → n(x, t) strongly in C0(DT ).

Clearly, ρt is also bounded in L2([0, T ], L2(I)) and from the estimate

∥ρ(t1)− ρ(t2)∥2L2(I) =

∫ 1

0

|ρ(t1)− ρ(t2)|2 dx =

∫ 1

0

∣∣∣∫ t2

t1

ρt ds
∣∣∣2 dx ≤

∫ 1

0

(∫ t2

t1

|ρt| ds
)2

dx

≤ |t1 − t2|
∫ T

0

∫ 1

0

ρ2t dx ds,

where we have used Hölder’s inequality, we may also conclude that

(125) ρ ∈ C1/2([0, T ], L2(I)).

Similarly, the same arguments apply to n. Thus, we conclude that the limit functions
(n, ρ, u) from (120) satisfy the first two equations nt+n[ρ−n]ux = qwn[Pw−P (n, ρ)]
and ρt + ρ[ρ − n]ux = qwn[Pw − P (n, ρ)] of (33) for a.e. x ∈ (0, 1) and any t ≥ 0.
To show that the last integral equality holds, we multiply the third equation of (24)
by ϕ ∈ C∞

0 (D) with D = [0, 1]× [0,∞) and integrate over (0, T )× (0, 1), followed by
integration by parts with respect to x and t. Taking the limit as δ → 0, we see that
(n, ρ, u) also must satisfy weakly the third equation of (33).
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