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Abstract. In this work we deal with the no-slip drift-flux model for gas-liquid flow dynamics.
We focus on a situation where there is a free interface separating the gas-liquid mixture from a pure
gas region which takes a positive pressure p∗. This situation is highly relevant for gas-liquid flow
in the context of wellbore operations. Previous works have assumed that there is vacuum, i.e., the
pressure p∗ is zero. The positive pressure p∗ > 0 creates a boundary term that must be treated in a
consistent manner throughout the analysis. We derive time-independent estimates and make some
observations related to the role played by p∗. The estimates allow us to discuss the long time behavior
of the two-phase flow system. In particular, it is shown that the stationary solution connecting the
gas-liquid mixture to the pure gas region with the specified pressure p∗ in a continuous manner is
asymptotically stable for sufficiently small initial perturbations. The analysis clearly shows how this
perturbation directly depends on the size of the outer pressure p∗. A higher pressure p∗ allows for
larger initial perturbations from steady state. One ingredient in the analysis is the rate at which the
liquid mass decay to zero at the free interface. Insight into mechanisms that control the decay rate
of liquid mass at the free interface is also of interest since such transition zones often are associated
with instabilities in numerical discretizations of two-phase models.

Key words. two-phase flow, well model, gas-kick, weak solutions, Lagrangian coordinates, free
boundary problem, stationary solution
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1. Introduction. This work is devoted to a study of a one-dimensional two-
phase model of the drift-flux type. The model is frequently used in industry simulators
to simulate unsteady, compressible flow of liquid and gas in pipes and wells [1, 2, 3,
6, 13, 17, 20]. The model consists of two mass conservation equations corresponding
to each of the two phases gas (g) and liquid (l) and one equation for the conservation
of the momentum of the mixture and is given in the following form:

∂τ [αgρg] + ∂ξ[αgρgug] = 0

∂τ [αlρl] + ∂ξ[αlρlul] = 0

∂τ [αgρgug + αlρlul] + ∂ξ[αgρgu
2
g + αlρlu

2
l + p] = q + ∂ξ[ε∂ξumix],

(1)

where ε ≥ 0, umix = αgug + αlul, and ρmix = αgρg + αlρl. The unknowns are
ρl(p), ρg(p) liquid and gas densities, αl, αg volume fractions of liquid and gas satisfying
αg + αl = 1, and ul, ug velocities of liquid and gas, p common pressure for liquid and
gas, and q representing external forces like gravity and friction. In the following we
set q = 0. We consider the model in a domain L := {(ξ, τ) : 0 < ξ < l(τ), τ > 0}.
We might think of a horizontal conduit which is closed at the left inlet whereas there
is a free interface at the right outlet separating the gas-liquid mixture from a pure gas
region. See Fig. 1 for an illustration. The free interface is described by the function
l(τ) which satisfies

(2) l′(τ) = u|ξ=l(τ) for τ > 0.

Associated with the pure gas region to the right of the moving free boundary there is
a specified pressure p∗ > 0. It is of interest to understand how the free interface and
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Fig. 1. Top: Schematic figure showing gas-liquid mixture separated by a pure gas region to
the right with a free boundary at the interface and a positive pressure p∗ associated with right gas
region. Bottom: Description of the above gas-liquid scenario in terms of the liquid volume fraction
αl(x, ·) in Lagrangian coordinates where x ∈ [0, 1] and free interface corresponds to x = 1. Note
that αl(x, ·) ∼ (1− x)α, i.e., there is a decay rate α > 0 associated with the liquid mass at the free
interface.

the specified outlet pressure p∗ are related. Some issues we seek more understanding
of are:

• We deal with two-phase nature which is different from the single-phase be-
havior in the sense that a liquid ”vacuum” region appears at the right free
interface in combination with a positive pressure p∗ specified at the inter-
face. This combination does not appear when we deal with single-phase gas
flow where vacuum (zero mass) is associated with vanishing pressure. We
are interested in demonstrating the well-posedness of this model as well as
identifying the long time behavior.

• In what way does the outer pressure p∗ represents a force term that will
stabilize the flow system? In wellbore operations which involve gas-liquid
flow the ability to control p∗ is exploited to stabilize and control the flow
system. Can the mathematical analysis of the idealized model in this work
reflect this behavior?

• How sharp is the free interface? In other words, what is the liquid mass decay
rate at the the interface? Which estimates (estimates that can guarantee
wellposedness and stability of the model) are sensitive to the liquid decay
rate?

As a further motivation for our studies we briefly show two numerical examples
obtained by using the model (1) with inclusion of friction and gravity. See [5] for
more information about the numerical scheme that is employed. The examples show
ascent of a gas slug initially located at the bottom of a 150 m deep well with a 100
meter high liquid column and a free gas-liquid interface at position 100 meters (from
bottom) and gas above the interface. The first example assumes that the well is
open at the top with pressure p∗ = 1 bar, see Fig. 2. The second example assumes
that the well is open at the top with pressure p∗ = 0.5 bar, see Fig. 3. The results
clearly demonstrate the expansion effect at the free interface and how it is sensitive
for the pressure p∗. A higher pressure p∗ will lead to a stronger damping effect on the
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Fig. 2. Left: The gas volume fraction reflects the strong expansion effect as the gas slug is
approaching the surface where the pressure p∗ = 1 bar. The free interface will be displaced a certain
distance up before gravity outperforms the upward directed forces and drives the free interface back
again. Right: The corresponding pressure behavior.
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Fig. 3. Left: Pressure p∗ = 1 bar at the free interface. Right: Pressure p∗ = 0.5 bar at the
free interface. Clearly, the expansion of gas is much stronger at the free interface implying that this
will be squeezed higher up before gravity again drives it back. The pressure p∗ acts as an outer force
that will have a damping effect on the solution.

movement of the free interface. In other words, p∗ allows to control the characteristic
behavior of the gas-liquid flow system. Motivated by this example we now want to
explore this behavior in a mathematical framework.

In order to address these issues more systematically we consider the gas-liquid
model for a flow regime where gas is dispersed in the liquid phase and it can be
assumed that the two fluid velocities are equal, i.e., ug = ul = u. Natural initial
conditions to consider are
(3)
n(ξ, 0) = n0(ξ), m(ξ, 0) = m0(ξ), u(ξ, 0) = u0(ξ), for ξ ∈ (0, l0) with l|τ=0 = l0.
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Corresponding boundary conditions, in accordance to the description given above, are

(4) u|ξ=0 = 0, n|ξ=l(τ) = n∗, m|ξ=l(τ) = 0, for τ > 0.

This corresponds to a situation where there is gas to the right of the free gas-liquid
interface l(τ) and the pressure is given by a specified pressure p∗ = p(n∗, 0). Using the
notation that m = αlρl and n = αgρg, we obtain from (1) the following formulation
of the model:

∂τn+ ∂ξ[nu] = 0

∂τm+ ∂ξ[mu] = 0

∂τ [(n+m)u] + ∂ξ[(n+m)u2] + ∂ξp(m,n) = ∂ξ[ε(m,n)∂ξu], ξ ∈ (0, l(τ)).

(5)

We also consider a polytropic gas law for the gas phase whereas liquid is assumed to
be incompressible. This gives the pressure law

(6) p(m,n) = C1

( n

ρl −m

)γ

, γ > 1.

For the viscosity we assume that it takes the following form similar to those used
before [7, 25]

(7) ε(m,n) = C2
nmθ−1

(ρl −m)θ+1
, 0 < θ < 1.

We are interested in gaining insight into how the solution of the transient model (5)
will approach to its stationary solution. It is convenient to study the model (5) in
terms of Lagrangian variables, see Section 2 for details. The model then takes the
form

∂tn+ (nm)∂xu = 0

∂tm+m2∂xu = 0(n+m

m

)
∂tu+ ∂xp(n,m) = ∂x(E(n,m)∂xu), x ∈ (0, 1),

(8)

with

(9) p(n,m) =
( n

ρl −m

)γ

, γ > 1

and

(10) E(n,m) := ε(n,m)m =
nmθ

(ρl −m)θ+1
, 0 < θ < 1.

Boundary conditions are given by

(11) u(0, t) = 0, n(1, t) = n∗, m(1, t) = 0,

whereas initial data are

(12) n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ (0, 1).

The main result of this work is summed up precisely in Theorem 2.1. It is shown that
under certain conditions on the initial data a weak solution of the model problem is
guaranteed to exist. Moreover, the estimates are strong enough to extract information
about the long time behavior. More precisely, it is shown that ∥p(n,m) − p∗∥2 → 0
and ∥u∥2 → 0 as t→ ∞. We may also highlight the following observations made from
the analysis leading to these conclusions:
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• The positive pressure p∗ associated with the pure gas region at the free in-
terface allows to obtain uniform upper and lower estimates of p(n,m) that
are independent of time. This is the main result of Lemma 3.3. This result
hangs on the fact that p∗ is positive. As a consequence, a uniform bound on
the fluid velocity can then also be obtained, see Lemma 3.10.

• The uniform bounds on p(n,m) require that a sufficiently small energy is en-
sured for all times, see Lemma 3.1. This result is obtained by choosing initial
data (n0,m0, u0) sufficiently close to the stationary solution (n∞,m∞, u∞)
where p(n∞,m∞) = p∗ and u∞ = 0, see condition (46).

• As p∗ becomes larger, it is clear from the proof of Lemma 3.3 that the uniform
estimate of p(n,m) holds under larger disturbances on initial data from its
steady-state. See Remark 3.1. This is an interesting observation since in
real-life wellbore flows the pressure p∗ is used to control the stability of the
system.

• Lemma 3.6 is essential for the L1 estimate of Qx, which in turn is crucial for
the compactness arguments we rely on. This result is sensitive to the decay
rate of the liquid mass at the free interface. The lemma makes use of the fact
that m(x, t) ∼ (1− x)3/4 and θ ∈ (0, 1/3).

The case when p∗ becomes zero (vacuum) is not covered by the analysis presented in
this paper and other techniques must be employed. For various existence results for
this case see [8, 26, 10, 15] and references therein.

The rest of the paper is organized as follows: In Section 2 we derive the model
in Lagrangian coordinates and introduce a transformed version of the model which
is convenient for obtaining the a priori estimates. Then we discuss the steady state
behavior which clears the ground for giving a precise statement of assumptions on
initial data and parameters before the main theorem is given. Section 3 deals with the
a priori estimates. In Section 4 the long-time behavior is discussed and convergence
to the stationary solution is proved.

2. Main result. Following along the line of previous studies for the single-phase
Navier-Stokes equations [18, 14, 16], it is convenient to replace the moving domain
[0, l(τ)] by a fixed domain by introducing suitable Lagrangian coordinates. That is,
we introduce the coordinate transformation

(13) x =

∫ ξ

0

m(y, τ) dy, t = τ,

such that the free boundary ξ = l(τ) and the fixed boundary ξ = 0, in terms of the
(x, t) coordinate system, are given by

(14) x0(t) = 0, xl(τ)(t) =

∫ l(τ)

0

m(y, τ) dy =

∫ l0

0

m0(y) dy = const,

where
∫ b

a0
m0(y) dy is the total liquid mass initially, which we normalize to 1. Applying

(13) to shift from (ξ, τ) to (x, t) in the system (5), we get

nt + (nm)ux = 0

mt + (m2)ux = 0(n+m

m

)
ut + p(n,m)x = (ε(n,m)mux)x, x ∈ (0, 1), t ≥ 0,
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where boundary conditions are given by

u|x=0 = 0, n|x=1 = n∗, m|x=1 = 0.

In addition, we have the initial data

n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ (0, 1).

In other words, we have the model

∂tn+ (nm)∂xu = 0

∂tm+m2∂xu = 0(n+m

m

)
∂tu+ ∂xp(n,m) = ∂x(E(n,m)∂xu), x ∈ (0, 1),

(15)

with

(16) p(n,m) =
( n

ρl −m

)γ

, γ > 1

and

(17) E(n,m) := ε(n,m)m =
nmθ

(ρl −m)θ+1
, 0 < θ < 1.

Moreover, boundary conditions are given by

(18) u(0, t) = 0, n(1, t) = n∗, m(1, t) = 0,

whereas initial data are

(19) n(x, 0) = n0(x), m(x, 0) = m0(x), u(x, 0) = u0(x), x ∈ (0, 1).

Note that p(n,m)|x=1 = p(n∗, 0) = (n∗/ρl)
γ := p∗.

2.1. A transformed model. We introduce the variable

(20) c =
m

n+m
,

and see from the first two equations of (15) that

∂tc = − m

(n+m)2
nt +

( 1

n+m
− m

(n+m)2

)
mt =

nm2

(n+m)2
ux − nm2

(n+m)2
ux = 0.

Noting that

n

m
=

1− c

c
:= h(c),

and introducing the quantity Q(m) = m/(ρl − m), we can deduce a reformulated
model in terms of the variables (c,Q, u). That is, employing the variable

(21) Q(m) =
m

ρl −m
, (which implies that m = ρl

Q

1 +Q
),
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implicitly assuming 0 ≤ m < ρl, it follows that

Q(m)t =
( m

ρl −m

)
t
=

( 1

ρl −m
+

m

(ρl −m)2

)
mt

=
ρl

(ρl −m)2
mt = −ρl

m2

(ρl −m)2
ux = −ρlQ(m)2ux,

in view of the second equation of (15). Hence, it is seen that the model (15)–(19) can
be written in terms of the variables (c,Q, u) in the form

∂tc = 0

∂tQ(m) + ρlQ(m)2∂xu = 0

[1 + h(c)]∂tu+ ∂xp(c,m) = ∂x(E(c,m)∂xu), x ∈ (0, 1),

(22)

with

(23) p(c,m) = [h(c)Q(m)]γ , Q(m) =
m

ρl −m
, h(c) =

1

c
− 1

and

(24) E(c,m) = h(c)
( m

ρl −m

)θ+1

= h(c)Q(m)θ+1, 0 < θ < 1.

Moreover, boundary conditions are given by

(25) u(0, t) = 0, c(1, t) = 0, Q(m)(1, t) = 0, t ≥ 0,

such that [h(c)Q]γ(1, t) = p∗ =
(

n
ρl−m

)γ

(1, t) =
(

n∗

ρl

)γ

. Initial data are

(26) c(x, 0) = c0(x), Q(x, 0) = Q(m0)(x), u(x, 0) = u0(x), x ∈ (0, 1).

2.2. Stationary solutions. In this section, and also in the rest of this paper,
we restrict us to the case where γ = 2 in the pressure function. The motivation for
this is only to make the discussion more specific and we do expect that the results
can be generalized to hold for γ > 1.

Let (n∞,m∞, 0) be the solution of the stationary system corresponding to (22),

(27) c∞(x) = c0(x), u∞ = 0, ∂xp(h(c∞)Q(m∞)) = 0,

with boundary conditions

(28) Q(m∞)(1) = c∞(1) = 0.

Integrating over [x, 1] we see that (27) corresponds to

(29) [h(c∞)Q(m∞)] = (p∗)1/2 = K =
n∗

ρl
.

We would like to gain some understanding of a possible steady state solution (c∞, Q∞, 0)
and how it is related to the initial data (c0, Q0, u0). From (29) we see that

(30)
1

K

m∞

ρl −m∞
=

c∞
1− c∞

.
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Using that the inverse of y = x/(1− x) is x = y/(1 + y), we then get that

c∞ =

1
K

m∞
ρl−m∞

1 + 1
K

m∞
ρl−m∞

=
m∞

K(ρl −m∞) +m∞
=

m∞

n∗ +m∞(1−K)
.

Hence, let us consider the concrete choice that m∞ = δ(1− x). Then we find that

c∞ =
m∞

n∗ +m∞(1−K)
=

δ(1− x)

n∗ + δ(1− x)(1−K)
.

Finally, we can also find the corresponding n∞ by noting that h(c∞) = n∞/m∞:

n∞ =
( 1

c∞
−1

)
m∞ =

(n∗ +m∞(1−K)

m∞
−1

)
m∞ = n∗−Km∞ = n∗(1−ρl−1m∞).

For δ = 1 we obtain n∞ = n∗(1− ρl
−1(1− x)) ≈ n∗ (if ρl >> 1) and m∞ = (1− x).

Let us also get some insight into how the choice of initial data (n0,m0, u0) will
define a unique stationary solution (n∞,m∞, u∞ = 0). For that purpose, we consider

(31) m0 = δ(1− x)α, n0 = (1− ε)x+ ε, ε ≈ 1,

i.e., n∗ = 1. This gives rise to

c0 =
m0

n0 +m0
=

δ(1− x)α

(1− ε)x+ ε+ δ(1− x)α
, h(c0) =

n0
m0

=
(1− ε)x+ ε

δ(1− x)α
.

Consequently, we get

(32)
√
p0 = h(c0)Q(m0) =

n0
ρl −m0

=
(1− ε)x+ ε

ρl − δ(1− x)α
.

We refer to Fig. 4 for a visualization of these curves. Note that p0 = [h(c0)Q(m0)]
2

gives the initial pressure profile which takes the pressure p∗ = 1/ρ2l at the outlet and
otherwise may not be too far away from p∗ through the domain [0, 1]. See Remark 2.1
for more on this.

For now, we want to calculate the corresponding steady state behavior (n∞,m∞, 0):
First we observe that

c∞ = c0 =
δ(1− x)α

(1− ε)x+ ε+ δ(1− x)α
.

Moreover, we observe that m∞ is uniquely defined from c∞ by (30) which implies the
relation

(33) m∞ =
c∞

1 + c∞(K − 1)
=

δ(1− x)α

(1− ε)x+ ε+Kδ(1− x)α
,

and from (29)

(34) n∞ = (ρl −m∞)K = (1−Km∞) =
(1− ε)x+ ε

(1− ε)x+ ε+Kδ(1− x)α
.

Consequently, as expected we get

√
p∞ = h(c∞)Q(m∞) =

n∞
ρl −m∞

=
(1− ε)x+ ε

ρl[(1− ε)x+ ε+Kδ(1− x)α]− δ(1− x)α
=

1

ρl
=

√
p∗.
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Fig. 4. The plot shows an example of initial data (m0, n0,
√
p0) versus (m∞, n∞,

√
p∞) with

parameters as follows in (31): ε = 0.9, ρl = 10, δ = 5, α = 3/4 and
√
p∗ = 1/ρl.

See Fig. 4 for a comparison of initial data (m0, n0,
√
p0) versus stationary masses

(m∞, n∞,
√
p∞). Hence, we have demonstrated existence of a stationary solution by

explicitly calculating it from a specified set of initial data. It also shows that in general
n0 ̸= n∞ and m0 ̸= m∞. In particular, we have observed that the steady state masses
depend on the outlet pressure p∗ = K2 and parameters that characterize the initial
masses m0, n0 like δ, α, ε.

2.3. Main result.

Assumptions. The above model is subject to the following assumptions:

(35) A1(1− x)
3
4 ≤ m0(x) ≤ A2(1− x)

3
4 < ρl,

and

(36) B1 ≤ n0(x) ≤ B2.

Consequently,

(37) C1(1− x)
3
4 ≤ c0(x) =

[ m0

n0 +m0

]
(x) ≤ C2(1− x)

3
4 ,

and

(38) D1(1− x)−
3
4 ≤ h(x) =

[1− c0
c0

]
(x) =

[ n0
m0

]
(x) ≤ D2(1− x)−

3
4 ,

such that

(39) D1(1− x)−
7
4 ≤ dh

dx
(x) ≤ D2(1− x)−

7
4 ,

and

(40) E1(1− x)
3
4 ≤ Q0(x) =

[ m0

ρl −m0

]
(x) ≤ E2(1− x)

3
4 ,
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and

(41) F1 ≤ [h(c0)Q0](x) =
[ n0
ρl −m0

]
(x) ≤ F2.

All the above constants are assumed to be positive. Moreover, we assume that
(c0, Q0, u0) satisfy the following regularity:

(42) ([h(c0)Q0]
2)x ∈ L2([0, 1]),

(43) u0(x) ∈ H1([0, 1]), u0(0) = 0.

(44) h−1(c0)([h(c0)Q0]
θ)2x ∈ L1([0, 1]), (h(c0)Q

1+θ
0 u0,x)x ∈ L2([0, 1]).

The restriction on γ and θ is as follows:

(45) γ = 2, θ ∈
(
0,

1

3

)
.

Then we can state the main theorem.
Theorem 2.1 (Main Result). There is a constant ε0 > 0 such that if

(46)

∫ 1

0

(
1 +

n0
m0

)
u20 dx ≤ ε,

∫ 1

0

h(c0)
[
p(n0,m0)

1/2 − (p∗)1/2
]2
dx ≤ ε,

for any ε ∈ [0, ε0], and under the assumptions (35)–(45), then the initial-boundary
problem (15)–(19) possesses a global weak solution (n,m, u) in the sense that for any
T > 0,

(A) we have the following regularity:

n,m ∈ L∞([0, 1]× [0, T ]) ∩ C1([0, T ];L2([0, 1])),

u ∈ L∞([0, 1]× [0, T ]) ∩ C1([0, T ];L2([0, 1])),

E(n,m)ux ∈ L∞([0, 1]× [0, T ]) ∩ C 1
2 ([0, T ];L2([0, 1])).

In particular, the following estimates holds for Ã1,2 and B̃1,2 independent of
time T > 0:

B̃1 ≤ n(x, t) ≤ B̃2,

Ã1(1− x)
3
4 ≤ m(x, t) ≤ Ã2(1− x)

3
4 < ρl, ∀(x, t) ∈ DT = [0, 1]× [0, T ].

(47)

Moreover,

sup
t≥0

(∥u(·, t)∥L2) ≤ C,

sup
t≥0

∥h−1([hQ]θ)2x∥L1 ≤ C(T ), ∥u∥L2(DT ) + ∥Q2u2x∥L2(DT ) ≤ C, ∥u∥L∞(DT ) ≤ C.

(48)
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(B) The following weak formulation of (15)–(19) hold:∫ ∞

0

∫ 1

0

[
nϕt − nmuxϕ

]
dx dt+

∫ 1

0

n0(x)ϕ(x, 0) dx = 0∫ ∞

0

∫ 1

0

[
mφt −m2uxφ

]
dx dt+

∫ 1

0

m0(x)φ(x, 0) dx = 0∫ ∞

0

∫ 1

0

[( n
m

+ 1
)
uψt + (p(n,m)− E(n,m)ux)ψx

]
dx dt

=

∫ ∞

0

p∗ψ(1, t) dt−
∫ 1

0

u0(x)ψ(x, 0) dx,

(49)

for any test function ϕ, φ, ψ ∈ C∞
0 (D), with D := {(x, t) | 0 < x ≤ 1, t ≥ 0}.

(C) Furthermore, the following long-time behavior holds:

E :=
1

2

∫ 1

0

u2(x, t) dx→ 0,

(50)

∫ 1

0

(
p(n,m)− p∗

)2

dx→ 0,

∫ 1

0

(√
p(n,m)−

√
p∗
)q

dx→ 0, ∀q ∈ [1,∞),

(51)

as time t→ ∞.
Remark 2.1. Concerning the smallness assumption (46), we may consider the

choice given in (31). Clearly, we then find that

h(c0)Q(m0)− (p∗)1/2 =
(1− ε)x+ ε

ρl − δ(1− x)α
− 1

ρl

(ρl − δ(1− x)α)

(ρl − δ(1− x)α)

= − (1− ε)(1− x)

ρl − δ(1− x)α
+

Cδ(1− x)α

ρl − δ(1− x)α
.

Consequently, since h(c0) ≤ 1
δ(1−x)α it follows that

h(c0)[h(c0)Q(m0)− (p∗)1/2]2 ≤ 2

δ(1− x)α

( (1− ε)(1− x)

ρl − δ(1− x)α

)2

+
2

δ(1− x)α

( Cδ(1− x)α

ρl − δ(1− x)α

)2

≤ 2

δ

(1− ε)2(1− x)2−α

(ρl − δ(1− x)α)2
+

2

δ

Cδ2(1− x)α

(ρl − δ(1− x)α)2

≤ C

δ
(1− ε)2(1− x)2−α + Cδ(1− x)α

by choosing δ < ρl. This implies that∫ 1

0

h(c0)
[
h(c0)Q0 − (p∗)1/2

]2
dx ≤ C

(1− ε)2

δ

∫ 1

0

(1− x)2−αdx+ Cδ

∫ 1

0

(1− x)αdx

≤ C
(1− ε)2

δ
+ Cδ.

Obviously, we can choose the RHS as small as desired by first choosing δ as small as
needed, then choose ε as close to 1 as necessary.
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3. A priori estimates. We follow along previous works and use a standard
semi-discrete difference approximation to obtain the existence of the weak solution.
For this purpose, we first derive some a priori estimates to obtain the desired estimates
on the approximate solutions. As usual, the key point is to obtain uniform lower and
upper bounds on masses. In our gas-liquid setting this means to obtain such uniform
estimates on the pressure-related quantity h(c)Q(m) = n/(ρl −m), see Lemma 3.3.
The technique we rely on is similar to that used by Zhang and Fang [27] for the Navier-
Stokes equations with gravity. See also the more recent works [4, 28] for related results
when gravity is included in the single-phase Navier-Stokes equations. However, it is
the outlet pressure p∗ that represents the ”external force” in our model that allows to
exploit Lemma 3.2. We have no gravity effect in our model. A consequence of relying
on Lemma 3.2, is that one needs smallness on the fluid velocity. This is ensured by
the basic energy estimate, Lemma 3.1, by carefully grouping terms in such a way that
the pressure term h(c)Q is treated in combination with the outlet pressure p∗. This

gives rise to the non-negative term
∫ 1

0
h(c)

∫ h(c)Q

(p∗)1/2

(
s2−p∗

s2

)
ds dx.

3.1. A priori estimates. We are now ready to establish some important esti-
mates. We let C and C(T ) denote a generic positive constant depending only on the
intial data and the given time T , respectively.

Lemma 3.1 (Energy estimate). Under the assumptions of Theorem 2.1 we have
the basic energy estimate

∫ 1

0

(
[1 + h(c)]

u2

2
+

1

ρl
h(c)

∫ h(c)Q

(p∗)1/2

(s2 − p∗

s2

)
ds
)
dx+

∫ t

0

∫ 1

0

h(c)Q1+θu2x dx ds ≤ C1ε,

(52)

where C1 is independent of t ≥ 0.
Proof. We obtain the following integral equality by multiplying the third equation

of (22) by u, integrate over [0, 1] and use integration by parts, and the boundary
conditions (25)

(53)
d

dt

∫ 1

0

(
[1 + h(c)]

u2

2

)
dx+ p∗u(1, t)−

∫ 1

0

[h(c)Q]2ux dx+

∫ 1

0

E(c,Q)u2x dx = 0.

From the second equation of (22) we get

u(x, t) =
1

ρl

d

dt

∫ x

0

1

Q
dy

and

1

ρl

d

dt

∫ 1

0

(h(c)2Q) dx+

∫ 1

0

[h(c)Q]2ux dx = 0.

Hence, (53) takes the form
(54)
d

dt

∫ 1

0

(
[1+h(c)]

u2

2

)
dx+

1

ρl

d

dt

∫ 1

0

p∗

Q
dx+

1

ρl

d

dt

∫ 1

0

(h(c)2Q) dx+

∫ 1

0

E(c,Q)u2x dx = 0.

Now we focus on the term

1

ρl

d

dt

∫ 1

0

(p∗
Q

+ h(c)2Q
)
dx.
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We have that

1

ρl

d

dt

∫ 1

0

(p∗
Q

+ h(c)2Q
)
dx =

1

ρl

d

dt

∫ 1

0

(p∗
Q

+ h(c)2Q− 2h(c)(p∗)1/2
)
dx

=
1

ρl

d

dt

∫ 1

0

h(c)

∫ h(c)Q

(p∗)1/2

(s2 − p∗

s2

)
ds dx.

(55)

Employing (55) in combination with (54) we get after an integration in time

∫ 1

0

(
[1 + h(c)]

u2

2

)
dx+

1

ρl

∫ 1

0

h(c)

∫ h(c)Q

(p∗)1/2

(s2 − p∗

s2

)
ds dx+

∫ t

0

∫ 1

0

E(c,Q)u2x dxdt

=

∫ 1

0

(
[1 + h(c0)]

u20
2

)
dx+

1

ρl

∫ 1

0

h(c0)

∫ h(c0)Q0

(p∗)1/2

(s2 − p∗

s2

)
ds dx.

(56)

Clearly, for all times t ≥ 0

h(c)

∫ h(c)Q

(p∗)1/2

(s2 − p∗

s2

)
ds ≥ 0.

For time t = 0 we can estimate the last term on the right hand side of (56) as follows∫ 1

0

h(c0)

∫ h(c0)Q0

(p∗)1/2

(s2 − p∗

s2

)
ds dx

≤
∫ 1

0

h(c0)max
{ 1

p∗

∫ h(c0)Q0

(p∗)1/2
[s− (p∗)1/2][s+ (p∗)1/2] ds,

1

[h(c0)Q0]2

∫ (p∗)1/2

h(c0)Q0

[(p∗)1/2 − s][(p∗)1/2 + s] ds
}
dx

≤ C

∫ 1

0

h(c0)
[
h(c0)Q0 − (p∗)1/2

]2
dx,

(57)

where

C = 2max
{h(c0)Q0

p∗
,

(p∗)1/2

[h(c0)Q0]2

}
.

By means of the assumptions on smallness of u0 and distance between h(c0)Q0 and
h(c∞)Q∞ = (p∗)1/2 as specified in (46), the estimate of (52) is obtained from (56).

Next, we seek to obtain pointwise control on masses. For that purpose we recall
the following lemma that was employed in [4]. This result in turn is based on a work
by Zlotnik [29].

Lemma 3.2. Let f ∈ C(R) and y, b ∈ W 1,1(0, T ). Let y(t) satisfy the following
equation

(58)
dy

dt
= f(y) +

db

dt
, t ∈ R+

and |b(t2)− b(t1)| ≤ N0 for any 0 ≤ t1 < t2. Then
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(1) if f(z) ≥ 0, for z ≤M1,

(59) min{y(0),M1} −N0 ≤ y(t), t ∈ R+;

(2) if f(z) ≤ 0, for z ≥M2,

(60) max{y(0),M2}+N0 ≥ y(t), t ∈ R+;

We will now focus on how to control the mass quantity [h(c)Q]. More precisely,
the following lemma is obtained.

Lemma 3.3. Under the assumptions of Theorem 2.1 we have the pointwise lower
and upper bounds

N1 ≤ [h(c)Q]θ(x, t) ≤ N2, ∀(x, t) ∈ D,(61)

where D = {(x, t) : 0 ≤ x ≤ 1, t ≥ 0} and N1, N2 are positive constants.
Proof. We have from (22) the equation

(62)
d

dt

∫ 1

x

[1+h(c)]u dy+p∗−[h(c)Q]2 = −E(c,Q)ux = −h(c)Q1+θux =
1

θρl
(hQθ)t.

We introduce the quantity Y (x, t) = [h(c)Q]θ and observe that (62) takes the form

Yt = ρlθh(c)
θ−1 1

ρlθ
(hQθ)t

= ρlθh(c)
θ−1

[ d
dt

∫ 1

x

[1 + h(c)]u dy + p∗ − [h(c)Q]2
]

= ρlθh(c)
θ−1[p∗ − Y 2/θ] +

d

dt

(
ρlθh(c)

θ−1

∫ 1

x

[1 + h(c)]u dy
)

=: f(Y ) +
dB

dt
.

Now, we make the following observations:

(63) f(Y ) ≥ 0, if Y ≤ (p∗)θ/2.

We also note that since θ ∈ (0, 1] it follows that h(c)θ−1 ≤ D−1
1 (1− x)

3
4 (1−θ) ≤ D−1

1 .

For B = ρlθh(c)
θ−1

∫ 1

x
[1 + h(c)]u dy we have that for any 0 < t1 < t2,

|B(x, t2)−B(x, t1)| = ρlθh(c)
θ−1

∫ 1

x

[1 + h(c)](u(y, t2)− u(y, t1)) dy

≤ 2ρlθD
−1
1

(∫ 1

x

[1 + h(c)] dy
) 1

2

sup
t≥0

(∫ 1

0

[1 + h(c)]u2 dx
) 1

2

≤ 2ρlθD
−1
1

(∫ 1

x

[1 + h(c)] dy
) 1

2

(2C1ε)
1
2

≤ 2ρlθD
−1
1

(
[1− x] + C[1− x]

1
4

) 1
2

(2C1ε)
1
2

≤ C
(
[1− x]

1
2 + C

1
2 [1− x]

1
8

)
(2C1ε)

1
2

≤ C2ε
1
2 ,

(64)
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since ∫ 1

x

[1 + h(c)] dy ≤ [1− x] + C[1− x]
1
4 .

In view of Lemma 3.2 and (63) and (64) we conclude that

(65) min{Y (0), (p∗)θ/2} − C2ε
1
2 ≤ Y (t),

where Y (0) = [h(c0)Q0]
θ ≥ F θ

1 > 0. Thus, there exists ε0 such that for all ε ∈ (0, ε0),
Y (x, t) ≥ N1 > 0.

Similarly, we have

(66) f(Y ) ≤ 0, if Y ≥ (p∗)θ/2.

In view of Lemma 3.2 and (66) and (64) we conclude that

(67) max{Y (0), (p∗)θ/2}+ C2ε
1
2 ≥ Y (t),

where Y (0) = [h(c0)Q0]
θ ≤ F2. Hence, we can find a positive constant N2 such that

Y (t) ≤ N2 for all times t ≥ 0.
Remark 3.1. Note that here we cannot allow the gas mass n0 to vanish at any

point in the region at initial time because if so, then the lower constant F1 in (41)
would no longer be positive. Thus, (65) could not guarantee a positive lower limit for
Y (t). Similarly, we cannot allow the gas pressure p∗ at right outlet to become zero.
For higher values of p∗, if Y (0) ≥ (p∗)θ/2, it is clear that (65) gives a positive lower
limit for Y (t) for larger values of ε. In other words, for a large outer pressure p∗,
we can allow large initial disturbances of velocity u0 and pressure p0 relatively the
stationary solution.

Corollary 3.4. We have the following pointwise control on the masses:

Ẽ1(1− x)
3
4 ≤Q(x, t) ≤ Ẽ2(1− x)

3
4 ,

Ã1(1− x)
3
4 ≤m(x, t) ≤ Ã2(1− x)

3
4 < ρl,

B̃1 ≤n(x, t) ≤ B̃2,

(68)

for (x, t) ∈ D = {(x, t) : 0 ≤ x ≤ 1, t ≥ 0} and all constants are positive and
independent of time.

Proof. We use the relations

m = ρl
Q

1 +Q
and n = h(c)m

in combination with estimate (61) and the upper and lower bounds on h(c) stated in
(38).

Note that the next time independent estimate of the fluid velocity u is crucial for
obtaining the long-time behavior of u, see Lemma 4.2.

Corollary 3.5. Under the assumptions of Theorem 2.1, we have that

(69)

∫ t

0

∫ 1

0

u2(x, t) dx dt ≤ C,

where C is independent of t ≥ 0.
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Proof. By making use of (61) and Corollary 3.4, we can estimate as follows:

|u| ≤
∫ x

0

|uy| dy ≤
(∫ 1

0

hQθ+1u2x dx
)1/2(∫ 1

0

[hQ]−1Q−θ dy
)1/2

≤ C
(∫ 1

0

hQθ+1u2x dx
)1/2

.

Consequently,

∫ t

0

∫ 1

0

u2 dxdt ≤ C

∫ t

0

∫ 1

0

hQθ+1u2x dxdt ≤ CC1ε,

in view of (52). The next lemma deals with the regularity of the Qx quantity. A
natural approach is to first focus on the regularity of the related variable ([h(c)Q]θ)x.
Then, through a fine tuned balance between the rate of decay for the liquid mass
as reflected by Corollary 3.4 which states that m ∼ (1 − x)3/4 and the choice of the
θ-parameter, which so-far has been assumed to be in (0, 1], we can control ([h(c)Q]θ)x
in a weighted L2 space.

Lemma 3.6. Under the assumptions of Theorem 2.1, we have that

(70)

∫ 1

0

1

h
([hQ]θ)2x dx ≤ C(T )

for θ ∈ (0, 1/3].
Proof. We observe that we have the following equation:

[1 + h]ut + ([hQ]2)x = − 1

ρlθ
(h1−θ[hQ]θ)tx = − 1

ρlθ

(
h1−θ([hQ]θ)x + (h1−θ)x[hQ]θ

)
t
.

We multiply the equation by hθ−2([hQ]θ)x and rewrite terms on the right hand side
to obtain

[1 + h]uth
θ−2([hQ]θ)x + 2[hQ]([hQ])xh

θ−2([hQ]θ)x

= − 1

ρlθ

(
h1−θ([hQ]θ)x

)
t
hθ−2([hQ]θ)x − 1

ρlθ

(
(h1−θ)x[hQ]θ

)
t
hθ−2([hQ]θ)x

= − 1

2ρlθ

1

h

(
([hQ]θ)2x

)
t
− 1

ρlθ
(h1−θ)x(Q

θ)th
2θ−2([hQ]θ)x

= − 1

2ρlθ

1

h

(
([hQ]θ)2x

)
t
+ (h1−θ)xQ

θ+1uxh
2θ−2([hQ]θ)x

Then, integrating over [0, 1] in space we get by using the equation (Qθ)t+θρlQ
θ+1ux =

0

∫ 1

0

[1 + h]uth
θ−2([hQ]θ)x dx+

1

θ

∫ 1

0

2hθ−2[hQ]2−θ([hQ]θ)x([hQ]θ)x dx

= − 1

2ρlθ

d

dt

∫ 1

0

1

h
([hQ]θ)2x dx+

∫ 1

0

(h1−θ)xQ
θ+1uxh

2θ−2([hQ]θ)x dx
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From this we may rewrite as follows

∫ 1

0

[1 + h]uth
θ−2([hQ]θ)x dx+

1

θ

∫ 1

0

2hθ−2[hQ]2−θ([hQ]θ)x([hQ]θ)x dx

= − 1

2ρlθ

d

dt

∫ 1

0

1

h
([hQ]θ)2x dx+

∫ 1

0

(h1−θ)xQ
θ+1uxh

2θ−2([hQ]θ)x dx

= − 1

2ρlθ

d

dt

∫ 1

0

1

h
([hQ]θ)2x dx+ (1− θ)

∫ 1

0

hθ−2h−(θ+1)hx[hQ]θ+1ux([hQ]θ)x dx

= − 1

2ρlθ

d

dt

∫ 1

0

1

h
([hQ]θ)2x dx

+ (1− θ)

∫ 1

0

h(−5+θ)/2hx[hQ](θ+1)/2 · h 1
2Q(θ+1)/2uxh

− 1
2 ([hQ]θ)x dx

(71)

We integrate (71) over [0, t] in time and rearrange terms which gives

1

2ρlθ

∫ 1

0

1

h
([hQ]θ)2x dx+

2

θ

∫ t

0

∫ 1

0

Q2−θ([hQ]θ)2x dxds

=
1

2ρlθ

∫ 1

0

1

h
([hQ0]

θ)2x dx−
∫ t

0

∫ 1

0

[1 + h]uth
θ−2([hQ]θ)x dxds

+ (1− θ)

∫ t

0

∫ 1

0

h(−5+θ)/2hx[hQ](θ+1)/2 · h 1
2Q(θ+1)/2uxh

− 1
2 ([hQ]θ)x dxds

=
1

2ρlθ

∫ 1

0

1

h
([hQ0]

θ)2x dx−
∫ t

0

d

dt

∫ 1

0

[1 + h]1/2u · [1 + h]1/2hθ−2h1/2 · h−1/2([hQ]θ)x dxds

+ ρlθ

∫ t

0

∫ 1

0

[1 + h]hθ−2u(hθQθ+1ux)x dxds

+ (1− θ)

∫ t

0

∫ 1

0

h(−5+θ)/2hx[hQ](θ+1)/2 · h 1
2Q(θ+1)/2uxh

− 1
2 ([hQ]θ)x dxds

=
1

2ρlθ

∫ 1

0

1

h
([hQ0]

θ)2x dx+

∫ 1

0

[1 + h]1/2u0 · [1 + h]1/2hθ−2h1/2 · h−1/2([hQ0]
θ)x dx

−
∫ 1

0

[1 + h]1/2u · [1 + h]1/2hθ−2h1/2 · h−1/2([hQ]θ)x dx

+ ρlθ

∫ t

0

∫ 1

0

[1 + h]hθ−2u(hθQθ+1ux)x dxds

+ (1− θ)

∫ t

0

∫ 1

0

h(−5+θ)/2hx[hQ](θ+1)/2 · h 1
2Q(θ+1)/2uxh

− 1
2 ([hQ]θ)x dxds

:= A0 +A1 +A2 +A3.

(72)
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Here we have used the equation ([hQ]θ)t + ρlθh
θQθ+1ux = 0 such that∫ 1

0

[1 + h]hθ−2ut([hQ]θ)x dx

=

∫ 1

0

(
[1 + h]hθ−2u([hQ]θ)x

)
t
dx−

∫ 1

0

[1 + h]hθ−2u([hQ]θ)xt dx

=
d

dt

∫ 1

0

[1 + h]hθ−2u([hQ]θ)x dx+ ρlθ

∫ 1

0

[1 + h]hθ−2u(hθQθ+1ux)x dx

=
d

dt

∫ 1

0

[1 + h]1/2u · [1 + h]1/2hθ−2h1/2 · h−1/2([hQ]θ)x dx

+ ρlθ

∫ 1

0

[1 + h]hθ−2u(hθQθ+1ux)x dx.

(73)

For the term A0 we have

|A0| ≤
1

2ρlθ

∫ 1

0

1

h
([hQ0]

θ)2x dx+

∫ 1

0

[1 + h]1/2u0 · [1 + h]1/2hθ−2h1/2 · h−1/2([hQ0]
θ)x dx

≤ C + C
(∫ 1

0

[1 + h]u20 dx+

∫ 1

0

h−1([hQ0]
θ)2x dx

)
≤ C,

in view of (44). Here we also have used the following estimate:

(74) [1 + h]1/2hθ−2h1/2 ∼ hθ−1 ≤ C(1− x)(3/4)(1−θ) ≤ C.

Similarly, we have for A1 in (72) by using Cauchy inequality

|A1| ≤ C(δ)

∫ 1

0

[1 + h]u2 dx+ δ

∫ 1

0

h−1([hQ]θ)2x dx.(75)

For the term A2 we have (using the boundary conditions)

A2 =

∫ t

0

∫ 1

0

[1 + h]hθ−2u(hθQθ+1ux)x dxds

=

∫ t

0

∫ 1

0

(
[1 + h]hθ−2u(hθQθ+1ux)

)
x
dxds−

∫ t

0

∫ 1

0

(
[1 + h]hθ−2u

)
x
hθQθ+1ux dxds

= −
∫ t

0

∫ 1

0

(
[1 + h]hθ−2u

)
x
hθQθ+1ux dxds

= −
∫ t

0

∫ 1

0

[1 + h]h2θ−2Qθ+1u2x dxds−
∫ t

0

∫ 1

0

(
[1 + h]hθ−2

)
x
uhθQθ+1ux dxds

= −
∫ t

0

∫ 1

0

[h−1 + 1]h2θ−2 · hQθ+1u2x dxds

−
∫ t

0

∫ 1

0

(
(θ − 2)h2θ−3 + (θ − 1)h2θ−2

)
h−1/2[1 + h]−1/2h−(θ+1)/2[hQ](θ+1)/2hx

· [1 + h]1/2u · h1/2Q(θ+1)/2ux dxds

(76)

In light of Lemma 3.3 it is sufficient to have the following estimate

(77)
(
(θ − 2)h2θ−3 + (θ − 1)h2θ−2

)
h−1/2[1 + h]−1/2h−(θ+1)/2hx ≤ C,
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which boils down to estimating

h2θ−2h−1/2h−(θ+1)/2hx ∼ (1− x)(9/4)−(9/8)θ−(7/4) = (1− x)(1/2)−(9/8)θ ≤ C

since h(3/2)θ−3 ∼ (1 − x)(3/4)[3−(3/2)θ] = (1 − x)(9/4)−(9/8)θ. Clearly, this estimate is
achieved by choosing

(78) θ ≤ 4/9.

Consequently,

|A2| ≤ C

∫ t

0

∫ 1

0

hQθ+1u2x dxds+ C

∫ t

0

∫ 1

0

[1 + h]u2 dxds+ C ≤ C(T ).(79)

The last term A3 in (72) is estimated as follows:

|A3| ≤ (1− θ)

∫ t

0

∫ 1

0

h(−5+θ)/2|hx|[hQ](θ+1)/2 · h 1
2Q(θ+1)/2|ux|h−

1
2 |([hQ]θ)x| dxds

≤ C

∫ t

0

∫ 1

0

h
1
2Q(θ+1)/2|ux|h−

1
2 |([hQ]θ)x| dxds

≤ C
(∫ t

0

∫ 1

0

hQθ+1u2x dxds+

∫ t

0

∫ 1

0

1

h
([hQ]θ)2x dxds

)

(80)

where we have used Cauchy inequality, Lemma 3.3, and that

h(−5+θ)/2hx ≤ C(81)

since

h(x) ∼ (1−x)−3/4, i.e. h(−5+θ)/2 ∼ (1−x)−(3/4)(−5+θ)/2 = (1−x)(15/8)−(3/8)θ

and

hx(x) ∼ (1− x)−7/4.

which implies that

h(−5+θ)/2hx ∼ (1− x)(1/8)−(3/8)θ ≤ C

if

(82) θ ≤ 1

3
.

To sum up, from (72) and the estimates of A0, A1, A2, and A3 we have

1

2ρlθ

∫ 1

0

1

h
([hQ]θ)2x dx+

2

θ

∫ t

0

∫ 1

0

Q2−θ([hQ]θ)2x dxds

≤ C + C(δ)

∫ 1

0

[1 + h]u2 dx+ δ

∫ 1

0

1

h
([hQ]θ)2x dx+ C(T ) + C

∫ t

0

∫ 1

0

1

h
([hQ]θ)2x dxds

≤ C(T ) + δ

∫ 1

0

1

h
([hQ]θ)2x dx+ C

∫ t

0

∫ 1

0

1

h
([hQ]θ)2x dxds.

(83)
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By an appropriate choice of δ > 0 and by use of Gronwall’s lemma the result (70)
follows.

Remark 3.2. It is the estimate (81) which puts the strongest constraint on θ
as expressed by (82). In particular, we observe that if we let m0 ∼ (1 − x)2/3 then
h ∼ (1− x)−2/3 and we may assume that hx ∼ (1− x)−5/3. Consequently,

h(−5+θ)/2hx ∼ (1− x)−θ/3,

which cannot be bounded for any θ > 0. By the above approach it seems that the decay
rate α > 0 in m0 ∼ (1 − x)α must be larger than 2/3 in order to ensure estimate
(70).

Lemma 3.7. Under the assumptions of Theorem 2.1, we have that

(84)

∫ 1

0

[1 + h(c)]u2t dx+

∫ t

0

∫ 1

0

h(c)Q1+θu2xt dxds ≤ C.

Proof. Taking the derivative of the third equation of (22), multiplying by ut, and
integrating in space over [0, 1] we get

[1 + h(c)]utt + ([h(c)Q]2)xt = (h(c)Q1+θux)xt

and

1

2

d

dt

∫ 1

0

[1 + h(c)]u2t dx+

∫ 1

0

([h(c)Q]2)xtut dx =

∫ 1

0

(h(c)Q1+θux)xtut dx.

Integrating in time over [0, t] then gives

1

2

∫ 1

0

[1 + h(c)]u2t dx+

∫ t

0

∫ 1

0

([h(c)Q]2)xtut dxds =
1

2

∫ 1

0

[1 + h(c)](u0)
2
t dx

+

∫ t

0

∫ 1

0

(h(c)Q1+θux)xtut dxds.

(85)

For the second term on the left hand side of (85) we have that

∫ t

0

∫ 1

0

([h(c)Q]2)xtut dxds

= 2

∫ t

0

∫ 1

0

[h(c)2QQt]xut dxds = −2ρl

∫ t

0

∫ 1

0

[h(c)2Q3ux]xut dxds

= −2ρl

∫ t

0

(
h2Q3uxut

)∣∣∣x=1

x=0
ds+ 2ρl

∫ t

0

∫ 1

0

[h2Q3ux]utx dxds

= 2ρl

∫ t

0

∫ 1

0

[h2Q3ux]utx dxds,

(86)

where we have used the boundary conditions. For the last term on the right hand
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side of (85) we get

∫ t

0

∫ 1

0

(h(c)Q1+θux)xtut dxds

=

∫ t

0

∫ 1

0

(
[hQ1+θux]tut

)
x
dxds−

∫ t

0

∫ 1

0

[hQ1+θux]tuxt dxds

=

∫ t

0

(
[hQ1+θux]tut

)∣∣∣x=1

x=0
ds−

∫ t

0

∫ 1

0

hQ1+θu2xt dxds−
∫ t

0

∫ 1

0

h(Q1+θ)tuxuxt dxds

= −
∫ t

0

∫ 1

0

hQ1+θu2xt dxds+ ρl(θ + 1)

∫ t

0

∫ 1

0

hQ2+θu2xuxt dxds

(87)

Combining (85), (86), and (87), we have

1

2

∫ 1

0

[1 + h(c)]u2t dx+

∫ t

0

∫ 1

0

hQ1+θu2xt dxds

=
1

2

∫ 1

0

[1 + h(c)](u0)
2
t dx− 2ρl

∫ t

0

∫ 1

0

[h2Q3ux]utx dxds+ ρl(θ + 1)

∫ t

0

∫ 1

0

hQ2+θu2xuxt dxds

(88)

The first term on the right hand side of (88) can be estimated in view of assumptions
(42)–(44):∫ 1

0

(u0t)
2 dx ≤ C

(∫ 1

0

([h(c0)Q0]
2)2x dx+

∫ 1

0

[h(c0)Q
θ+1
0 u0x]

2
x dx

)
≤ C.(89)

For the second term on the RHS we get∫ t

0

∫ 1

0

[h2Q3ux]utx dxds

≤ C(δ)

∫ t

0

∫ 1

0

h3Q5−θu2x dxds+ δ

∫ t

0

∫ 1

0

hQ1+θu2tx dxds

≤ C

∫ t

0

∫ 1

0

max
x∈[0,1]

[h2Q4−2θ]hQ1+θu2x dxds+ δ

∫ t

0

∫ 1

0

hQ1+θu2tx dxds

≤ C + δ

∫ t

0

∫ 1

0

hQ1+θu2tx dxds,

(90)

where we have used Lemma 3.1 combined with the fact that h2Q4−2θ ≤ CQ2(1−θ) ≤ C,
in view of Lemma 3.3, Corollary 3.4 and θ ∈ (0, 1). For the last term on RHS of (88)
we get ∫ t

0

∫ 1

0

hQ2+θu2xuxt dxds

≤ C(δ)

∫ t

0

∫ 1

0

hQ3+θu4x dxds+ δ

∫ t

0

∫ 1

0

hQ1+θu2tx dxds.

(91)

We must check the following term in more detail:

∫ t

0

∫ 1

0

hQ3+θu4x dxds ≤
∫ t

0

max
x∈[0,1]

[Q2u2x]V (s) ds, V (s) =

∫ 1

0

hQ1+θu2x dx ∈ L1(0,∞).

(92)
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In particular,

[Q2u2x] = h−2Q−2θ([hQ1+θ]ux)
2 = h−2Q−2θ

(
−
∫ 1

x

[1 + h(c)]ut dx− (p∗ − [h(c)Q]2)
)2

≤ h−2Q−2θ
(
C +

∫ 1

x

[1 + h(c)]ut dx
)2

≤ h−2+2θ[hQ]−2θ
(
C +

(∫ 1

x

[1 + h(c)] dx
)1/2(∫ 1

x

[1 + h(c)]u2t dx
)1/2)2

≤ h−2(1−θ)
(
C + C

∫ 1

0

[1 + h(c)]u2t dx
)

≤ C + C

∫ 1

0

[1 + h(c)]u2t dx,

(93)

where we have used Hölder inequality and the fact that h(c) ∼ (1 − x)−3/4. Then it
follows that∫ t

0

∫ 1

0

hQ3+θu4x dxds ≤ C

∫ t

0

V (s) ds+ C

∫ t

0

V (s)

∫ 1

0

[1 + h(c)]u2tdx ds,(94)

Combining (88)–(94) we arrive at

1

2

∫ 1

0

[1 + h(c)]u2t dx+

∫ t

0

∫ 1

0

hQ1+θu2xt dxds

≤ C + C

∫ t

0

V (s)

∫ 1

0

[1 + h(c)]u2tdx ds.

(95)

Hence, the conclusion (84) follows by application of Gronwall’s inequality.
Corollary 3.8. From the proof of Lemma 3.7, by combining (93) and (84), it

follows that the following uniform estimate holds:

(96) ∥Q2u2x∥L∞([0,1]×[0,∞)) ≤ C.

Lemma 3.9. Under the assumptions of Theorem 2.1, we have that
(97)∫ 1

0

|[hQ]x(x, t)| dx ≤ C(T ),

∫ 1

0

|Qx(x, t)| dx ≤ C(T ),

∫ 1

0

|mx(x, t)| dx ≤ C(T ),

and

(98) ∥h(c)Q1+θ∥L∞([0,1]×[0,T ]) ≤ C,

and

(99)

∫ 1

0

|(h(c)Q1+θux)x| dx ≤ C(T ).
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Proof. For estimate (97) we observe that∫ 1

0

|([hQ]θ)x| dx =

∫ 1

0

h−1/2|([hQ]θ)x| · h1/2 dx

≤
(∫ 1

0

h−1([hQ]θ)2x dx
)1/2(∫ 1

0

h dx
)1/2

≤ C(T ),

in view of Lemma 3.6 and the fact that h(c) ∼ (1 − x)−3/4. Consequently, we have
that ∫ 1

0

|[hQ]x| dx =
1

θ

∫ 1

0

|([hQ]θ)x|[hQ]1−θ dx ≤ C(T )

by Lemma 3.3 and∫ 1

0

|Qx| dx ≤
∫ 1

0

1

h
|[hQ]x| dx+

∫ 1

0

1

h
|hx||Q| dx ≤ C(T ) + C

∫ 1

0

1

h2
|hx| dx ≤ C(T ).

From (21) and Corollary 3.4 we see that∫ 1

0

|mx| dx =
1

ρl

∫ 1

0

m2

Q2
|Qx| dx ≤ C

∫ 1

0

|Qx| dx.

As far as estimate (98) is concerned it suffices to note that

|h(c)Q1+θux| ≤ C + C
(∫ 1

x

[1 + h(c)] dx
)1/2(∫ 1

0

[1 + h(c)]u2t dx
)1/2

≤ C.

Similarly, for (99) we have ∫ 1

0

|(hQ1+θux)x| dx ≤ C(T ).

Lemma 3.10. Under the assumptions of Theorem 2.1, we have that

(100)

∫ 1

0

|ux(x, t)| dx ≤ C

and

(101) ∥u(x, t)∥L∞(DT ) ≤ C.

Proof. Clearly,

ux = − 1

E(c,Q)

∫ 1

x

[1 + h]ut dy −
p∗

E(c,Q)
+

[h(c)Q]2

E(c,Q)
.

Using Lemma 3.3 we find

|ux| ≤ CQ−θ

∫ 1

x

[1 + h]|ut|dy + CQ−θ + CQ−θ
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and in view of Corollary 3.4 we get∫ 1

0

|ux| dx

≤ C

∫ 1

0

(1− x)−
3
4 θ

∫ 1

x

[1 + h]utdy dx+ C

∫ 1

0

(1− x)−
3
4 θ dx

≤ C

∫ 1

0

(1− x)−
3
4 θ
(∫ 1

x

[1 + h]dy
)1/2(∫ 1

x

[1 + h]u2tdy
)1/2

dx+ C

∫ 1

0

(1− x)−
3
4 θ dx

≤ C

∫ 1

0

(1− x)
1
8−

3
4 θ dx+ C ≤ C.

This proves (100). Estimate (101) follows since

|u(x, t)| ≤
∫ x

0

|ux(x, t)| dx ≤ C.

Lemma 3.11. Under the assumptions of Theorem 2.1, we have that

(102)

∫ 1

0

|Q(x, t)−Q(x, s)|2 dx ≤ C|t− s|2,

(103)

∫ 1

0

|m(x, t)−m(x, s)|2 dx ≤ C|t− s|2,

(104)

∫ 1

0

|u(x, t)− u(x, s)|2 dx ≤ C|t− s|2,

(105)

∫ 1

0

|h(c)Q1+θ(x, t)− h(c)Q1+θ(x, s)|2 dx ≤ C|t− s|.

Proof. The proof is quite straightforward, see for example [10] for details.

3.2. Existence part of Theorem 2.1. In order to construct weak solutions
to the initial-boundary problem (IBVP) (8)–(12), we apply the line method where a
system of ODEs is derived that can approximate the original model [11, 12, 18, 14,
16, 21, 19, 22, 23, 24]. Semi-discrete version of the various lemmas can be obtained
such that required estimates on (n,m, u) are obtained by means of the estimates on
(c,Q, u) and the fact that n = h(c)m and m = ρlQ/(1 + Q). Then, in combination
with Helly’s theorem the existence part (A) and (B) of Theorem 2.1 is obtained.

4. Asymptotic behavior. In the following we discuss the asymptotic behavior
of the model. More precisely, we will prove part (C) of Theorem 2.1.

Lemma 4.1. Suppose that y ∈W 1,1
loc (R+) satisfies

y = y′1 + y2,

and

|y2| ≤
n∑

i=1

αi, |y′| ≤
n∑

i=1

βi, on R+,
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where y1 ∈W 1,1
loc (R+), lim

s→+∞
y1(s) = 0 and αi, βi ∈ Lpi(R+) for some pi ∈ [1,∞), i =

1, · · · , n. Then

lim
s→+∞

y(s) = 0.

Note that a special case of this lemma is that if E(t) ∈ L1(R+) and E′(t) ∈ L1(R+),
then E(t) → 0 as t→ ∞. This follows by setting y1 = 0 in Lemma 4.1.

Lemma 4.2. Under the assumptions of Theorem 2.1, the total kinetic energy
satisfies

(106) E :=
1

2

∫ 1

0

u2(x, t) dx→ 0, as t→ ∞.

Proof. First, we observe that E(t) ≥ 0 and∫ ∞

0

E(t) dt =
1

2

∫ ∞

0

∫ 1

0

u2(x, t) dxdt ≤ C,

in view of Corollary 3.5 and

|E′(t)| =
∣∣∣∫ 1

0

u
(
−[h(c)Q]2 + [h(c)Q1+θ]ux

)
x
dx

∣∣∣
=

∣∣∣−u(1, t)p∗ + ∫ 1

0

[h(c)Q]2ux dx−
∫ 1

0

[h(c)Q1+θ]u2x dx
∣∣∣

=
∣∣∣−p∗ ∫ 1

0

ux dx+

∫ 1

0

[h(c)Q]2ux dx−
∫ 1

0

[h(c)Q1+θ]u2x dx
∣∣∣

=
∣∣∣∫ 1

0

(
[h(c)Q]2 − p∗

)
ux dx

∣∣∣+ ∫ 1

0

[h(c)Q1+θ]u2x dx

=

∫ 1

0

[h3/2Q(3−θ)/2]E1/2|ux| dx+ p∗
∫ 1

0

E−1/2E1/2|ux| dx+

∫ 1

0

[h(c)Q1+θ]u2x dx

≤ C
(∫ 1

0

Q−θ dx
)1/2(∫ 1

0

Eu2x dx
)1/2

+ p∗
(∫ 1

0

Q−θ dx
)1/2(∫ 1

0

Eu2x dx
)1/2

+

∫ 1

0

Eu2x dx.

In view of Lemma 3.3 we conclude that the first two terms on the right hand side are
in L2(R+), the last in L1(R+). Hence, by applying Lemma 4.1 with y1 = 0 we may
conclude that

lim
t→∞

E(t) = 0.

Lemma 4.3. Under the assumptions of Theorem 2.1, the following estimate holds

(107)

∫ t

0

∫ 1

0

(
[h(c)Q]2(x, s)− p∗

)2

dxds ≤ C,

for C independent of time.
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Proof. We have

[hQ]2 − p∗ =

∫ 1

x

[1 + h]utdy −
1

ρlθ
(hQθ)t.

Hence,

∫ t

0

∫ 1

0

(
[hQ]2 − p∗

)2

dxds =

∫ t

0

∫ 1

0

(∫ 1

x

[1 + h]utdy −
1

ρlθ
(hQθ)t

)(
[hQ]2 − p∗

)
dxds

=

∫ t

0

∫ 1

0

(
[hQ]2 − p∗

)∫ 1

x

[1 + h]utdy dxds−
∫ t

0

∫ 1

0

(
[hQ]2 − p∗

) 1

ρlθ
(hQθ)t dxds

= I1 + I2.

Clearly, integration by parts and use of second equation of (22) give

I1 =

∫ t

0

∫ 1

0

(
[hQ]2 − p∗

)∫ 1

x

[1 + h]utdy dxds

=

∫ t

0

∫ 1

0

(
[hQ]2 − p∗

)(∫ 1

x

[1 + h]udy
)
t
dxds

= 2ρl

∫ t

0

∫ 1

0

[hQ]2Qux

(∫ 1

x

[1 + h]udy
)
dxds

+

∫ 1

0

(
[hQ]2 − p∗

)(∫ 1

x

[1 + h]udy
)
dx−

∫ 1

0

(
[hQ0]

2 − p∗
)(∫ 1

x

[1 + h]u0dy
)
dx.

Cauchy and Hölder inequality combined with use of Lemma 3.1, Lemma 3.3, and the
assumptions give then

I1 = 2ρl

∫ t

0

∫ 1

0

[hQ]2Qux

(∫ 1

x

[1 + h]udy
)
dxds

+

∫ 1

0

(
[hQ]2 − p∗

)(∫ 1

x

[1 + h]udy
)
dx−

∫ 1

0

(
[hQ0]

2 − p∗
)(∫ 1

x

[1 + h]u0dy
)
dx

≤ C

∫ t

0

∫ 1

0

hQ1+θu2x dxds+ C

∫ t

0

∫ 1

0

(∫ 1

x

[1 + h]2dy
)(∫ 1

0

u2dy
)
dxds

+ C

∫ 1

0

(∫ 1

x

[1 + h]dy
)1/2(∫ 1

0

[1 + h]u2dy
)1/2

dx

+ C

∫ 1

0

(∫ 1

x

[1 + h]dy
)1/2(∫ 1

0

[1 + h]u20dy
)1/2

dx

≤ C

∫ t

0

∫ 1

0

hQ1+θu2x dxds

+ C

∫ t

0

∫ 1

0

u2 dxds+ C
(∫ 1

0

[1 + h]u2dy
)1/2

+ C
(∫ 1

0

[1 + h]u20dy
)1/2

≤ C.
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Moreover, by Lemma 3.3 and the assumptions

I2 =
1

ρlθ

∫ t

0

∫ 1

0

(
p∗ − [hQ]2

)
(hQθ)t dxds

=
p∗

ρlθ

∫ 1

0

hQθ dx− p∗

ρlθ

∫ 1

0

hQθ
0 dx

− 1

ρl(θ + 2)

∫ 1

0

h3Qθ+2 dx+
1

ρl(θ + 2)

∫ 1

0

h3Qθ+2
0 dxds

≤ C

∫ 1

0

h1−θ dx ≤ C.

From this we can conclude that (107) holds.

4.1. Long-time behavior of Theorem 2.1. We want to prove that

(108)

∫ 1

0

(
[h(c)Q]2(x, t)− p∗

)2

dx→ 0,

and

(109)

∫ 1

0

(
[h(c)Q](x, t)−

√
p∗
)q

dx→ 0, q ∈ [1,∞),

as t→ ∞.
Lemma 4.3 shows that

(110)

∫ 1

0

(
[h(c)Q]2(x, s)− p∗

)2

dx ∈ L1(R+).

In addition, it follows that

∣∣∣ d
dt

∫ 1

0

(
[h(c)Q]2 − p∗

)2

dx
∣∣∣ = 4

∣∣∣∫ 1

0

(
[h(c)Q]2 − p∗

)
h2QQt dx

∣∣∣
≤ 4ρl

∣∣∣∫ 1

0

(
[h(c)Q]2 − p∗

)
h2Q3|ux| dx

∣∣∣
≤ C

(∫ 1

0

h3Q5−θ
(
[h(c)Q]2 − p∗

)2

dx
)1/2(∫ 1

0

hQ1+θu2x dx
)1/2

≤ C
(∫ 1

0

hQ1+θu2x dx
)1/2

∈ L2(R+).

(111)

From these two estimates (110) and (111), seen in view of Lemma 4.1 we can conclude
that (108) holds. Next, see see that∫ 1

0

(
[h(c)Q]−

√
p∗
)4

dx =

∫ 1

0

([h(c)Q]−
√
p∗)4

([h(c)Q]2 − p∗)2
([h(c)Q]2 − p∗)2 dx

≤ C

∫ 1

0

([h(c)Q]2 − p∗)2 dx→ 0,

(112)
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as t → ∞ where we have used (108) For q ∈ [1, 4) it follows by using Hölder with
p = 4/q and r = 1− q/4 > 0∫ 1

0

(
[h(c)Q]−

√
p∗
)q

dx

≤
(∫ 1

0

([h(c)Q]−
√
p∗)4 dx

)q/4(∫ 1

0

([h(c)Q]−
√
p∗)r dx

)1/r

≤ C
(∫ 1

0

([h(c)Q]−
√
p∗)4 dx

)q/4

→ 0,

(113)

by using (112). For q ∈ [4,∞) we have∫ 1

0

(
[h(c)Q]−

√
p∗
)q

dx =

∫ 1

0

([h(c)Q]−
√
p∗
)4

([h(c)Q]−
√
p∗
)q−4

dx

≤
∫ 1

0

([h(c)Q]−
√
p∗
)4

dx→ 0.

(114)

Hence, (109) has been shown. Clearly, the results (50) and (51) of Themorem 2.1
follow from (108) and (109) by using that h(c)Q(m) = n/(ρl −m) =

√
p(n,m).
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