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Abstract. In this work we consider a compressible gas-liquid model with a well-reservoir inter-
action term that is relevant for coupled wellbore-reservoir flow systems involved in e.g. drilling

operations. Main focus is on deriving estimates that are independent of time. Under suitable
conditions on the well-reservoir interaction term we obtain such estimates which allow prediction
of the long-time behavior of the gas and liquid masses. Moreover, we also obtain a quantifica-
tion of the convergence rates as a function of time and gain some insight into the role played

by the rate characterizing how fast the well-reservoir interaction must die out. The model is
investigated in a free boundary setting where the initial mass is a mixture of both phases, i.e.,
no single-phase zones exists.

Subject classification. 76T10, 76N10, 65M12, 35L60

Key words. two-phase flow, well-reservoir flow, weak solutions, asymptotic behavior, free bound-
ary problem

1. Introduction

Management of subsurface resources involves a system comprising the wellbore and the target
reservoir. As discrete pathways through geological formations, boreholes and wells are critical
to the success of many water, energy, and environmental management operations. Examples are
oil and gas production, geothermal energy production, geologic carbon sequestration, subsurface
remediation. Many well operations involve gas-liquid flow in a wellbore where there is some
interaction with the surrounding reservoir. Equipment can be placed along the wellbore that
allow for some kind of control on the flow between well and formation. For an example of such a
model in the context of single-phase flow we refer to [4, 5] and references therein. In this paper
we consider a gas-liquid model with inclusion of well-reservoir interaction.

The dynamics of the two-phase well flow is supposed to be dictated by a compressible gas-liquid
model of the drift-flux type. More precisely, it takes the following form

∂t[αgρg] + ∂x[αgρgug] = [αgρg]A

∂t[αlρl] + ∂x[αlρlul] = 0

∂t[αlρlul + αgρgug] + ∂x[αgρgu
2
g + αlρlu

2
l + P ] = −q + ∂x[ε∂xumix], umix = αgug + αlul,

(1)

where ε ≥ 0. This formulation allows us to study transient flows in a well together with a possible
flow of gas between well and surrounding reservoir represented by the rate term A(x, t). The model
is supposed under isothermal conditions. The unknowns are ρl, ρg the liquid and gas densities,
αl, αg volume fractions of liquid and gas satisfying αg + αl = 1, ul, ug velocities of liquid and gas,
P common pressure for liquid and gas, and q representing external forces like gravity and friction.
Since the momentum is given only for the mixture, we need an additional closure law which
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connects the two phase fluid velocities. We consider the special case where a no-slip condition is
assumed, i.e., ug = ul = u. This is relevant for a flow regime corresponding to dispersed bubble
flow where the gas-liquid mixture appears to be of a fairly homogeneous nature [16]. In the
following we ignore external forces by setting q = 0. A highly relevant issue to address is related
to the long-time behavior of the model. More precisely, we may ask:

• Under what conditions on the well-reservoir term A(x, t) can we obtain a system that will
give a stable long-time behavior? And what is the long-time behavior of masses and fluid
velocity?

In this work we only give a partial answer to this question in the sense that we identify conditions
on A(x, t) that will ensure that the long-time behavior of (1) becomes similar to that of the model
without well-reservoir interaction, i.e. A = 0 in (1).

Now we give more details about the framework in which the model is studied. Assuming a
polytropic gas law relation p = Cργg with γ > 1 and incompressible liquid ρl = Const we get a
pressure law of the form

P (n,m) = C
( n

ρl −m

)γ

, (2)

where we use the notation n = αgρg and m = αlρl. We consider (1) in a free boundary problem
setting where the masses m and n initially occupy only a finite interval [a, b] ⊂ R. That is,

n(x, 0) = n0(x) > 0, m(x, 0) = m0(x) > 0, u(x, 0) = u0(x), x ∈ [a, b],

and n0 = m0 = 0 outside [a, b]. The viscosity coefficient ε is assumed to depend on the masses m
and n, i.e. ε = ε(n,m). More precisely, we assume that

ε(n,m) = D
(n+m)β

(ρl −m)β+1
, β ∈ (0, 1/3), (3)

for a constant D. Se [8] for more information concerning the choice of the viscosity coefficient.
Introducing the total mass ρ = n+m and rewriting the model (1) in terms of Lagrangian variables,
it was suggested in [3] to consider the following gas-liquid model:

∂tn+ (nρ)∂xu = nA

∂tρ+ ρ2∂xu = nA

∂tu+ ∂xP (n, ρ) = −un
ρ
A+ ∂x(ε(n, ρ)ρ∂xu), x ∈ (0, 1),

(4)

with pressure law

P (n, ρ) =
( n

ρl − [ρ− n]

)γ

, γ > 1, (5)

and viscosity coefficient

ε(n, ρ) =
ρβ

(ρl − [ρ− n])β+1
, β ∈ (0, 1/3), (6)

where we have set the constant C,D to be one for simplicity, whereas boundary conditions are

P (n, ρ) = ε(n, ρ)ρux, at x = 0, 1, t ≥ 0, (7)

and initial conditions are

n(x, 0) = n0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (8)

In particular, a global existence result for weak solutions was obtained for the model problem (4)–
(8). The objective of the current work is to continue the study of this model. The novelty lies in the
fact that we explore under what circumstances time-independent estimates can be obtained which
allow to extract information about the asymptotic behavior of the gas and liquid masses. Such
results have been obtained for a gas-liquid model similar to (4), however, without any well-reservoir
interaction [14, 26]. In [14] such results were obtained for different initial data and different choices
of the mass-dependent viscosity function. We also refer to this work for an overview of related
results in the context of single-phase Navier-Stokes flow model [9, 10, 20, 15, 22, 21, 12].
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The main impact from the well-reservoir term A, which makes the analysis in this work different
from previous works on the gas-liquid model, is as follows:

• The well-reservoir interaction by A(x, t) creates an additional time-dependence expressed
by the fact that the variable c = n/ρ becomes time-dependent and related to A(x, t) by
equation (26).

• Lemma 3.1 (energy estimate) depends on the fact that ∥A(·, t)∥∞ is in L1(0,∞). Moreover,
both Lemma 3.3 (boundary behavior) and Lemma 3.2 and 3.4 (regularity of cx and Qx)
must deal with the new interaction term A(x, t) in an appropriate manner. The two latter
lemmas require that ∥Ax(·, t)∥∞ is in L1(0,∞). For Lemma 3.4 we derive the inequality
(63) which demonstrates the role of the well-reservoir term A. This lay the foundation for
obtaining the long-time behavior of the masses m and n as stated in Theorem 2.2.

• The decay rates of the masses are controlled by means of Lemma 5.1. This lower limit
is required in order to control new terms that appear owing to A(x, t). This is different
from the result in [14]. Note also that we employ the variable transformation (91), which
depends on A, in order to obtain a reformulation of the model as expressed by (97) which
allows for application of the ideas of Nagasawa [18, 14] to prove Theorem 2.3.

Note that the well-reservoir two-phase model (4) involves a ”friction-like” term −u(n/ρ)A in the
momentum equation representing an acceleration effect due to influx/efflux of gas between well
and reservoir. Such external force terms typically imply that smallness assumptions must be made
on the initial fluid velocity in order to obtain time-independent estimates. See [7] (and references
therein) for an example of this in the context of a gas-liquid flow model and [25] for an example
for single-phase Navier Stokes equations. We avoid this for the well-reservoir model by using that
∥A(., t)∥∞ is in L1(0,∞) to obtain the time-independent uniform estimate (36) of Lemma 3.1 and
the time-independent estimate (48) of Corollary 3.2.

The main observations obtained through the analysis of this work concerning the long-time
behavior of the model (4) is:

• In order to prove that the gas and liquid mass will vanish in the same manner as for the
model without well-reservoir interaction (A = 0), it is not necessary to use information
about the flow direction of gas between well and reservoir (A > 0 or A < 0) or any
smallness assumption on A. However, we need that ∥A(·, t)∥∞ and ∥Ax(·, t)∥∞ are in
L1(0,∞), see Theorem 2.2 and Remark 2.1.

• In particular, in order to obtain estimates of the rate at which gas and liquid masses tend
to zero as time goes to infinity, the assumption on A must be strengthened in the sense
that (1 + t)β+3∥A(·, t)∥∞ is required to be in L1(0,∞). There is also a corresponding
sharpening of the restriction on β associated with the viscosity term (6), see Theorem 2.3
and Remark 5.1.

The rest of this paper is organized as follows. In Section 2 we state precisely the main theorems
and their assumptions. In Section 3 we describe a priori estimates for the model where emphasis
is on the time-independent estimates. In Section 4 it is explained how the obtained estimates lead
to Theorem 2.2. Section 5 contains the proof of Theorem 2.3.

2. Main results

Below we give a precise description of the two main results of this paper, Theorem 2.2 and
Theorem 2.3, and under which assumptions on initial data, parameters γ and β, and well-reservoir
rate function A(x, t) these results hold. Note that we do not try to optimize the parameter choice
for β > 0. First of all we intend to illustrate the mechanisms that give rise to limitations on this
parameter.

We now recall the following (global) existence result for weak solutions that was obtained in
[3].

Theorem 2.1 (Global existence result). Assume that γ > 1 and β ∈ (0, 1/3) respectively in (5)
and (6), and that the initial data (n0,m0, u0) satisfy

(i) inf [0,1] n0 > 0, sup[0,1] n0 <∞, inf [0,1]m0 > 0, and sup[0,1]m0 < ρl;
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(ii) n0,m0 ∈W 1,2(I);
(iii) u0 ∈ L2q(I), for q ∈ N,

where I = (0, 1). As a consequence, the function c0 = n0

n0+m0
satisfies that

inf
[0,1]

c0 > 0, sup
[0,1]

c0 < 1, c0 ∈W 1,2(I). (9)

Moreover, the function Q0 = n0+m0

ρl−m0
satisfies that

inf
[0,1]

Q0 > 0, sup
[0,1]

Q0 <∞, Q0 ∈W 1,2(I). (10)

In addition, the well-formation flow rate function A(x, t) is assumed to satisfy for all times t ≥ 0

(iv) supx∈[0,1] |A(x, t)| ≤M <∞;

(v) A(·, t) ∈W 1,2(I);
(vi) A(0, t) = 0.

Then the initial-boundary problem (4)–(8) possesses a global weak solution (n, ρ, u) in the sense
that for any T > 0, the following holds:

(A) We have the estimates:

n, ρ ∈ L∞([0, T ],W 1,2(I)), nt, ρt ∈ L2([0, T ], L2(I)),

u ∈ L∞([0, T ], L2q(I)) ∩ L2([0, T ],H1(I)).

More precisely, ∀(x, t) ∈ [0, 1]× [0, T ] it follows that

0 < inf
x∈[0,1]

c(x, t), sup
x∈[0,1]

c(x, t) < 1, c :=
n

ρ
,

0 < µ inf
x∈[0,1]

(c) ≤ n(x, t) ≤
( ρl − µ

1− supx∈[0,1](c)

)
sup

x∈[0,1]

(c),

0 < µ ≤ ρ ≤ ρl − µ

1− supx∈[0,1](c)
,

(11)

for a non-negative constant µ = µ(∥c0∥W 1,2(I), ∥Qβ
0∥W 1,2(I), ∥A∥W 1,2(I), ∥u0∥L2q(I),

inf [0,1] c0, sup[0,1] c0, inf [0,1]Q0, sup[0,1]Q0,M, T ) > 0.

(B) Moreover, the following equations hold,

nt + nρux = nA, ρt + ρ2ux = nA,

(n, ρ)(x, 0) = (n0(x), ρ0(x)), for a.e. x ∈ (0, 1) and any t ≥ 0,∫ ∞

0

∫ 1

0

[
uϕt +

(
P (n, ρ)− E(n, ρ)ux

)
ϕx − u

n

ρ
Aϕ

]
dx dt+

∫ 1

0

u0(x)ϕ(x, 0) dx = 0

(12)

for any test function ϕ(x, t) ∈ C∞
0 (D), with D := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}.

A uniqueness result was also given under suitable restrictions on parameters. We refer to [3]
for details.

Now we focus on the long-time behaviour. The first result describes under which conditions on
A the masses m and n tend to zero as time goes to infinity.

Theorem 2.2 (Asymptotic behavior of mass functions). Let (n, ρ, u) be a global weak solution as
defined in Theorem 2.1. We assume that γ > 1, β ∈ (0, 1/3), and γ > β + 1. In addition, the
constraints on the well-formation flow rate function A(x, t) is strengthened by requiring that

sup
x∈[0,1]

|A(x, t)| ≤M(t) ∈ L1([0,∞)); (13)

sup
x∈[0,1]

|Ax(x, t)| ≤ N(t) ∈ L1([0,∞)). (14)
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We then have the following asymptotic behavior of the mass functions n(x, t), m(x, t):

lim
t→∞

sup
x∈[0,1]

n(x, t) = 0, (15)

lim
t→∞

sup
x∈[0,1]

m(x, t) = 0. (16)

We can also give decay rates of the mass functions n(x, t), m(x, t) However, for that result
further restrictions on both A, represented by the function M(t), and the parameter β > 0 are
needed.

Theorem 2.3 (Decay rate of the mass functions). Again let (n, ρ, u) be a global weak solution as
defined in Theorem 2.1. Again, we assume that γ > 1 and γ > β + 1. However, we in addition
assume that β ∈ (0, 1/6). The constraints on the well-formation flow rate function A(x, t) is
strengthened by requiring that M(t) obeys the following estimates independent of time t > 0:∫ t

0

(1 + s)β+3M(s) ds ≤ C,

∫ t

0

(1 + s)β−1

∫ ∞

s

M(ξ) dξ ds ≤ C. (17)

For any x ∈ [0, 1], we then have the following decay rate estimates for the mass functions n(x, t),
m(x, t)

n(x, t),m(x, t) ≤ C(1 + t)−
β

γ−1+2β . (18)

Remark 2.1. Note that we do require that
∫∞
0

|A(x, t)| ds < ∞, however, we do not require that∫∞
0

|At(x, t)| ds < ∞. Hence, we may not conclude that A(x, t) → 0 for all x ∈ [0, 1] as t → ∞.
In fact, no assumptions on continuity properties of A(·, t) as a function of time has been used to
obtain the above results.

3. Estimates

In the following we will frequently take advantage of the fact that the model (4) can be rewrit-
ten in a more amenable form for deriving various estimates [6, 23, 24]. We first describe this
reformulation, and then present a number of a priori estimates.

We introduce the variable

c =
n

ρ
, (19)

and see that (4) corresponds to

ρ∂tc+ c∂tρ+ [cρ2]∂xu = [cρ]A

∂tρ+ ρ2∂xu = [cρ]A

∂tu+ ∂xP (c, ρ) = −ucA+ ∂x(E(c, ρ)∂xu),

that is,

ρ∂tc+ c[cρ]A = [cρ]A

∂tρ+ ρ2∂xu = [cρ]A

∂tu+ ∂xP (c, ρ) = −ucA+ ∂x(E(c, ρ)∂xu),

which, in turn can be reformulated as

∂tc = c(1− c)A = ckA, k = k(x, t) := 1− c(x, t),

∂tρ+ ρ2∂xu = cρA

∂tu+ ∂xP (c, ρ) = −ucA+ ∂x(E(c, ρ)∂xu),

(20)

with

P (c, ρ) = cγ
( ρ

ρl − k(x, t)ρ

)γ

, k(x, t) = 1− c(x, t) γ > 1, (21)

and

E(c, ρ) =
( ρ

ρl − k(x, t)ρ

)β+1

, 0 < β < 1/3. (22)
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Moreover, boundary conditions are given by

P (c, ρ) = E(c, ρ)ux, at x = 0, 1, t ≥ 0, (23)

whereas initial data are

c(x, 0) = c0(x), ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ [0, 1]. (24)

Corollary 3.1. Under the assumptions of Theorem 2.1, it follows that

0 < inf
(x,t)∈[0,1]×[0,∞)

c(x, t), sup
(x,t)∈[0,1]×[0,∞)

c(x, t) < 1. (25)

Proof. Note that from (20) we have

ct = c(1− c)A(x, t),

which corresponds to
1

c(1− c)
ct = A(x, t), c ∈ (0, 1),

i.e.

G(c)t = A(x, t), G(c) = log
( c

1− c

)
.

This implies that
c(x, t)

1− c(x, t)
=

c0(x)

1− c0(x)
exp

(∫ t

0

A(x, s) ds
)
. (26)

Note also that the inverse of h(c) = c/(1− c) is h−1(d) = d/(1+d), such that h−1 : [0,∞) → [0, 1)
and is one-to-one. Consequently,

c(x, t) = h−1
( c0(x)

1− c0(x)
exp

(∫ t

0

A(x, s) ds
))
, (27)

and 0 < c(x, t) < 1 for c0(x) ∈ (0, 1). In particular, we see that if

0 < inf
x∈[0,1]

c0(x), sup
x∈[0,1]

c0(x) < 1, sup
x∈[0,1]

|A(x, t)| ≤M(t) ∈ L1([0,∞)),

which follows from the assumptions on n0, m0, and A given in Theorem 2.1, we have that

C−1 ≤ exp
(
−
∫ t

0

M(s) ds
)
≤ exp

(∫ t

0

A(x, s) ds
)
≤ exp

(∫ t

0

M(s) ds
)
≤ C.

Hence, the conclusion (25) follows from (27). �

We introduce the variable

Q(ρ, k) =
ρ

ρl − k(x, t)ρ
, (28)

and observe that

ρ =
ρlQ

1 + kQ
,

1

ρ
=

1

ρlQ
+
k

ρl
. (29)

Thus, we may rewrite the model (20) in the following form

∂tc = kcA

∂tQ+ ρlQ
2ux = cAQ

∂tu+ ∂xP (c,Q) = −ucA+ ∂x(E(Q)∂xu),

(30)

with

P (c,Q) = [cQ(ρ, k)]γ , γ > 1, (31)

and

E(Q) = Q(ρ, k)β+1, 0 < β < 1/3. (32)

This model is then subject to the boundary conditions

P (c,Q) = E(Q)ux, at x = 0, 1, t ≥ 0. (33)
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In addition, we have the initial data

c(x, 0) = c0(x), Q(x, 0) = Q0(x), u(x, 0) = u0(x), x = [0, 1]. (34)

3.1. A priori estimates. Now we derive a priori estimates for (c,Q, u) by making use of the
reformulated model (30)–(34).

Lemma 3.1 (Energy estimate). Let C be a constant independent of any time T > 0. Under the
assumptions of Theorem 2.2 we then have the basic energy estimate where t ∈ [0, T ]∫ 1

0

(1
2
u2 +

cγQ(ρ, k)γ−1

ρl(γ − 1)

)
(x, t) dx+

∫ t

0

∫ 1

0

Q(ρ, k)β+1(ux)
2 dx ds ≤ C. (35)

Moreover,

Q(ρ, k)(x, t) ≤ C, ∀(x, t) ∈ [0, 1]× [0, T ], (36)

and finally, for any positive integer q,∫ 1

0

u2q(x, t) dx+ q(2q − 1)

∫ t

0

∫ 1

0

u2q−2Q(ρ, k)1+β(ux)
2 dx dt ≤ C. (37)

Proof. We consider the proof in three steps.

Estimate (35): We multiply the third equation of (30) by u and integrate over [0, 1] in space.
We apply the boundary condition (33) and the equation

cγ

ρl(γ − 1)
(Qγ−1)t + cγQγux =

1

ρl
cγ+1Qγ−1A, (38)

obtained from the second equation of (30) by multiplying with cγQγ−2. This equation also corre-
sponds to

1

ρl(γ − 1)
(cγQγ−1)t −

Qγ−1

ρl(γ − 1)
(cγ)t + cγQγux =

1

ρl
cγ+1Qγ−1A, (39)

which in turn can be rewritten as

1

ρl(γ − 1)
(cγQγ−1)t −

γ

ρl(γ − 1)
Qγ−1cγkA+ P (c,Q)ux =

1

ρl
cγ+1Qγ−1A, (40)

where we have used the first equation of (30). Then, we get

d

dt

∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dx−

∫ 1

0

γcγQγ−1

ρl(γ − 1)
[kA] dx+

∫ 1

0

u2[cA] dx

+

∫ 1

0

E(Q)(ux)
2 dx =

1

ρl

∫ 1

0

cγ+1Qγ−1Adx =
1

ρl

∫ 1

0

cγQγ−1[cA] dx.

We can then integrate in time over [0, t] and estimate as follows∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dx+

∫ t

0

∫ 1

0

E(Q)(ux)
2dxds

≤
∫ 1

0

(1
2
u20 +

cγQγ−1
0

ρl(γ − 1)

)
dx+

∫ t

0

∫ 1

0

u2[c|A|]dxds+
∫ t

0

∫ 1

0

cγQγ−1

ρl(γ − 1)
[(γ − c)|A|]dxds

≤ C + C

∫ t

0

M(s)

∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dxds,

(41)

where M(s) ∈ L1(0,∞). From this and Remark 3.1 given below, (35) follows.

Estimate (36): From the second equation of (30) we deduce the equation

1

ρl
(Qβ)t + βQβ+1ux =

β

ρl
cQβA. (42)
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Integrating over [0, t], we get

Qβ(x, t) = Qβ(x, 0)− βρl

∫ t

0

Qβ+1ux ds+ β

∫ t

0

cQβAds. (43)

Then, we integrate the third equation of (30) over [0, x] and get∫ x

0

ut(y, t) dy + P (c,Q)− P (c(0, t), Q(0, t)) + (E(Q)ux)(0, t) +

∫ x

0

ucAdy = E(Q)ux = Qβ+1ux.

Using the boundary condition (33) and inserting the above relation into the right hand side of
(43), we get

Qβ(x, t)

= Qβ(x, 0)− βρl

∫ t

0

(∫ x

0

ut(y, t) dy + P (c,Q) +

∫ x

0

ucAdy
)
ds+ β

∫ t

0

cQβAds

= Qβ(x, 0)− βρl

∫ x

0

(u(y, t)− u0(y)) dy − βρl

∫ t

0

P (c,Q) ds

− βρl

∫ t

0

∫ x

0

u[cA] dy ds+ β

∫ t

0

Qβ [cA] ds.

(44)

Now using the Cauchy and Hölder inequalities and (35) as well as the assumptions on the initial
data and A(x, t) given by (13), we can further estimate as follows

Qβ(x, t) + βρl

∫ t

0

P (c,Q)ds

≤ Qβ(x, 0) + βρl

∫ 1

0

|u(y, t)|dy + βρl

∫ 1

0

|u0(y)|dy

+ C

∫ t

0

∫ 1

0

|A||u|dyds+ C

∫ t

0

|A|Qβ(x, s)ds

≤ C + C

∫ t

0

∫ 1

0

|A| 12 |u||A| 12 dyds+ C

∫ t

0

|A|Qβ(x, s)ds

≤ C + C

∫ t

0

∫ 1

0

|A||u|2dyds+ C

∫ t

0

∫ 1

0

|A|dyds+ C

∫ t

0

|A|Qβ(x, s)ds

≤ C + C

∫ t

0

M(s)

∫ 1

0

|u|2dyds+ C

∫ t

0

M(s)ds+ C

∫ t

0

|A|Qβ(x, s)ds

≤ C + C

∫ t

0

M(s)Qβ(x, s)ds.

(45)

Finally, after an application of Gronwall’s inequality as described in Remark 3.1, the upper bound
(36) follows.

Estimate (37): Multiplying the third equation of (30) by 2qu2q−1, integrating over [0, 1] × [0, t]
and integration by parts together with application of the boundary conditions (33), we get∫ 1

0

u2q dx+ 2q(2q − 1)

∫ t

0

∫ 1

0

Q(ρ, k)β+1(ux)
2u2q−2 dx ds

=

∫ 1

0

u2q0 dx+ 2q(2q − 1)

∫ t

0

∫ 1

0

cγQ(ρ, k)γu2q−2ux dx ds− 2q

∫ t

0

∫ 1

0

[cA]u2q dx ds.

(46)

For the second term on the right hand side of (46) we apply Cauchy’s inequality with and get∫ t

0

∫ 1

0

cγQ(ρ, k)γu2q−2ux dx ds

≤ 1

2

∫ t

0

∫ 1

0

c2γQ(ρ, k)2γ−β−1u2q−2 dx ds+
1

2

∫ t

0

∫ 1

0

Q(ρ, k)β+1u2q−2(ux)
2 dx ds.
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The last term clearly can be absorbed in the second term of the left-hand side of (46). Finally, let

us see how we can bound the term 1
2

∫ t

0

∫ 1

0
c2γQ(ρ, k)2γ−1−βu2q−2 dx ds. Following along the lines

of [14] we find using Young’s inequality (i.e ab ≤ (1/p)ap + (1/r)br where 1/p+ 1/r = 1, with the
choice p = q and r = q/(q − 1)), and thereafter the Hölder inequality that

1

2

∫ t

0

∫ 1

0

c2γQ2γ−1−βu2q−2 dx ds =
1

2

∫ t

0

∫ 1

0

c
γ
q +γQ

γ
q +γ−β−1c

(q−1)γ
q Q

(q−1)γ
q u2q−2 dx ds

≤ 1

2q

∫ t

0

∫ 1

0

cqγQq(γ−β−1)cγQγ dx ds+
q − 1

2q

∫ t

0

∫ 1

0

cγQγu2q dx ds,

≤ 1

2q

∫ t

0

max
[0,1]

([cQ]γ)
(∫ 1

0

cqγQq(γ−β−1) dx
)
ds+

q − 1

2q

∫ t

0

max
[0,1]

([cQ]γ)
(∫ 1

0

u2q dx
)
ds

≤ C + C

∫ t

0

max
[0,1]

([cQ]γ)
(∫ 1

0

u2q dx
)
ds,

where we have used (36), the requirement γ ≥ β + 1, as well as Corollary 3.2 below. To sum up,
we now get that∫ 1

0

u2q dx+ q(2q − 1)

∫ t

0

∫ 1

0

Q(ρ, k)β+1(ux)
2u2q−2 dx ds

≤
∫ 1

0

u2q0 dx+ 2q(2q − 1)
[
C + C

∫ t

0

max
[0,1]

([cQ]γ)
(∫ 1

0

u2q dx
)
ds
]
+ 2q

∫ t

0

∫ 1

0

(c|A|)u2q dx ds

= C + C

∫ t

0

(
max
[0,1]

([cQ]γ) +M(s)
)(∫ 1

0

u2q dx
)
ds.

(47)

Finally, in view of estimate (48) of Corollary 3.2, we can use Gronwall’s inequality as described in
Remark 3.1 and conclude that estimate (37) holds. �

We now state the following useful corollary, which is used extensively throughout the paper.

Corollary 3.2. For any (x, t) ∈ [0, 1]× [0, T ], we have∫ t

0

P (c,Q)ds =

∫ t

0

[cQ]γds ≤ C. (48)

In particular,
∫∞
0

maxx∈[0,1] P (c,Q)dt ≤ C.

Proof. This follows directly from equation (45), since the term
∫ t

0
M(s)Qβ(x, s)ds ≤ C

∫∞
0
M(s)ds ≤

C, by application of estimate (36) and assumption on M given in (13). �
Remark 3.1. It follows from (41) that∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dx ≤ C2 +

∫ t

0

C1(s)

∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dxds, (49)

where C2 is a constant, and C1(s) ∈ L1(0,∞). We then define the function η(t) such that

η(t) =

∫ t

0

C1(s)

∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dxds. (50)

It then follows by differentiating η(t) and using (49) that

η′(t) = C1(t)

∫ 1

0

(1
2
u2 +

cγQγ−1

ρl(γ − 1)

)
dx ≤ C1(t)[C2 + η(t)] = C1(t)η(t) + ψ(t), (51)

where ψ(t) = C2C1(t) ∈ L1(0,∞). Clearly, the differential form of Gronwall’s inequality then let
us conclude that

η(t) ≤ e
∫ t
0
C1(s)ds[η(0) +

∫ t

0

ψ(s)ds] ≤ C2e
∫∞
0

C1(s)ds

∫ ∞

0

C1(s)ds ≤ C, (52)

where C is a constant independent of t and we have used that η(0) = 0.
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Remark 3.2. It is instructive to compare the model (4) with the gas-liquid model studied by
Fan et al [7]. Their model contains a friction term which is of the form −fm2u|u| appearing
on the right hand side of the momentum equation. This term prevents the authors to obtain a
time-independent upper bound for Q similar to (36). Instead they have to rely on other arguments
that involve sufficiently small fluid velocity ∥u∥2 ≤ ε. The model (4) also contains a ”friction”-
like term −cAu. It is the L1(0,∞) control of ∥A(·, t)∥∞ which allows us to obtain (36) without
requiring any smallness on fluid velocity u.

The next lemma describes under which conditions c(x, t) is in W 1,2(I). The new aspect here
compared to [3] is that the estimate must be time-independent.

Lemma 3.2 (Additional regularity on c). Under the assumptions of Theorem 2.2 we have the
estimate ∫ 1

0

(∂xc)
2 dx ≤ C. (53)

Proof. We set w = cx and derive from the first equation of (30)

wt = w(1− c)A− cwA+ ckAx = w(1− 2c)A+ ckAx.

Hence, multiplying by w and integrating over [0, 1] we get∫ 1

0

(
1

2
w2)t dx =

∫ 1

0

(1− 2c)Aw2 dx+

∫ 1

0

ckAxw dx. (54)

Clearly, in view of the assumptions on the flow rate A given by (13) and (14) and the bound on c
from Corollary 3.1, we see that

1

2

∫ 1

0

w2 dx =
1

2

∫ 1

0

w2
0 dx+

∫ t

0

∫ 1

0

(1− 2c)Aw2 dxds+

∫ t

0

∫ 1

0

ckAxw dxds

≤ C + C

∫ t

0

M(s)

∫ 1

0

w2 dxds+
1

2

∫ t

0

∫ 1

0

|Ax| dxds+
1

2

∫ t

0

∫ 1

0

|Ax|w2 dxds

≤ C + C

∫ t

0

M(s)

∫ 1

0

w2 dxds+
1

2

∫ t

0

N(s)ds+
1

2

∫ t

0

N(s)

∫ 1

0

w2 dxds,

≤ C + C

∫ t

0

[M(s) +N(s)]

∫ 1

0

w2dxds,

where we have used Cauchy’s inequality. We conclude, by Gronwall’s inequality as before, that
(53) holds. �

The behavior of Q at the boundaries is given in the next lemma. The obtained estimates on
the mass function Q on the boundary will be required both in the proof of Lemma 3.4 and the
proof of Theorem 2.2. Note that the ode equation that describes the behavior at the boundary
contains an additional term due to the appearance of A. However, this term is a ”good” term and
an estimate is obtained similar to what was obtained in [14].

Lemma 3.3. Let d = 0 or 1, and ν(d, t) = (γ − β)
∫ t

0
c(d, s)A(d, s)ds. We then have

Q(d, t) =
[
e−ν(d,t)(γ − β)ρl

∫ t

0

eν(d,s)c(d, s)γds+ e−ν(d,t)Qβ−γ
0

] 1
β−γ

. (55)

Proof. From the momentum equation in (30) it follows that∫ 1

0

utdx = −
∫ 1

0

ucAdx, (56)

due to the boundary conditions. From (56) it then follows using x = 0 or x = 1 in the first line of
(44) that

Qβ(d, t) = Qβ
0 (d)− βρl

∫ t

0

[cQ]γ(d, s)ds+ β

∫ t

0

c(d, s)A(d, s)Qβ(d, s)ds. (57)
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A differentiation of (57) with respect to the time variable t gives us the following ordinary differ-
ential equation (ODE)

d

dt
Q(d, t) = −ρlc(d, t)γQ(d, t)γ+1−β + c(d, t)A(d, t)Q(d, t). (58)

The ODE equation is in the form

y′(t) = −b(t)yp + a(t)y, p = γ + 1− β,

for suitable choices of a(t), b(t), and y(t) = Q(d, t). This is an ODE of Bernoulli type, and its
closed form solution is given by

y(t) = e
∫ t
0
a(s)ds

(
(γ − β)

∫ t

0

e(γ−β)
∫ s
0
a(ξ)dξb(s)ds+ y(0)β−γ

) 1
β−γ

.

This implies (55). �

We will need the following useful corollary later.

Corollary 3.3. Let d = 0 or 1. There exists positive constants C1 and C2 such that for any t > 0,
we have

C1(1 + t)
−1
γ−β ≤ Q(d, t) ≤ C2(1 + t)

−1
γ−β . (59)

Proof. Using the assumptions on A(x, t), it follows directly from Lemma 3.3 and Corollary 3.1
that

e−2C [(inf
t>0

c(d, t)γ)t+Q0(d)
β−γ ]

−1
γ−β ≤ Q(d, t) ≤ e2C [Ct+Q0(d)

β−γ ]
−1
γ−β

since

|ν(d, t)| ≤ (γ − β)

∫ ∞

0

M(t)dt ≤ C.

�

We want to obtain a time-independent estimate of (Qβ)x in L2, similar to the estimate of cx
in Lemma 3.2. The proof of this result is based on the approach taken in [14]. However, a new
aspect compared to the analysis in [14] is the repeated use of the time-independent estimate of cx
in L2 and the need for ∥A(·, t)∥∞ and ∥Ax(·, t)∥∞ to be in L1(0,∞). Note that the original ideas
go back to a work by Guo and Zhu [11] which in turn is based on estimates that were obtained by
Kanel in [13] (1D) and Bresch, Desjardins, Lin, and Mellet, Vasseur for multi-dimensional case,
[1, 2, 17].

Lemma 3.4 (Additional regularity). We have the estimate∫ 1

0

(∂xQ
β)2dx+

∫ 1

0

∫ t

0

(
∂x(cQ)

γ+β
2

)2

dsdx ≤ C. (60)

Proof. Using (30) we find that

(Qβ)xt =(βQβ−1Qt)x

=(βcAQβ)x − (ρlβQ
β+1ux)x

=(βcAQβ)x − ρlβ[ut + Px + ucA].

(61)

Multiplying (61) by (Qβ)x and integrating (in x and t) over [0, 1]× [0, t] we get

1

2

∫ 1

0

(Qβ)2xdx =
1

2

∫ 1

0

(Qβ
0 )

2
xdx

+

∫ 1

0

∫ t

0

β(cAQβ)x(Q
β)xdsdx−

∫ 1

0

∫ t

0

ρlβ
(
ut + P (c,Q)x + ucA

)
(Qβ)xdsdx

:= L1 + L2 + L3 + L4 + L5.

(62)
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After a series of manipulation and estimation of the right hand side of the above equation (see the
appendix for details) the following inequality is obtained:∫ 1

0

(Qβ)2xdx+ C

∫ 1

0

∫ t

0

((cQ)
γ+β

2 )2xdsdx

≤ C +

∫ t

0

max
x∈[0,1]

(
|A|+ |Ax|+ [cQ]γ

)(∫ 1

0

(Qβ)2xdx
)
ds.

(63)

Finally, application of Gronwall’s inequality and the assumption that ∥A(·, t)∥∞,∥Ax(·, t)∥∞ ∈
L1(0,∞), gives the estimate (60). �

4. Asymptotic behavior of the mass variables

In this section we prove Theorem 2.2. A first step towards this aim is to strengthen the estimate
of [cQ]γ as time goes to infinity. Following along the lines of [14], we introduce the function

g(t) =

∫ 1

0

[cQ]γdx. (64)

We find for all t > 0 that∫ t

0

g(s)ds =

∫ t

0

∫ 1

0

[cQ]γdxds ≤
∫ t

0

max
x∈[0,1]

[cQ]γds ≤ C, (65)

due to Corollary 3.2. Moreover, we observe from first and second equation of (30) that

g′(t) =

∫ 1

0

((cQ)γ)tdx =

∫ 1

0

γA(cQ)γdx−
∫ 1

0

ρlγc
γQγ+1uxdx. (66)

Then it follows that∫ ∞

0

|g′(t)|dt ≤
∫ ∞

0

∫ 1

0

γ|A|(cQ)γdxdt+

∫ ∞

0

∫ 1

0

ρlγc
γQγ+1|ux|dxdt := Ig1 + Ig2. (67)

We can now estimate Ig1 and Ig2 as follows.

Ig1 =

∫ ∞

0

∫ 1

0

γ|A|(cQ)γdxdt ≤ C

∫ ∞

0

max
x∈[0,∞]

(|A|)dt ≤ C, (68)

since |P (c,Q)| ≤ C and in view of assumption on A. Furthermore,

Ig2 =

∫ ∞

0

∫ 1

0

ρlγc
γQγ+1|ux|dxdt ≤ C

∫ ∞

0

∫ 1

0

Q1+βu2xdxdt+ C

∫ ∞

0

∫ 1

0

c2γQ2γ+1−βdxdt

≤ C + C

∫ ∞

0

max
x∈[0,1]

([cQ]γ)dt ≤ C,

(69)

where we have used the Cauchy inequality, Corollary 3.2 as well as (35) and (36). It is then clear
that we have g(t) ∈ L1(0,∞) and g′(t) ∈ L1(0,∞), and we can thus conclude that

lim
t→∞

g(t) = lim
t→∞

∫ 1

0

[cQ]γ(x, t)dx = 0. (70)

However, we can also prove a stronger result.

Lemma 4.1. Let 0 < λ <∞. We then have that

lim
t→∞

∫ 1

0

[cQ]λ(x, t)dx = 0. (71)

Proof. For λ ∈ (0, γ) we set p = γ/λ > 1 and use Hölder’s inequality to conclude that∫ 1

0

[cQ]λdx ≤
(∫ 1

0

[cQ]λpdx
)1/p

=
(∫ 1

0

[cQ]γdx
)λ/γ

→ 0,

as t→ ∞, in view of (70). For λ ≥ γ, the result has been proved already. �
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Proof of Theorem 2.2. Now we are in a position where we can derive the asymptotic behavior
for the gas and liquid masses. First, we choose s > β > 0, and note that

((cQ)s)x = s(cQ)s−β(cQ)β−1(cQ)x =
s

β
(cQ)s−β((cQ)β)x.

Hence, using Corollary 3.3, Lemmas 4.1 and 3.4, as well as Hölder’s inequality we get

0 ≤ (cQ)s(x, t) = (cQ)s(0, t) +

∫ x

0

((cQ)s)ydy

≤ C(1 + t)
−s
γ−β +

s

β

(∫ 1

0

(cQ)2(s−β)dx
) 1

2
(∫ 1

0

((cQ)β)2xdx
) 1

2 → 0 as t→ 0. (72)

Here we have employed that

(cQ)βx = cβ(Qβ)x + βcβ−1Qβcx

such that∫ 1

0

((cQ)β)2xdx ≤ 2

∫ 1

0

c2β(Qβ)2xdx+ 2

∫ 1

0

βc2(β−1)Q2βc2xdx ≤ C

∫ 1

0

(Qβ)2xdx+ C

∫ 1

0

c2xdx ≤ C,

in view of estimate (25), (36), Lemma 3.2 and Lemma 3.4. We can thus conclude (also due to
Corollary 3.1) that

lim
t→∞

Q(x, t) = 0, (73)

and since Q = ρ
ρl−kρ , that

lim
t→∞

ρ(x, t) = 0. (74)

Obviously, we then also have, since n = cρ, that

lim
t→∞

n(x, t) = 0, (75)

and since m = ρ− n, it follows that

lim
t→∞

m(x, t) = 0. (76)

This proves Theorem 2.2.

5. Decay rates of the mass functions

This section is devoted to the proof of Theorem 2.3. As a preparation for this we first derive a
time-dependent lower estimate of Q. The proof essentially follows along the lines of [3], but due
to Lemma 3.4 we are now able to give a detailed threshold with respect to the dependence of the
time variable in the estimate. This is necessary for the forthcoming result of Lemma 5.2 which
again is the basis for deriving rate estimates of the masses m and n.

Lemma 5.1 (Pointwise lower limit). Let 0 < β < 1/6 and assume that
∫ t

0
(1 + s)M(s)ds ≤ C.

Then for sufficiently large t we have a pointwise lower limit on Q(ρ, k) of the form

Q(ρ, k)(x, t) ≥ C
1

(1 + t)4
, ∀x ∈ [0, 1]. (77)

Proof. We first define

v(x, t) =
1

Q(x, t)
, V (t) = max

[0,1]×[0,t]
v(x, s).
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We calculate as follows:

v(x, t)− v(0, t) =

∫ x

0

∂xv dx ≤
∫ 1

0

|∂xQ|v2 dx =
1

β

∫ 1

0

vβ+1|∂xQβ | dx

≤ 1

β

(∫ 1

0

|∂xQβ |2 dx
)1/2(∫ 1

0

v2(β+1) dx
)1/2

≤ C
(∫ 1

0

v dx
)1/2(

(max
[0,1]

v(·, t))2β+1
)1/2

≤ C
(∫ 1

0

v dx
)1/2(

max
[0,1]

v(·, t)
)β+1/2

,

(78)

where we have used (60). Next, we focus on how to estimate
∫ 1

0
v dx. The starting point is the

observation that the second equation of (30) can be written as

vt − ρlux = −[cA]v.

Integrating over [0, 1]× [0, t] we get∫ 1

0

v(x, t) dx =

∫ 1

0

v(x, 0) dx+ ρl

∫ t

0

[u(1, s)− u(0, s)] ds−
∫ t

0

∫ 1

0

[cA]v dx ds

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

∫ t

0

max
[0,1]

|u(·, s)| ds+
∫ t

0

∫ 1

0

c|A|v dx ds

≤ ( inf
[0,1]

Q0)
−1 + 2ρl

√
t
(∫ t

0

∥u2(s)∥L∞(I) ds
)1/2

+

∫ t

0

∫ 1

0

c|A|v dx ds,

(79)

where we have used Hölder’s inequality. In light of Sobolev’s inequality ∥f∥L∞(I) ≤ C∥f∥W 1,1(I)

it follows that the second last term of (79) can be estimated as follows:∫ t

0

∥u2(s)∥L∞(I) ds ≤ C

∫ t

0

∥u2(s)∥W 1,1(I) ds

= C
(∫ t

0

∫ 1

0

u2 dx ds+

∫ t

0

∫ 1

0

|(u2)x| dx ds
)

≤ Ct+ 2C

∫ t

0

∫ 1

0

Q
1+β
2 |u||ux|v

1+β
2 ds ds

≤ Ct+ 2C
(∫ t

0

∫ 1

0

Q1+βu2xu
2 dx ds

)1/2(∫ t

0

∫ 1

0

v1+β dx ds
)1/2

≤ Ct+ C
(∫ t

0

∫ 1

0

v1+β dx ds
)1/2

,

(80)

where we have used (35) and (37) with q = 2 and Hölder’s inequality. Combining (79) and (80)
we get∫ 1

0

v(x, t) dx

≤ ( inf
[0,1]

Q0)
−1 + C

√
t
[
Ct+ C

(∫ t

0

∫ 1

0

v1+β dx ds
)1/2]1/2

+

∫ t

0

∫ 1

0

c|A|v dx ds

≤ C + Ct+ Ct1/2
(∫ t

0

∫ 1

0

v1+β dx ds
)1/4

+

∫ t

0

∫ 1

0

c|A|v dx ds

= C + Ct+ Ct1/2
(∫ t

0

∫ 1

0

v2βv1−β dx ds
)1/4

+

∫ t

0

∫ 1

0

c|A|v dx ds

≤ C + Ct+ V (t)β/2Ct1/2
(∫ t

0

∫ 1

0

v1−β dx ds
)1/4

+ CV (t)β
∫ t

0

∫ 1

0

|A|v1−β dx ds,

(81)



ASYMPTOTIC BEHAVIOR OF A TWO-PHASE MODEL WITH WELL-FORMATION INTERACTION 15

where the inequality (a + b)
1
2 ≤ a

1
2 + b

1
2 and Hölder’s inequality have been used. Now we focus

on estimating
∫ t

0

∫ 1

0
v1−β dx ds. For that purpose, we note that the second equation of (30), by

multiplying with Q
β−1
2 −1, can be written as

(Q
β−1
2 )t = ρl

(1− β

2

)
Q

β+1
2 ux −

(1− β

2

)
[cA]Q

β−1
2 .

Integrating this equation over [0, t] we get

Q
β−1
2 (x, t) = Q

β−1
2 (x, 0) + ρl

(1− β

2

)∫ t

0

Q
β+1
2 ux ds−

(1− β

2

)∫ t

0

[cA]Q
β−1
2 ds.

Consequently, using the inequality (a+ b)2 ≤ 2a2 + 2b2 we get by Hölder’s inequality.

Qβ−1(x, t) ≤ 2Qβ−1(x, 0) + 4ρ2l

(1− β

2

)2(∫ t

0

Q
β+1
2 ux ds

)2

+ 4
(1− β

2

)2(∫ t

0

[cA]Q
β−1
2 ds

)2

≤ 2Qβ−1(x, 0) + Ct

∫ t

0

Qβ+1u2x ds+ C
(∫ t

0

|A|ds
)(∫ t

0

|A|Qβ−1 ds
)

≤ 2Qβ−1(x, 0) + Ct

∫ t

0

Qβ+1u2x ds+ C

∫ t

0

|A|Qβ−1 ds,

since |A| ∈ L1(0,∞). Furthermore, integrating over [0, 1] in space yields∫ 1

0

v1−β dx =

∫ 1

0

Qβ−1 dx

≤ 2

∫ 1

0

v1−β(x, 0) dx+ Ct

∫ 1

0

∫ t

0

Qβ+1u2x ds dx+ C

∫ 1

0

∫ t

0

|A|v1−β ds dx

≤ C + Ct+ C

∫ t

0

M(s)

∫ 1

0

v1−β dx ds,

(82)

where we have used (35). In order to proceed, we again utilize Gronwall’s inequality on differential
form. Defining a function η(t) such that

η(t) =

∫ t

0

M(s)

∫ 1

0

v1−βdxds, (83)

we observe using equation (82) that

η′(t) ≤M(t)(C + Ct+ Cη(t)) =M(t)(C + Ct) + CM(t)η(t). (84)

Clearly, we can then conclude that

η(t) ≤ exp
(∫ t

0

CM(s)ds
)∫ t

0

M(s)(C + Cs)ds ≤ C, (85)

since M(t)(1 + t) ∈ L1(0,∞). Thus, it follows from equation (82) that∫ 1

0

v1−β dx ≤ C + Ct. (86)

Consequently, (81) and (86) imply that∫ 1

0

v(x, t) dx ≤ C + Ct+ Ct1/2(t+ t2)
1
4V (t)β/2 + CV (t)β

≤ C + Ct+ Ct1/2(t
1
4 + t

1
2 )V (t)β/2 + CV (t)β . (87)

Substituting (87) into (78) we get

v(x, t)− v(0, t) ≤ C
(
C + Ct+ C(t

3
4 + t)V (t)β/2 + CV (t)β

) 1
2

V (t)β+1/2

≤ Ct[1 + V (t)β/4 + V (t)β/2]V (t)β+1/2

≤ Ctmax(CV (t)(3/2)β+1/2, 3),

(88)
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for sufficiently large t, e.g., t ≥ 1. Here we have also used the inequality (1+xβ/4+xβ/2)xβ+1/2 ≤
Cx(3/2)β+1/2 which holds for x ≥ 1 and an appropriate constant C ≥ 3. This follows by observing
that

f(x) = Cx(3/2)β+1/2 − xβ+1/2(1 + xβ/4 + xβ/2) = xβ+1/2((C − 1)xβ/2 − 1− xβ/4)

≥ xβ+1/2((C − 1)xβ/2 − 1− xβ/2) = xβ+1/2((C − 2)xβ/2 − 1) ≥ 0,

for x ≥ 1 and C ≥ 3. In conclusion, we have from (88) and Corollary 3.3 that

V (t) ≤ C(1 + t)1/(γ−β) + Ctmax
(
V (t)(3/2)β+1/2, 1

)
≤ C(1 + t)

[
1 + max

(
V (t)(3/2)β+1/2, 1

)]
,

(89)

since γ − β > 1. From the inequality

x ≤ C(1 + t)(1 + xξ), 0 < ξ < 1, x ≥ 0,

we see that either x ≤ 2C(1 + t) if x ≤ 1 or

x ≤ 2C(1 + t)xξ.

That is,

x(1− 2C(1 + t)xξ−1) ≤ 0,

or
1

2C(1 + t)
≤ xξ−1,

or

x ≤ C(1 + t)1/(1−ξ),

for a redefined C. For ξ = (3/2)β + 1/2 we see that β ∈ (0, 1/6) implies that 1/2 < ξ < 3/4.
Consequently,

x ≤ C(1 + t)1/(1−ξ) ≤ C(1 + t)4. (90)

Hence, we conclude that V (t) ≤ C(1 + t)4. �

We follow along the lines of [18, 14], and transform the original problem using a new function
w(x, t). However, we choose to employ a slightly different definition of w(x, t) than the one used
in [14] to account for terms related to well-reservoir interaction. We let

ũ = u−
∫ 1

0

u0(y)dy +

∫ ∞

0

∫ 1

0

cAu dyds. (91)

The model (30), expressed in terms of the variables (c,Q, ũ), is given by

∂tc = kcA

∂tQ+ ρlQ
2∂xũ = cAQ

∂tũ+ ∂xP (cQ) = −[ũ+ K̃]cA+ ∂x(E(Q)∂xũ),

(92)

where K̃ =
∫ 1

0
u0(y)dy −

∫∞
0

∫ 1

0
cAu dyds is a finite constant. For later use we also note that∫ 1

0

ũ dx =

∫ 1

0

[u− u0] dx+

∫ t

0

∫ 1

0

cAu dxds+

∫ ∞

t

∫ 1

0

cAu dxds

=

∫ t

0

∫ 1

0

ut dxds+

∫ t

0

∫ 1

0

cAu dxds+

∫ ∞

t

∫ 1

0

cAu dxds

=

∫ ∞

t

∫ 1

0

cAu dxds,

(93)

where we have used the last equation of (30) combined with the boundary conditions. Now we
introduce a variable w similar to the one used in [14] and given by

w(x, t) = ρlũ(x, t)−
1

1 + t

∫ x

0

1

Q
dy +

1

1 + t

∫ 1

0

∫ x

0

1

Q
dydx. (94)
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From (94), we observe that

wx = ρlũx − 1

1 + t

1

Q
, (95)

and

wt = ρlũt +
1

(1 + t)2

∫ x

0

1

Q
dy +

1

1 + t

∫ x

0

1

Q2
Qtdy

− 1

(1 + t)2

∫ 1

0

∫ x

0

1

Q
dydx− 1

1 + t

∫ 1

0

∫ x

0

1

Q2
Qtdydx

= ρlũt +
1

(1 + t)2

∫ x

0

1

Q
dy +

1

1 + t

∫ x

0

[cA
Q

− ρlũx

]
dy

− 1

(1 + t)2

∫ 1

0

∫ x

0

1

Q
dydx− 1

1 + t

∫ 1

0

∫ x

0

[cA
Q

− ρlũx

]
dydx

= ρlũt +
1

(1 + t)2

∫ x

0

1

Q
dy +

1

1 + t

∫ x

0

[cA
Q

]
dy − ρl

1 + t
[ũ(x, t)− ũ(0, t)]

− 1

(1 + t)2

∫ 1

0

∫ x

0

1

Q
dydx− 1

1 + t

∫ 1

0

∫ x

0

[cA
Q

]
dydx+

ρl
1 + t

∫ 1

0

[
ũ(x, t)− ũ(0, t)

]
dx

= ρlũt +
1

(1 + t)2

∫ x

0

1

Q
dy +

1

1 + t

∫ x

0

[cA
Q

]
dy − ρl

1 + t
ũ(x, t) +

ρl
1 + t

∫ ∞

t

∫ 1

0

cAu dxds

− 1

(1 + t)2

∫ 1

0

∫ x

0

1

Q
dydx− 1

1 + t

∫ 1

0

∫ x

0

[cA
Q

]
dydx

= ρlũt −
w

1 + t
+

1

1 + t

∫ x

0

[cA
Q

]
dy − 1

1 + t

∫ 1

0

∫ x

0

[cA
Q

]
dydx+

ρl
1 + t

∫ ∞

t

∫ 1

0

cAu dxds,

(96)

where we have used the second equation of (92) and (93) as well as (94). Consequently, we see
that the third equation of (92) takes the following form

wt +
w

1 + t
− 1

1 + t

∫ x

0

[cA
Q

]
dy +

1

1 + t

∫ 1

0

∫ x

0

[cA
Q

]
dydx− ρl

1 + t

∫ ∞

t

∫ 1

0

cAu dxds+ ρlP (cQ)x

= −
[
w +

1

1 + t

∫ x

0

1

Q
dy − 1

1 + t

∫ 1

0

∫ x

0

1

Q
dydx+ ρlK̃

]
cA+

(
E(Q)wx +

Qβ

1 + t

)
x
,

Thus, the system (92) can be formulated as follows in the variables (c,Q,w).

ct = kcA

Qt +Q2wx +
Q

1 + t
= cAQ

wt +
w

1 + t
+ ρlP (cQ)x − (E(Q)wx)x −

( Qβ

1 + t

)
x

= −wcA+ T
(1)
A −

∫ 1

0

T
(1)
A dx− T̃

(1)
A + T̃

(2)
A + T

(3)
A − ρlcAK̃,

(97)

where

T
(1)
A (x, t) =

1

1 + t

∫ x

0

[cA
Q

]
dy

T̃
(1)
A (x, t) =

cA

1 + t

∫ x

0

1

Q
dy

T̃
(2)
A (x, t) =

cA

1 + t

∫ 1

0

∫ x

0

1

Q
dydx

T
(3)
A (t) =

ρl
1 + t

∫ ∞

t

∫ 1

0

cAu dxds.
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In the following we will need a considerable stronger assumption on the behavior of the function
A(x, t) as t→ ∞ in order to handle the new terms associated with well-reservoir dynamics. More
precisely, we shall assume that for all times t > 0∫ t

0

(1 + s)β+3M(s)ds ≤ C,

∫ t

0

(1 + s)β−1

∫ ∞

s

M(ξ)dξ ds ≤ C. (98)

Then we will show that the following energy-type of estimate for the variable w can be obtained.

Lemma 5.2. Let (n,m, u) be a global weak solution to our problem in the sense of Theorem 2.1.
If assumption (98) is satisfied as well as the assumptions of Lemma 5.1, the following estimate
holds:

1

2
(1 + t)β

∫ 1

0

w2dx+
(1 + t)β−1

1− β

∫ 1

0

Qβ−1dx+
ρl(1 + t)β

γ − 1

∫ 1

0

cγQγ−1dx

+ (1− β

2
)

∫ t

0

(1 + s)β−1

∫ 1

0

w2dxds+

∫ t

0

(1 + s)β
∫ 1

0

Q1+βw2
xdxds

+ ρl
γ − 1− β

γ − 1

∫ t

0

(1 + s)β−1

∫ 1

0

cγQγ−1dxds ≤ C. (99)

Proof. We start by multiplying the momentum equation in (97) by w and then integrate it over
[0, 1] with respect to x. Using integration by parts and exploiting the boundary conditions as well
as equation (95), we then obtain the equation

1

2

d

dt

∫ 1

0

w2dx+
1

1 + t

∫ 1

0

w2dx+

∫ 1

0

Qβ+1w2
xdx

=
−1

1 + t

∫ 1

0

Qβwxdx+ ρl

∫ 1

0

(cQ)γwxdx−
∫ 1

0

cAw2dx+

∫ 1

0

wT
(1)
A dx−

∫ 1

0

wT̃
(1)
A dx

−
(∫ 1

0

wdx
)(∫ 1

0

T
(1)
A dx

)
+

∫ 1

0

wT̃
(2)
A dx+

∫ 1

0

wT
(3)
A dx− ρlK̃

∫ 1

0

wcAdx

=: L̂1 + L̂2 +H3 +H4 +H5 +H6 +H7 +H8 +H9.

(100)

We can further manipulate L̂1 and L̂2 such that

L̂1 =
−1

(1− β)(1 + t)

∫ 1

0

(Qβ−1)tdx+
1

(1 + t)2

∫ 1

0

Qβ−1dx+H1, (101)

where H1 = −1
1+t

∫ 1

0
cAQβ−1dx and where we have used the second equation of (97). Similarly,

using the first and second equation of (97), we get

L̂2 = − ρl
γ − 1

∫ 1

0

cγ(Qγ−1)tdx− ρl
1 + t

∫ 1

0

cγQγ−1dx+H2

= − ρl
γ − 1

∫ 1

0

(cγQγ−1)tdx− ρl
1 + t

∫ 1

0

cγQγ−1dx+H2 +H10,

(102)

where

H2 = ρl

∫ 1

0

cγ+1Qγ−1Adx, H10 =
ρlγ

γ − 1

∫ 1

0

kcγQγ−1Adx.

Now let θ be a real number to be determined later. Combine the results from (101) and (102)
with(100), multiply the result by (1+t)θ and integrate with respect to t over [0, t]. Using integration
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by parts, we then obtain the following equation.

1

2
(1 + t)θ

∫ 1

0

w2dx+
(1 + t)θ−1

1− β

∫ 1

0

Qβ−1dx+
ρl(1 + t)θ

γ − 1

∫ 1

0

cγQγ−1dx

+ (1− θ

2
)

∫ t

0

(1 + s)θ−1

∫ 1

0

w2dxds+

∫ t

0

(1 + s)θ
∫ 1

0

Q1+βw2
xdxds

+
β − θ

1− β

∫ t

0

(1 + s)θ−2

∫ 1

0

Qβ−1dxds+ ρl
γ − 1− θ

γ − 1

∫ t

0

(1 + s)θ−1

∫ 1

0

cγQγ−1dxds

=
1

2

∫ 1

0

w2
0dx+

1

1− β

∫ 1

0

Qβ−1
0 dx+

ρl
γ − 1

∫ 1

0

cγ0Q
γ−1
0 dx

+ Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 + Ĥ5 + Ĥ6 + Ĥ7 + Ĥ8 + Ĥ9 + Ĥ10,

(103)

where we have that Ĥi =
∫ t

0
(1 + s)θHids for i = 1, . . . , 9 and

Ĥ10 =

∫ t

0

ρlγ(1 + s)θ

γ − 1

(∫ 1

0

cγ(1− c)Qγ−1Adx
)
ds. (104)

Furthermore, choosing θ = β and using Lemma 5.1, estimate (36) as well as assumption (98) and
the Cauchy and Hölder inequalities, the various terms on the right hand side of equation (103)
can be estimated as follows.

Ĥ1 = −
∫ t

0

(1 + s)β−1
(∫ 1

0

cAQβ−1dx
)
ds

≤ C

∫ t

0

(1 + s)β−1(1 + s)4(1−β)
(∫ 1

0

|A|dx
)
ds

≤ C

∫ t

0

(1 + s)3(1−β)M(s)ds ≤ C, (105)

Ĥ2 =

∫ t

0

(1 + s)βρl

∫ 1

0

cγ+1Qγ−1Adxds ≤ C

∫ t

0

(1 + s)βM(s)ds ≤ C, (106)

Ĥ3 = −
∫ t

0

(1 + s)β
∫ 1

0

cAw2dxds ≤ C

∫ t

0

(1 + s)βM(s)

∫ 1

0

w2dxds, (107)

Ĥ4 =

∫ t

0

(1 + s)β
∫ 1

0

wT
(1)
A dxds =

∫ t

0

(1 + s)β−1

∫ 1

0

w
(∫ x

0

cA

Q
dy

)
dxds

≤ C

∫ t

0

(1 + s)β+3

∫ 1

0

w sup
x∈[0,1]

(|A|)dxds

≤ C

∫ t

0

(1 + s)β+3M(s)ds+ C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds

≤ C + C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds, (108)

Ĥ5 = −
∫ t

0

(1 + s)β
∫ 1

0

wT̃
(1)
A dxds = −

∫ t

0

(1 + s)β−1

∫ 1

0

(
cAw

∫ x

0

1

Q
dy

)
dxds

≤ C

∫ t

0

(1 + s)β+3

∫ 1

0

w sup
x∈[0,1]

(|A|)dxds

≤ C

∫ t

0

(1 + s)β+3M(s)ds+ C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds

≤ C + C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds, (109)
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Ĥ6 = −
∫ t

0

(1 + s)β
(∫ 1

0

wdx
)(∫ 1

0

T
(1)
A dx

)
ds

= −
∫ t

0

(1 + s)β−1
(∫ 1

0

wdx
)(∫ 1

0

∫ x

0

cA

Q
dydx

)
ds

≤ C

∫ t

0

(1 + s)β+3

∫ 1

0

w sup
x∈[0,1]

(|A|)dxds

≤ C

∫ t

0

(1 + s)β+3M(s)ds+ C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds

≤ C + C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds, (110)

Ĥ7 =

∫ t

0

(1 + s)β
∫ 1

0

wT̃
(2)
A dxds

=

∫ t

0

(1 + s)β−1

∫ 1

0

wcA
(∫ 1

0

∫ x

0

1

Q
dydx

)
dxds

≤ C

∫ t

0

(1 + s)β+3

∫ 1

0

w sup
x∈[0,1]

(|A|)dxds

≤ C

∫ t

0

(1 + s)β+3M(s)ds+ C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds

≤ C + C

∫ t

0

(1 + s)β+3M(s)

∫ 1

0

w2dxds, (111)

Ĥ8 =

∫ t

0

(1 + s)β
∫ 1

0

wT
(3)
A dxds

= ρl

∫ t

0

(1 + s)β−1
(∫ ∞

s

∫ 1

0

cAudxds
)(∫ 1

0

wdx
)
ds

≤ C

∫ t

0

(1 + s)β−1
(∫ ∞

s

M(ξ)dξ
)(∫ 1

0

wdx
)
ds

≤ C

∫ t

0

(1 + s)β−1
(∫ ∞

s

M(ξ)dξ
)(∫ 1

0

w2dx
)1/2

ds

≤ C

∫ t

0

(1 + s)β−1

∫ ∞

s

M(ξ)dξds+ C

∫ t

0

(1 + s)β−1

∫ ∞

s

M(ξ)dξ

∫ 1

0

w2dxds

≤ C + C

∫ t

0

(1 + s)β−1

∫ ∞

s

M(ξ)dξ

∫ 1

0

w2dxds (112)

Ĥ9 = −ρlK̃
∫ t

0

(1 + s)β
∫ 1

0

wcAdxds

≤ C

∫ t

0

(1 + s)βM(s)
(∫ 1

0

w2dx
)1/2

ds

≤ C

∫ t

0

(1 + s)βM(s)ds+ C

∫ t

0

(1 + s)βM(s)

∫ 1

0

w2dxds

≤ C + C

∫ t

0

(1 + s)βM(s)

∫ 1

0

w2dxds. (113)
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Ĥ10 =

∫ t

0

ρlγ(1 + s)β

γ − 1

(∫ 1

0

cγ(1− c)Qγ−1Adx
)
ds

≤ C

∫ t

0

(1 + s)βM(s)ds ≤ C. (114)

Finally, employing the above estimates in combination with (103), we get

LHS(103) ≤ C + C

∫ t

0

[
(1 + s)3M(s) +M(s) + (1 + s)−1

∫ ∞

s

M(ξ)dξ
]
(1 + s)β

∫ 1

0

w2dxds.

In particular, it follows that

1

2
(1 + t)β

∫ 1

0

w2dx ≤ C + C

∫ t

0

k(s)(1 + s)β
∫ 1

0

w2dxds,

where, in view of assumption (98)

k(s) =
[
(1 + s)3M(s) + (1 + s)−1

∫ ∞

s

M(ξ)dξ
]
∈ L1(0,∞).

Thus, application of Gronwall’s inequality gives∫ t

0

[
(1 + s)3M(s) + (1 + s)−1

∫ ∞

s

M(ξ)dξ
]
(1 + s)β

∫ 1

0

w2dxds ≤ C.

Hence, the result (99) follows. �
Proof of Theorem 2.3. We can now give a proof of Theorem 2.3. First we choose a constant
k = γ−1

2 + β. We can then write that

(cQ)k(x, t) = (cQ)k(0, t) +

∫ x

0

((cQ)k)ydy

≤ C(1 + t)
−k
γ−β + C

∫ x

0

(
(cQ)k−β(cQ)βy

)
dy

≤ C(1 + t)
−k
γ−β + C

(∫ 1

0

(cQ)2k−2βdx
) 1

2
(∫ 1

0

((cQ)βx)
2dx

) 1
2

≤ C(1 + t)
−k
γ−β + C

(∫ 1

0

cγQγ−1dx
) 1

2

≤ C(1 + t)
−k
γ−β + C(1 + t)−

β
2 ≤ C(1 + t)−

β
2 , (115)

where we have used Lemmas 3.4, 5.1 and 5.2, Corollaries 3.1 and 3.3, and Hölder’s inequality.
From this it follows for any x ∈ [0, 1] that

(cQ)(x, t) ≤ C(1 + t)−
β
2k = C(1 + t)−

β
γ−1+2β , (116)

and moreover, due to the equations (19) and (28) that ρ ≤ CQ ≤ C(1 + t)−
β

γ−1+2β . Hence,

n(x, t) ≤ C(1 + t)−
β

γ−1+2β , (117)

and

m(x, t) = [ρ− n](x, t) ≤ C(1 + t)−
β

γ−1+2β . (118)

This completes the proof of Theorem 2.3.

Remark 5.1. There seems to be a direct link between the restriction on β ∈ (0, 1/6) and the
time decay rate specified in (98). Choosing β to be higher than 1/6 implies that a corresponding
faster decay rate appears in the estimate (77) of Lemma 5.1. Consequently, a stronger assumption
on time decay rate is required for M(t) in Lemma 5.2, as expressed by (98), in order to get the
time-independent estimates. More precisely, from the inequality (90) we see that if β → 1/3−,
then ξ → 1− and the exponent 1/(1− ξ) blows up and we can no longer control terms in the proof
of Lemma 5.2 by estimates similar to (98).
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Appendix

In this appendix we estimate the quantities L1, L2, L3, L4 and L5, which are used in the proof
of Lemma 3.4. First, it is clear from properties of the initial data that

L1 =
1

2

∫ 1

0

(Qβ
0 )

2
xdx ≤ C. (119)
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Estimation of L2.

L2 =

∫ 1

0

∫ t

0

β(cAQβ)x(Q
β)xdsdx =

∫ 1

0

∫ t

0

β
(
(cA)xQ

β + (cA)(Qβ)x

)
(Qβ)xdsdx

≤ C

∫ t

0

∫ 1

0

|cx||A|(Qβ)xdxds+ C

∫ t

0

∫ 1

0

|Ax|(Qβ)xdxds+ C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds

≤ C

∫ t

0

∫ 1

0

|A|c2xdxds+ C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds

+ C

∫ t

0

∫ 1

0

|Ax|dxds+ C

∫ t

0

∫ 1

0

|Ax|(Qβ)2xdxds

≤ C + C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds+ C

∫ t

0

∫ 1

0

|Ax|(Qβ)2xdxds,

(120)

where we have used the Cauchy inequality as well as Lemma 3.1, Corollary 3.1, and Lemma 3.2.
Estimation of L3. This estimate is rather comprehensive, and we thus split it into several steps.

First, by using integration by parts and (61), we get

L3 = −
∫ 1

0

∫ t

0

ρlβut(Q
β)xdsdx

= −βρl
∫ 1

0

∫ t

0

(u(Qβ)x)tdsdx+ βρl

∫ 1

0

∫ t

0

u(Qβ)xtdsdx

:= L31 + L32 + L33 + L34 + L35 + L36,

(121)

where we have that

L31 = −ρlβ
∫ 1

0

u(Qβ)xdx ≤ C

∫ 1

0

u2dx+ ϵ

∫ 1

0

(Qβ)2xdx ≤ C + ϵ

∫ 1

0

(Qβ)2xdx, (122)

and

L32 = ρlβ

∫ 1

0

u0(Q
β
0 )xdx ≤ C

∫ 1

0

u20dx+ C

∫ 1

0

(Qβ
0 )

2
xdx ≤ C. (123)

Furthermore, by using the equation

(Qβ)tx = β(cAQβ)x − βρl(Q
β+1ux)x = β(cAQβ)x − βρl[ut + P (c,Q)x + ucA],

we see that the remaining terms L33, L34, L35, and L36 are treated as follows:

L33 = ρlβ
2

∫ 1

0

∫ t

0

u(cAQβ)xdsdx

= ρlβ
2

∫ 1

0

∫ t

0

u[cxAQ
β + cAxQ

β + cA(Qβ)x]dsdx

≤ C

∫ 1

0

∫ t

0

|u|
(
|cx||A|+ |Ax|+ |A||(Qβ)x|

)
dsdx

≤ C

∫ t

0

∫ 1

0

|A|u2dxds+ C

∫ t

0

∫ 1

0

|A|c2xdxds+ C

∫ t

0

∫ 1

0

|Ax|u2dxds

+ C

∫ t

0

∫ 1

0

|Ax|dxds+ C

∫ t

0

∫ 1

0

|A|dxds+ C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds

≤ C + C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds,

(124)

by application of Cauchy’s inequality, Corollary 3.1, (35), (36), (53), and the assumptions that
|A|, |Ax| ∈ L1(0,∞).

L34 = −(ρlβ)
2

∫ 1

0

∫ t

0

uutdsdx ≤ C

∫ 1

0

∫ t

0

(u2)tdsdx = C

∫ 1

0

[u2 − u20]dx ≤ C. (125)
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We now write

L35 = −(ρlβ)
2

∫ 1

0

∫ t

0

u([cQ]γ)xdsdx

= (ρlβ)
2

∫ 1

0

∫ t

0

ux[cQ]γdsdx− (ρlβ)
2

∫ 1

0

∫ t

0

(u[cQ]γ)xdsdx = L351 + L352,

(126)

where

L351 = (ρlβ)
2

∫ t

0

∫ 1

0

(cQ)γuxdxds

≤ C

∫ t

0

∫ 1

0

Qβ+1u2xdxds+ C

∫ t

0

∫ 1

0

cγQγ−β−1(cQ)γdxds

≤ C + C

∫ t

0

max
x∈[0,1]

([cQ]γ)

∫ 1

0

cγQγ−β−1dxds ≤ C,

(127)

where we have used the Cauchy inequality, Corollary 3.1, Corollary 3.2, (35), and (36), and the
assumption γ ≥ 1 + β. Moreover, we get for L352 that

L352 = −(ρlβ)
2

∫ t

0

[u(cQ)γ ](1, s)ds+ (ρlβ)
2

∫ t

0

[u(cQ)γ ](0, s)ds

= −(ρlβ)
2

∫ t

0

(cQ)γ−β(1, s)((cQ)βu)(1, s))ds+ (ρlβ)
2

∫ t

0

(cQ)γ−β(0, s)((cQ)βu)(0, s))ds

≤ C

∫ t

0

|(cQ)(γ−β) n
n−1 (1, s)|ds+ C

∫ t

0

|(cQ)(γ−β) n
n−1 (0, s)|ds

+ C

∫ t

0

|((cQ)nβun)(1, s)|ds+ C

∫ t

0

|((cQ)nβun)(0, s)|ds

≤ C + C

∫ t

0

||(cQ)nβun||L∞[0,1]ds

≤ C + C

∫ t

0

∫ 1

0

|(cQ)nβun|dxds+ C

∫ t

0

∫ 1

0

|((cQ)nβun)x|dxds

≤ C + C

∫ t

0

∫ 1

0

|(cQ)nβun|dxds+ C

∫ t

0

∫ 1

0

|(cQ)nβ−1(cQ)xu
n|dxds

+ C

∫ t

0

∫ 1

0

|(cQ)nβun−1ux|dxds

≤ C + C

∫ t

0

∫ 1

0

(cQ)γu2ndxds+ C

∫ t

0

∫ 1

0

(cQ)2nβ−γdxds

+ C

∫ t

0

∫ 1

0

(cQ)2nβ−γ−βu2ndxds+ ϵ

∫ 1

0

∫ t

0

((cQ)
β+γ

2 )2xdsdx

+ C

∫ t

0

∫ 1

0

(cQ)β+1u2n−2u2xdxds+ C

∫ 1

0

∫ t

0

(cQ)2nβ−β−1dsdx

≤ C + C

∫ t

0

max
[0,1]

([cQ]γ)(

∫ 1

0

u2ndx)ds+ C

∫ t

0

max
[0,1]

([cQ]γ)(

∫ 1

0

(cQ)2nβ−2γdx)ds

+ Cmax
[0,1]

((cQ)2nβ−2γ−β)

∫ t

0

max
[0,1]

([cQ]γ)(

∫ 1

0

u2ndx)ds+ ϵ

∫ 1

0

∫ t

0

((cQ)
β+γ

2 )2xdsdx

+ C

∫ t

0

∫ 1

0

Qβ+1u2n−2u2xdxds+ C

∫ t

0

max
[0,1]

([cQ]γ)

∫ 1

0

((cQ)2nβ−β−1−γ)dxds.

To sum up, we thus have

L352 ≤ C + ϵ

∫ 1

0

∫ t

0

((cQ)
β+γ

2 )2xdsdx, (128)
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for a sufficiently large integer n. In the above argument, we have used Young’s inequality (wi.e
ab ≤ (1/p)ap + (1/r)bq where 1/p + 1/r = 1, with the choice p = n

n−1 and q = n), the Cauchy

(standard version and ϵ-version), Corollary 3.2, Corollary 3.3, estimates (35), (36), (37), and the
Sobolev embedding theorem W 1,1(I) ↪→ L∞(I).

Finally, we get for L36 that

L36 = −(ρlβ)
2

∫ 1

0

∫ t

0

u2cAdsdx ≤ C

∫ 1

0

∫ t

0

|A|u2dsdx ≤
∫ t

0

max
x∈[0,1]

(|A|)
∫ 1

0

u2dxds ≤ C, (129)

using the assumptions on A and the energy estimate.
Estimation of L4. By doing some algebraic manipulations we find that

L4 = −
∫ 1

0

∫ t

0

ρlβP (c,Q)x(Q
β)xdsdx

= −ρlβ2γ

∫ 1

0

∫ t

0

cγ−1Qγ+β−2(cQ)xQxdsdx

= −ρlβ2γ

∫ 1

0

∫ t

0

cγ−2Qγ+β−2(cQ)2xdsdx+ ρlβ
2γ

∫ 1

0

∫ t

0

cγ−2Qγ+β−2[cQx + cxQ]Qcxdsdx

=: L41 + L42 + L43,

(130)

where

L41 = −ρlβ2γ

∫ 1

0

∫ t

0

cγ−2Qγ+β−2(cQ)2xdsdx

= −ρlβ2γ
( 2

β + γ

)2
∫ 1

0

∫ t

0

1

cβ
((cQ)

β+γ
2 )2xdsdx.

(131)

Note that this term possesses a constant sign and will appear on the right hand side of the
inequality (60). Moreover,

L42 = ρlβγ

∫ 1

0

∫ t

0

cγ−1cxQ
γ(Qβ)xdsdx = ρlβγ

∫ 1

0

∫ t

0

c−1[cQ]γcx(Q
β)xdsdx

≤ C

∫ t

0

∫ 1

0

[cQ]γc2xdxds+ C

∫ t

0

∫ 1

0

[cQ]γ(Qβ)2xdxds

≤ C + C

∫ t

0

max
x∈[0,1]

([cQ]γ)

∫ 1

0

(Qβ)2xdxds,

(132)

due to Corollaries 3.1 and 3.2 and Lemma 3.2. Finally,

L43 = ρlβ
2γ

∫ 1

0

∫ t

0

cγ−2c2xQ
γ+βdsdx

= ρlβ
2γ

∫ t

0

∫ 1

0

c−2c2x[cQ]γQβdxds ≤ C

∫ t

0

max
x∈[0,1]

([cQ]γ)

∫ 1

0

c2xdxds ≤ C,

(133)

due to the Corollaries 3.1 and 3.2, Lemma 3.2, and (36).
Estimation of L5.

L5 = −
∫ 1

0

∫ t

0

ρlβucA(Q
β)xdsdx ≤ C

∫ t

0

∫ 1

0

|A|u2dxds+ C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds

≤ C

∫ t

0

max
x∈[0,1]

(|A|)
∫ 1

0

u2dxds+ C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds

≤ C + C

∫ t

0

∫ 1

0

|A|(Qβ)2xdxds,

(134)

due to the Cauchy inequality, the energy estimate and the assumptions on A.


