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WEAKLY IMPLICIT NUMERICAL SCHEMES
FOR A TWO-FLUID MODEL∗

STEINAR EVJE† AND TORE FLÅTTEN‡

Abstract. The aim of this paper is to construct semi-implicit numerical schemes for a two-phase
(two-fluid) flow model, allowing for violation of the CFL criterion for sonic waves while maintaining
a high level of accuracy and stability on volume fraction waves.

By using an appropriate hybridization of a robust implicit flux and an upwind explicit flux,
we obtain a class of first-order schemes, which we refer to as weakly implicit mixture flux (WIMF)
methods. In particular, by using an advection upstream splitting method (AUSMD) type of upwind
flux [S. Evje and T. Fl̊atten, J. Comput. Phys., 192 (2003), pp. 175–210], we obtain a scheme denoted
as WIMF-AUSMD.

We present several numerical simulations, all of them indicating that the CFL-stability of the
WIMF-AUSMD scheme is governed by the velocity of the volume fraction waves and not the rapid
sonic waves. Comparisons with an explicit Roe scheme indicate that the scheme presented in this
paper is highly efficient, robust, and accurate on slow transients. By exploiting the possibility to take
much larger time steps, it outperforms the Roe scheme in the resolution of the volume fraction wave
for the classical water faucet problem. On the other hand, it is more diffusive on pressure waves.

Although conservation of positivity for the masses is not proved, we demonstrate that a fix may
be applied, making the scheme able to handle the transition to one-phase flow while maintaining a
high level of accuracy on volume fraction fronts.
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1. Introduction. This paper deals with numerical solutions to a classical four-
equation two-fluid model for isentropic flows in one space dimension. The model we
will be concerned with (described in detail in section 2) is classified as a hyperbolic
set of differential equations, with the implication that information flows in the system
along characteristic curves with a certain velocity. For such models explicit numerical
schemes are commonly used, advantage being taken of the fact that the time devel-
opment of the state at some point depends only on points within the span of the
characteristic curves in time and space. Explicit schemes are simple to implement
and may give more flexibility in the treatment of complex pipe networks. However,
they are subject to the CFL constraint

Δx

Δt
≥ |λmax|,(1)

where λmax is the largest eigenvalue for the system. For the two-fluid model we are
concerned with, the four eigenvalues are pairwise associated with sonic and volume
fraction waves [9]. The sonic waves may be several orders of magnitude faster than
the volume fraction waves, although the latter may often be of greater interest to the
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researcher. For this reason the CFL criterion (1) may severely limit the computational
efficiency of explicit schemes.

To remedy the situation, a step in a more implicit direction, i.e., coupling one or
more variables throughout the computational domain, may be made. Such approaches
may be classified as follows:

• Weakly implicit. The original CFL criterion (1) may be broken for sonic
waves, but a weaker CFL criterion for volume fraction waves still applies,

Δx

Δt
≥ |λv

max|,(2)

where λv
max is the largest of the two eigenvalues corresponding to volume

fraction waves.
• Strongly implicit. No CFL-like stability criterion applies and the equations

may be integrated with arbitrary time step. However, stability could be
affected by other issues, such as inherent stiffness of the equations.

Most engineering computer software for two-fluid simulations seem to be based
on some implicit approach. Examples include the CATHARE code [2], developed
for the nuclear industry, and OLGA [3], aimed toward the petroleum industry. The
recently developed PeTra [12] is largely based on the OLGA approach, being strongly
implicit in the sense of the classification above. Weakly implicit numerical schemes for
two-phase flow models have been investigated by Faille and Heintzé [10] and Masella
et al. [14].

In recent years there have been several new applications of different upwind tech-
niques for the equations of two-phase flow. Examples include implementations of
the Roe scheme by Toumi and Kumbaro [26], Toumi [25], Cortese, Debussche, and
Toumi [5], Romate [21], and Fjelde and Karlsen [11]. Masella, Faille, and Gallouet
[15] implemented a rough Godunov scheme. A different approach was undertaken
by Coquel et al. [4], who studied kinetic upwind schemes for the approximation of a
two-fluid model. Saurel and Abgrall studied a general compressible unconditionally
hyperbolic two-phase model with a wide range of applications [22, 23].

For one-phase flow, Wada and Liou [28] suggested a hybrid flux difference split-
ting (FDS) and flux vector splitting (FVS) scheme with good accuracy and stability
properties. Their idea was extended to two-phase flow models by Edwards, Franklin,
and Liou [6], Niu [16, 17], and Evje and Fjelde [7, 8] and Evje and Fl̊atten [9].

The aim of this work is to develop a general methodology for constructing numeri-
cal schemes for the two-fluid model which possesses the following important properties:

• no use of Riemann solver or computation of nonlinear flux Jacobians;
• accurate and nonoscillatory resolution of mass fronts, i.e., slow-moving vol-

ume fraction waves, comparable with the resolution given by upwind type of
schemes like the Roe scheme; and

• stability under the weak CFL condition (2).
To this aim, we introduce an approach which we denote as the mixture flux (MF)

method, as it takes into account that the physical variables of the system (pressure
and volume fractions) each depend on the simultaneous state of both phases when
expressed in terms of conservative variables. In other words, they are properties of
the two-phase mixture.

The MF method consists of the following basic steps:
(a) derivation of a pressure evolution equation solved centrally at cell interfaces,
(b) derivation of implicit numerical mass fluxes consistent with the pressure cal-

culation (a), and
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(c) hybridization of the implicit mass fluxes of (b) with upwind fluxes.
These steps are described in detail in sections 3 through 7. In particular, by using a
hybridization of an implicit and an explicit flux in (c), we obtain what we denote as the
weakly implicit mixture flux (WIMF) family of schemes. The WIMF approach allows
us to unify two different aspects of two-phase flow calculation, namely, producing a
high level of accuracy on volume fraction waves while allowing for violation of the
sonic CFL criterion.

Our paper is organized as follows. In section 2 we present the two-fluid model
we will be working with. In section 3 the MF approach is presented in a semidiscrete
setting where the pressure evolution equation is introduced as well as the construction
of mixture mass fluxes. These two steps constitute the main components of the
MF methods. In section 4 we present a straightforward analysis demonstrating that
the MF schemes possess some desirable properties relevant for their approximation
properties.

Based on the semidiscrete scheme of section 3, we then in sections 5, 6, and 7
proceed to construct fully discrete first-order schemes which possess the properties
identified in section 4. In section 8 we present numerical simulations where we attempt
to shed light on the issues of stability, robustness, and accuracy for the scheme. We
here also investigate how the scheme can handle a transition to one-phase flow using
a transition fix similar to the one introduced in [9].

2. The two-fluid model. Throughout this paper we will be concerned with
the common two-fluid model formulated by stating separate conservation equations
for mass and momentum for the two fluids, which we will denote as a gas (g) and a
liquid (l) phase. The model is identical to the model previously considered by Evje
and Fl̊atten [9] and will be only briefly restated here. For a closer description of the
terms and their significance, we refer to the previous work and the references therein.

2.1. Generally. We let U be the vector of conserved variables,

U =

⎡
⎢⎢⎣

ρgαg

ρlαl

ρgαgvg

ρlαlvl

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

mg

ml

Ig
Il

⎤
⎥⎥⎦ .(3)

By using the notation Δp = p − pi, where pi is the interfacial pressure, and τk =
(pi − p)∂xαk, the model can be written in the form

• conservation of mass,

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = 0,(4)

∂

∂t
(ρlαl) +

∂

∂x
(ρlαlvl) = 0;(5)

• conservation of momentum,

∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g + αgΔp

)
+ αg

∂

∂x
(p− Δp) = Qg + MD

g ,(6)

∂

∂t
(ρlαlvl) +

∂

∂x

(
ρlαlv

2
l + αlΔp

)
+ αl

∂

∂x
(p− Δp) = Ql + MD

l ,(7)
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where for phase k the nomenclature is as follows:
ρk—density,
p—pressure,
vk—velocity,
αk—volume fraction,
Δp—pressure correction at the gas-liquid interface,
Qk—momentum sources (due to gravity, friction, etc.), and
MD

k —interfacial drag force.
The volume fractions satisfy

αg + αl = 1.(8)

For the numerical simulations presented in this work we assume the simplified ther-
modynamic relations

ρl = ρl,0 +
p− p0

a2
l

(9)

and

ρg =
p

a2
g

,(10)

where

p0 = 1 bar = 105 Pa,

ρl,0 = 1000 kg/m
3
,

a2
g = 105(m/s)2,

and

al = 103 m/s.

Moreover, we will treat Qk as a pure source term, assuming that it does not
contain any differential operators. We use the interface pressure correction

Δp = Δp (U, δ) = δ
αgαlρgρl

ρgαl + ρlαg
(vg − vl)

2,(11)

where we set δ = 1.2. This choice ensures that the model is a hyperbolic system of
conservation laws; see, for instance, [26, 5]. Another feature of this model is that it
possesses an approximate mixture sound velocity c given by

c =

√
ρlαg + ρgαl

∂ρg

∂p ρlαg + ∂ρl

∂p ρgαl

.(12)

We refer to [26, 9] for more details.
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Having solved for the conservative variable U, we need to obtain the primitive
variables (αg, p, vg, vl). For the pressure variable we see that by writing the volume
fraction in equation (8) in terms of the conserved variables as

mg

ρg(p)
+

ml

ρl(p)
= 1,(13)

we obtain a relation yielding the pressure p(mg,ml). Using the relatively simple
equations of state (EOS) given by (9) and (10), we see that the pressure p is found as
a positive root of a second-order polynomial. For more general EOS we must solve a
nonlinear system of equations, for instance, by using a Newton–Raphson algorithm.
Moreover, the fluid velocities vg and vl are obtained directly from the relations

vg =
U3

U1
, vl =

U4

U2
.

Remark 1. Concerning the EOS for the liquid and gas phase, we would like to
emphasize that the methods we develop do not require simple linear relations as given
by (9) and (10). Formally, the only point of the algorithm which is affected by using
more complicated EOS is the resolution algorithm which determines the pressure from
the general relation (13).

2.2. Some useful differential relations. By differentiating the relation (13)
we obtain the expressions

dp = κ(ρldmg + ρgdml)(14)

and

dαl = κ

(
−∂ρl

∂p
αldmg +

∂ρg

∂p
αgdml

)
,(15)

where

κ =
1

∂ρl

∂p αlρg +
∂ρg

∂p αgρl

.(16)

By combining (14) and (15) we can write the masses mk in terms of a pressure and
a volume fraction component as follows:

dmg = αg
∂ρg

∂p
dp− ρgdαl(17)

and

dml = αl
∂ρl

∂p
dp + ρldαl.(18)

The relations (14) and (15) reflect that differentials of the primitive variables αl and
p generally depend strongly on properties of the mixture of both masses through
the differentials dmg and dml. Later we will derive numerical mass fluxes which are
consistent with the differential relations (14)–(18).
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2.3. A pressure evolution equation. The relation (13) gives the pressure
p = p(mg,ml) through a state relation. Now we describe another procedure for
determining the pressure through a dynamic relation.

Multiplying the gas mass conservation equation with κρl and the liquid mass
conservation equation with κρg and adding the two resulting equations, we get

κρl
∂

∂t
mg + κρg

∂

∂t
ml + κρl

∂

∂x
(ρgαgvg) + κρg

∂

∂x
(ρlαlvl) = 0.

In view of (14) we get the nonconservative pressure evolution equation

∂p

∂t
+ κ

(
ρl

∂

∂x
(ρgαgvg) + ρg

∂

∂x
(ρlαlvl)

)
= 0,(19)

where κ is given by (16). Coupling this pressure evolution equation to the momentum
equations will be an important ingredient in allowing us to break the CFL criterion
(2).

3. A semidiscrete scheme. In this section we construct semidiscrete approx-
imations of solutions to (4)–(7). In sections 5, 6, and 7 we describe fully discrete
approximations, and in section 8 we explore properties of these fully discrete schemes
for several well-known two-phase flow problems.

3.1. General form. It will be convenient to express the model (4)–(7) on the
following form:

∂tmk + ∂xfk = 0,

∂tIk + ∂xgk + αk∂xp + (Δp)∂xαk = Qk,
(20)

where k =g,l and

fk = ρkαkvk and mk = ρkαk,

gk = ρkαkv
2
k and Ik = ρkαkvk.

We assume that we have given approximations (mn
k,j , I

n
k,j) ≈ (mk,j(t

n), Ik,j(t
n)). Ap-

proximations mk,j(t) and Ik,j(t) for t ∈ (tn, tn+1] are now constructed by solving the
following ODE problem:

.
mk,j +δxFk,j = 0,

.

Ik,j +δxGk,j + αk,jδxPj + (Δp)jδxΛk,j = Qk,j

(21)

subject to the initial conditions

mk,j(t
n) = mn

k,j , Ik,j(t
n) = Ink,j .

Here δx is the operator defined by

δxwj =
wj+1/2 − wj−1/2

Δx
, δxwj+1/2 =

wj+1 − wj

Δx
,

and (Δp)j(t) = (Δp) (Uj(t), δ) is obtained from (11). Moreover, Fk,j+1/2(t) =
Fk(Uj(t), Uj+1(t)) Gk,j+1/2(t) = Gk(Uj(t), Uj+1(t)) Pj+1/2(t) = P (Uj(t), Uj+1(t)),
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and Λk,j+1/2(t) = Λk(Uj(t), Uj+1(t)) are assumed to be numerical fluxes consistent
with the corresponding physical fluxes, i.e.,

Fk(U,U) = fk = ρkαkvk,

Gk(U,U) = gk = ρkαkv
2
k,

P (U,U) = p,

Λk(U,U) = αk.

The purpose now is to derive these numerical fluxes.

3.2. The numerical flux Λk,j+1/2(t). We first start with the numerical flux
Λk,j+1/2(t). This term ensures that the system of equations becomes hyperbolic, but
it is small in magnitude compared to other terms. Hence, for reasons of simplicity,
we follow the approach of Paillère, Corre, and Cascales [18] and Coquel et al. [4] and
discretize this term centrally. Thus we use the numerical flux

Λk,j+1/2(t) =
αk,j(t) + αk,j+1(t)

2
.(22)

In the following we seek to discretize the remaining fluxes so that they are consistent
with the underlying dynamics of the model. Essential information about the interplay
between masses mk and pressure p is given by the relation (13). We shall exploit this
systematically when we devise numerical fluxes Fk,j+1/2(t) and Pj+1/2(t).

3.3. The numerical flux Pj+1/2(t). To avoid an odd-even decoupling of the
numerical pressure, we follow the approach of classical pressure-based schemes [19] in
aiming to obtain an expression for Pj+1/2 involving a dynamical coupling to the cell
center momentums. We hence suggest to associate the numerical flux Pj+1/2(t) with
the solution of the pressure evolution equation (19) and (16) discretized at the cell
interface j + 1/2. More precisely, given the cell centered pressure pnj ≈ p(xj , t

n) we

determine Pj+1/2(t) for t ∈ (tn, tn+1] by solving the ODE

.

P j+1/2 +[κj+1/2ρl,j+1/2]δxIg,j+1/2 + [κj+1/2ρg,j+1/2]δxIl,j+1/2 = 0,

Pj+1/2(t
n
+) =

pnj + pnj+1

2
,

(23)

where the interface values κj+1/2 and ρk,j+1/2 are computed from Pj+1/2(t) together
with the arithmetic average (22) which defines αk,j+1/2(t).

Remark 2. The numerical flux Pj+1/2(t) = P (Uj(t), Uj+1(t)) is consistent with
the physical flux. This follows easily since assuming that Uj(t) = Uj+1(t) = U(t) for
t ∈ [tn, tn+1] implies that we shall solve the ODE

.

P j+1/2= 0, Pj+1/2(t
n
+) =

pnj + pnj+1

2
= p(tn),

i.e., Pj+1/2(t) = p(tn) = p(t) for t ∈ [tn, tn+1].

3.4. The numerical flux Fk,j+1/2(t). We first recall that from the masses
mk,j(t), which in turn depend on the numerical mass fluxes Fk,j+1/2(t) via the mass
conservation equations of (21), we obtain the pressure pj(t) as well as the volume
fraction αk,j(t) by using the relation (13). To give more room for incorporating several
properties which are relevant for accurate and nonoscillatory approximations of the
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pressure pj(t) and the volume fraction αk,j(t), we suggest describing the numerical
mass fluxes Fk(t) as a combination of two different flux components, FD

k (t) and FA
k (t),

respectively.
More precisely, we associate the mass flux component FD

k with the pressure cal-
culation p = p(mg,ml) via the relation (13) while the FA

k component is associated
with the volume fraction calculation αk = mk/ρk(p(mg,ml)). An important point
here is to give an appropriate description of the balance between the two components
FD
k and FA

k as well as to develop the FD
k and FA

k components themselves. The first
point is discussed in the following while the latter is postponed until section 6 and
section 7, respectively.

From (17) and (18) we see that the mass differentials dmk can be split into a
pressure component dp and a volume fraction component dα. We now want to design
numerical fluxes which are consistent with this splitting; i.e., we introduce a flux
component Fp and Fα such that the mass fluxes Fl and Fg are given by

Fl = αl
∂ρl

∂p
Fp + ρlFα(24)

and

Fg = αg
∂ρg

∂p
Fp − ρgFα.(25)

The flux component Fp is associated with the pressure; hence it is natural to assign
a diffusive mass flux FD for stable approximation of pressure for the various waves.
Inspired by the differential relation (14) we propose to give Fp the following form:

Fp = κρgF
D
l + κρlF

D
g .(26)

Similarly, the flux component Fα is associated with the volume fraction. Hence we
seek to assign a mass flux FA such that an accurate resolution of the volume fraction
variable can be obtained. Inspired by the differential relation (15), we propose to give
Fα the following form:

Fα = κ
∂ρg

∂p
αgF

A
l − κ

∂ρl

∂p
αlF

A
g .(27)

Here we note that a subscript j + 1/2 is assumed on the fluxes and coefficients.
Substituting (26) and (27) into (25) and (24) we obtain the final hybrid mass fluxes

Fl = κ

(
ρgαl

∂ρl

∂p
FD

l + ρlαg
∂ρg

∂p
FA

l + ρlαl
∂ρl

∂p
(FD

g − FA
g )

)
(28)

and

Fg = κ

(
ρlαg

∂ρg

∂p
FD

g + ρgαl
∂ρl

∂p
FA

g + ρgαg
∂ρg

∂p
(FD

l − FA
l )

)
.(29)

The coefficient variables at j+1/2 remain to be determined. We suggest finding these
from the cell interface pressure Pj+1/2(t) as well as the relation

αj+1/2(t) =
1

2
(αj(t) + αj+1(t)),
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which is consistent with the treatment of the coefficients of the pressure evolution
equation (23).

Remark 3. We remark that the consistency criterion

Fk(U,U) = fk(U) = ρkαkvk,

relating the physical flux fk to the numerical flux Fk, is satisfied for the hybrid
fluxes (28) and (29) provided the fluxes FA

k and FD
k are consistent. In particular, if

FA
k = FD

k , the expressions (28) and (29) reduce to the trivial identity

Fk = FA
k = FD

k .

3.5. The numerical flux Gk,j+1/2(t). In principle, one could envisage a hy-
bridization similar to (28) and (29) for constructing the convective momentum flux
Gk,j+1/2(t). We will not pursue such ideas here. For purposes of simplicity, we in-
stead seek a more straightforward construction of this convective flux, coupling it to
the mass flux component FA

k only. To emphasize this we use the superscript A, i.e.,

Gk,j+1/2(t) = GA
k,j+1/2(t).(30)

More precisely, we choose GA
k,j+1/2(t) to be consistent with the flux component

FA
k,j+1/2(t) in the following sense: for a flow with velocities which are constant in

space for the time interval [tn, tn+1], that is,

vk,j(t) = vk,j+1(t) = vk(t), t ∈ [tn, tn+1],(31)

we assume that GA
k,j+1/2(t) takes the form

GA
k,j+1/2(t) = vk(t)F

A
k,j+1/2(t),(32)

where FA
k,j+1/2(t) is the numerical flux component introduced above and assumed to

be consistent with the physical flux fk = ρkαkvk.
Remark 4. We remark that the consistency criterion

Gk(U,U) = gk(U) = ρkαkv
2
k,

relating the numerical flux Gk to the physical flux gk, is satisfied for Gk as given by
(32) provided the numerical flux FA

k is consistent with the physical flux fk.

4. Further development of the mass flux Fk,j+1/2(t). A main issue in
the resolution of two-phase flow as described by the current model is to obtain an
accurate resolution of mass fronts, i.e., slow-moving volume fraction waves. Hence, in
the following we want to ensure that the mass fluxes FD

k (t) and FA
k (t) are constructed

so that certain “good” properties in this respect are ensured for the resulting mass
flux Fk(t). Particularly, we shall identify a simple characterization of some properties
which FD

k and FA
k should possess.

To identify this characterization, we consider the contact discontinuity given by

pL = pR = p,(33)

αL �= αR,

(vg)L = (vl)L = (vg)R = (vl)R = v
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for the period [tn, tn+1]. All pressure terms vanish from the model (4)–(7), and it is
seen that the solution to this initial value problem is simply that the discontinuity
will propagate with the velocity v. The exact solution of the Riemann problem will
then give the numerical mass flux

(ραv)j+1/2 =
1

2
ρ(αL + αR)v − 1

2
ρ(αR − αL)|v|.(34)

Definition 1. A numerical flux F that satisfies (34) for the contact discontinuity
(33) will in the following be termed a mass coherent flux.

4.1. A mass coherent flux F A
k . The purpose of the flux component FA

k is to
ensure accuracy at volume fraction waves. A natural requirement for FA

k is then that
it should be mass coherent in the sense of Definition 1. We shall return to a more
detailed specification in section 7 but at this stage it might be instructive to briefly
mention two examples of numerical mass fluxes studied before for the two-fluid model
[9], one which is mass coherent and one which is not mass coherent.

Two examples. In [9] we studied a FVS-type of scheme for the current two-phase
model whose mass fluxes are given by

(ραv)j+1/2 = (ρα)LV
+(vL, cj+1/2) + (ρα)RV

−(vR, cj+1/2)(35)

for each phase where cj+1/2 = max(cL, cR) and V ± are given by

V ±(v, c) =

{
± 1

4c (v ± c)2 if |v| ≤ c,
1
2 (v ± |v|) otherwise.

Here the parameter c controls the amount of numerical diffusion and is normally
associated with the physical sound velocity for the system. This flux is not mass
coherent according to Definition 1 and leads to poor resolution of mass fronts, as was
clearly observed in [9].

In [9] we also studied a modification of the mass fluxes (35) obtained by replacing
V ± by

Ṽ ±(v, c, χ) =

{
χV ±(v, c) + (1 − χ) v±|v|

2 , |v| < c,
1
2 (v ± |v|) otherwise,

where χL and χR satisfy the relation

χRαR − χLαL = 0.(36)

It is easy to verify that the resulting mass flux is mass coherent in the sense of
Definition 1, and we observed in [9] that the level of accuracy was similar to that of
a Roe scheme in the resolution of mass fronts.

Knowing that the total flux component Fk given by (28) and (29) also should be
accurate at volume fraction waves, i.e., mass coherent, we way ask, What is a minimal
condition satisfied by the FD

k component which ensures that Fk still becomes mass
coherent?

4.2. A pressure coherent flux F D
k . We note that the pressure will remain

constant and uniform as the discontinuity (33) is propagating. Consequently, a natural
requirement on a good flux FD

k for stable pressure resolution is that it preserves the
constancy of pressure for the moving or stationary contact discontinuity given by (33).
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We write (14) as

dp = κdμ,

where

dμ = ρgdml + ρldmg.(37)

To maintain a constant pressure we must have dμ = 0. Assuming constant pressure,
(37) can be integrated to yield

μ = ρgml + ρlmg = ρgρl(αl + αg) = ρgρl.

To maintain constancy of μ, and hence p, we now insist that the flux FD
k is a consistent

numerical flux when applied to the mix mass μ. That is, we impose

ρgF
D
l,j+1/2 + ρlF

D
g,j+1/2 = ρgρlv(38)

for the contact discontinuity (33).
Definition 2. A pair of numerical fluxes (Fl, Fg) that satisfy (38) for the contact

discontinuity (33) will in the following be termed pressure coherent fluxes.
In particular, we note that the FVS mass fluxes (35) as well as the upwind fluxes

(34) are pressure coherent. Thus, the class of mass coherent fluxes is contained in
the class of pressure coherent fluxes. However, it should be noted that we can easily
construct a pair of perfectly valid mass fluxes, in the sense that they are consistent
with the physical flux, that are not pressure coherent. Consider, for example, the
stationary contact discontinuity (33) with v = 0. Let Fg be given by the upwind flux
(34) and let Fl be given by the FVS flux (35). Then

ρgFl,j+1/2 + ρlFg,j+1/2 = ρgρl
c

4
((αl)L − (αl)R) �= 0,

defying the requirement (38). Thus, this mass flux is neither pressure nor mass
coherent in the sense of Definitions 1 and 2.

4.3. Construction of mass coherent fluxes Fk(t). We now state the follow-
ing important lemma.

Lemma 1. Let the mixture fluxes (28) and (29) be constructed from pressure
coherent fluxes FD

k in the sense of Definition 2 and mass coherent fluxes FA
k in the

sense of Definition 1. Then the hybrid fluxes (28) and (29) reduce to the upwind fluxes
(34) on the contact discontinuity (33); i.e., they are mass coherent.

Proof. We consider the hybrid liquid mass flux (28) and assume that v ≥ 0.
Remembering that a subscript j + 1/2 is assumed on the variables, we write the flux
as

Fl = κ

(
αl

∂ρl

∂p
(ρgF

D
l + ρlF

D
g ) + ρlαg

∂ρg

∂p
FA

l − ρlαl
∂ρl

∂p
FA

g

)
.(39)

Using the required properties of FA
k and FD

k given by Definition 1 and Definition 2,
respectively, we obtain

Fl = κ

(
αl

∂ρl

∂p
ρgρlv + ρ2

l αg
∂ρg

∂p
(αl)Lv − ρgρlαl

∂ρl

∂p
(1 − (αl)L)v

)
= ρl(αl)Lv,(40)
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where we have used that

ρj+1/2 = ρL = ρR,(41)

which follows from the assumption of constant, uniform pressure. Spatial and phasic
symmetry directly give the corresponding results for Fg and v ≤ 0, completing the
proof.

Remark 5. The importance of Lemma 1 lies in the fact that it allows us to search
for an appropriate flux component FD

k outside the class of mass coherent fluxes, and
still, as long as FD

k is pressure coherent and FA
k is mass coherent, we obtain mass

coherent fluxes Fk. This is the crucial mechanism of the decomposition (28) and (29).

4.4. The class of MF methods. Motivated by the mixture mass fluxes (28)
and (29) as well as the use of the pressure evolution equation (23), we propose the
following definition.

Definition 3. We will use the term MF methods to denote numerical algorithms
which are constructed within the above semidiscrete framework; that is, (i) the numer-
ical mass flux Fk,j+1/2(t) is given by the mixture fluxes (28) and (29), where FD

k is
pressure coherent in the sense of Definition 2 and FA

k is mass coherent in the sense
of Definition 1; (ii) the numerical pressure flux Pj+1/2(t) is obtained as the solution
of (23); and (iii) the convective flux GA

k,j+1/2(t) satisfies (32) for flow with uniform

velocity (31).
Next, we apply Lemma 1 to verify that the MF methods satisfy the following

principle, due to Abgrall [1, 22, 23]: a flow, uniform in pressure and velocity, must
remain uniform in the same variables during its time evolution.

Lemma 2. The MF methods given by Definition 3 obey Abgrall’s principle.
Proof. We assume that we have the contact discontinuity given by (33) and that

it remains unchanged during the time interval [tn, tn+1]. In view of Lemma 1 and
the fact that the convective fluxes GA

k,j+1/2(t) of the momentum equations of the MF

methods satisfy (32), we immediately conclude that the semidiscrete model (21) takes
the form

.
mk,j +δx(ρkαkvk)j = 0,

v
.
mk,j +vδx(ρkαkvk)j + αk,jδxPj + (Δp)jδxΛk,j = 0,

(42)

where (ρkαkvk)j+1/2 is given by (34). In view of (11) we conclude that (Δp)j = 0.
Moreover, we see that (23) reduces to

.

P j+1/2 = −[κj+1/2ρl,j+1/2]δxIg,j+1/2 + [κj+1/2ρg,j+1/2]δxIl,j+1/2

= −κj+1/2[ρlρgvδxαg,j+1/2 + ρgρlvδxαl,j+1/2] = 0

since αg + αl = 1. In other words,

Pj+1/2(t) = Pj+1/2(t
n
+) =

pnj + pnj+1

2
= p, t ∈ (tn, tn+1],

for all j. Consequently, δxPj = 0, and we can conclude that Abgrall’s principle holds
for the MF methods.

Remark 6. We may consider the class of schemes introduced in this paper, which
all employ mass fluxes of the form (28) and (29), as genuine two-phase flux splitting
schemes. This flux splitting is based on a decomposition of the mass fluxes into several
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phasic components, i.e., one specific mass flux involves components from both the
liquid and the gas phase. In this sense the class of schemes we study is fundamentally
different from the solution method used in, e.g., [4, 17, 18, 9], where the underlying
philosophy is to solve the two-phase model basically as two single-phase problems.

In the next sections (sections 5, 6, and 7) we shall specify fully discrete schemes
based on the semidiscrete scheme presented in sections 3 and 4. In particular, we
will develop a flux component FD

k which is pressure coherent but not mass coherent.
This flux component is constructed so that it allows us to obtain a stable pressure
p = p(mg,ml) via (13), even for time steps which obey only the weak CFL condition
(2). The fact that it is pressure coherent, i.e., satisfies (38) for a contact discontinuity
(33), ensures that it does not introduce undesirable numerical dissipation at volume
fraction waves. The construction of appropriate flux components FA

k and GA
k will be

based on the advection upstream splitting method (AUSM) framework developed by
Wada and Liou [28] for Euler equations and adapted to the two-phase flow model in
[9]; see also [18] for similar types of schemes for the two-fluid model.

5. Fully discrete numerical schemes. We now consider a fully discrete scheme
corresponding to the semidiscrete scheme given by (21), (22), (23), (28), (29), and
(30).

General form.
• Gas mass,

mn+1
g,j −mn

g,j

Δt
= −δxF

n+1/2
g,j ;(43)

• liquid mass,

mn+1
l,j −mn

l,j

Δt
= −δxF

n+1/2
l,j ;(44)

• pressure at cell interface,

Pn+1
j+1/2 −

1
2 (pnj + pnj+1)

Δt

= −(κρl)
n
j+1/2

In+1
g,j+1 − In+1

g,j

Δx
− (κρg)

n
j+1/2

In+1
l,j+1 − In+1

l,j

Δx
;

(45)

• gas momentum,

In+1
g,j − Ing,j

Δt

= −δx(GA)ng,j − αn
g,j

Pn+1
j+1/2 − Pn+1

j−1/2

Δx
− (Δp)nj δxΛn

g,j + (Qg)
n
j ;

(46)

• liquid momentum,

In+1
l,j − Inl,j

Δt

= −δx(GA)nl,j − αn
l,j

Pn+1
j+1/2 − Pn+1

j−1/2

Δx
− (Δp)nj δxΛn

l,j + (Ql)
n
j .

(47)
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Here we have introduced the shorthand

mk = ρkαk, Ik = mkvk.

In accordance with (22) we use

Λn
k,j+1/2 =

αn
k,j + αn

k,j+1

2
,(48)

and where (Δp)nj = (Δp)
(
Un
j , δ

)
is evaluated from (11). For the discretization of the

pressure evolution equation (23) as given by (45), we keep the coefficients κρk fixed
at time level tn, whereas the mass fluxes Ik are given an implicit treatment as they
are discretized at time level tn+1. Particularly, this enforces a coupling between (45),
(46), and (47). We end up with solving a linear system Ax = b, where A is a sparse
banded matrix with two superdiagonals and two subdiagonals.

For the numerical mass fluxes F
n+1/2
k,j+1/2 the purpose of the n + 1/2 notation is to

indicate that we shall discretize some terms at time level tn and others at time tn+1.
More precisely, we propose to use the following time discretization for the mass fluxes
(28) and (29) (for simplicity we have again dropped the subscript j + 1/2):

F
n+1/2
l = [κρgαl(ρl)p]

n(FD
l )n+1/2 + [κρlαg(ρg)p]

n(FA
l )n

+ [κρlαl(ρl)p]
n
(
(FD

g )n+1/2 − (FA
g )n

)(49)

and

F
n+1/2
g = [κρlαg(ρg)p]

n(FD
g )n+1/2 + [κρgαl(ρl)p]

n(FA
g )n

+ [κρgαg(ρg)p]
n
(
(FD

l )n+1/2 − (FA
l )n

)
.

(50)

In other words, the flux component FA
k is kept at the time level tn, whereas the flux

component FD
k involves terms at time level tn+1. Particularly, we want to make use

of the updated momentums In+1
k obtained from solving (45)–(47) in the expressions

for FD
k . We describe the details in the next section.

It turns out that this implicit treatment is crucial to maintain the stability of
the scheme for large time steps. This aspect is explored in more detail in section
8.1. Note that we shall not need to solve any linear system here, as will become clear
from section 6. In view of (49) and (50), we see that what remains is to specify the

numerical flux components (FA
k )nj+1/2 and (GA

k )nj+1/2, as well as (FD
k )

n+1/2
j+1/2 . We start

with the latter.

Remark 7. The discretization of the pressure equation at the cell interface can
be viewed as a staggered Lax–Friedrichs scheme. We assume that the pressure pj
is found from the masses mj by (13). The interdependence between Pj+1/2 and the
couple (pj , pj+1) through the proposed discretization (45) ensures that the numerical
flux Pj+1/2 is consistent with the physical flux, as pointed out in Remark 2.

6. Specification of the pressure coherent convective flux (F D
k )n+1/2.

Due to the fact that the mass flux component FD
k is associated with the pressure

calculation as described in section 3.4, it is natural to choose a discretization of this
flux which is consistent with the discretization of the pressure evolution equation. On
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the semidiscrete level, in view of (23), we therefore propose to consider the following
discretization of the mass conservation equations:

.
mk,j+1/2 +δxIk,j+1/2 = 0, t ∈ (tn, tn+1],

mk,j+1/2(t
n
+) =

mn
k,j + mn

k,j+1

2
.

(51)

We now suggest averaging as follows:

mk,j(t) =
1

2

(
mk,j−1/2(t) + mk,j+1/2(t)

)
,

which implies that

.
mk,j (t) =

1

2

( .
mk,j−1/2 (t)+

.
mk,j+1/2 (t)

)
.(52)

By substituting (51) into (52) we obtain the following ODE equation for mk,j(t):

.
mk,j +

1

2Δx
(Ik,j+1 − Ik,j−1) = 0, t ∈ (tn, tn+1],

mk,j(t
n
+) =

1

4

(
mn

k,j−1 + 2mn
k,j + mn

k,j+1

)
.

(53)

To achieve conservative mass treatment while maintaining CFL stability, it is clear
that we somehow should take advantage of the already implicitly calculated mass
fluxes In+1

k,j obtained from solving (45)–(47). A fully discrete version of (53) which

employs these updated mass fluxes In+1
k,j is then given by

mn+1
k,j − 1

4

(
2mn

k,j + mn
k,j−1 + mn

k,j+1

)
Δt

+
1

2Δx

(
In+1
k,j+1 − In+1

k,j−1

)
= 0,(54)

which can be written in flux-conservative form (43) and (44) with the numerical fluxes

(FD
k )

n+1/2
j+1/2 =

1

2
(In+1

k,j + In+1
k,j+1) +

1

4

Δx

Δt
(mn

k,j −mn
k,j+1).(55)

Now we may solve for the masses mn+1
k,j using the fluxes (55), taking advantage of the

fact that they emerge through an implicit coupling to the pressure. We found that by
doing this we were able to violate the CFL criterion for sonic waves. This is explored
in more detail in section 8.1.

Next, we check that the proposed flux FD
k possesses the pressure coherent property

of Definition 2.
Proposition 1. The flux component FD

k given by (55) is pressure coherent in
the sense of Definition 2.

Proof. We just need to check that FD
k satisfies the relation (38). Using the

constants of (33), a direct calculation gives

ρg(F
D
l )

n+1/2
j+1/2 + ρl(F

D
g )

n+1/2
j+1/2 = ρgρl

[
v

2
(αn+1

l,j + αn+1
l,j+1) +

Δx

4Δt
(αn

l,j − αn
l,j+1)

]

+ ρgρl

[
v

2
(αn+1

g,j + αn+1
g,j+1) +

Δx

4Δt
(αn

g,j − αn
g,j+1)

]

= ρgρl

[
v

2
(1 + 1) +

Δx

4Δt
(1 − 1)

]
= ρgρlv.
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Note, however, by direct calculation, that this FD
k mass flux component is not

mass coherent in the sense of Definition 1.
Remark 8. Our experience is that it is essential to use a discretization of the

mass equations, represented by the FD
k flux component (55), which is consistent with

the one used for the pressure evolution equation to obtain nonoscillatory (stable)
approximations for the pressure when large time steps governed by (2) are employed.
However, this leads to mass fluxes FD

k which are not mass coherent according to
Definition 1.

Consequently, by using FD
k only as mass fluxes, i.e., Fk = FD

k , we must expect
that a strong smearing of volume fraction waves is introduced. However, Lemma 1
states that by the introduction of the mixture mass fluxes (28) and (29) we only need
FD
k to satisfy the weaker pressure coherent condition given by Definition 2, and still

we retain mass fluxes Fk which are mass coherent as long as we use a mass coherent
FA
k component.

7. Specification of the mass coherent convective fluxes (F A
k )n and cor-

responding convective momentum fluxes (GA
k )n. In this section we look for

appropriate choices for the numerical flux components FA
k and GA

k by considering so-
called hybrid FDS/FVS types of schemes. Such schemes have been explored for the
present two-fluid model [9]. Here we briefly restate the numerical convective fluxes
(ραv)j+1/2 and (ραv2)j+1/2 corresponding to the flux splitting schemes we investi-
gated in [9].

7.1. FVS/van Leer. We consider the velocity splitting formulas used in previ-
ous works [13, 28, 7, 8, 9]:

V ±(v, c) =

{
± 1

4c (v ± c)2 if |v| ≤ c,
1
2 (v ± |v|) otherwise.

(56)

Here the parameter c controls the amount of numerical diffusion and is normally
associated with the physical sound velocity for the system. Following [9] we here
assume that the sound velocity is given by (12). Following the standard set by earlier
works [28, 7, 9] we choose a common sound velocity

cj+1/2 = max(cL, cR)

at the cell interface.
1. Mass flux. We let the numerical mass flux (ραv)j+1/2 for FVS and van Leer

be given as

(ραv)j+1/2 = (ρα)LV
+(vL, cj+1/2) + (ρα)RV

−(vR, cj+1/2)(57)

for each phase.
2. Momentum flux. We let the numerical convective momentum flux (ραv2)j+1/2

be given as
• FVS,

(ραv2)j+1/2 = V +(vL, cj+1/2)(ραv)L + V −(vR, cj+1/2)(ραv)R,(58)

• van Leer,

(ραv2)j+1/2 =
1

2
(ραv)j+1/2(vL + vR) − 1

2
|(ραv)j+1/2|(vR − vL).(59)
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7.2. AUSMV/AUSMD. Following [9], we consider the convective fluxes as-
sociated with the AUSMV and AUSMD scheme obtained by replacing the splitting
formulas V ± used in (57)–(59) with the less diffusive pair

Ṽ ±(v, c, χ) =

{
χV ±(v, c) + (1 − χ) v±|v|

2 , |v| < c,
1
2 (v ± |v|) otherwise,

(60)

where

χL =
2(ρ/α)L

(ρ/α)L + (ρ/α)R
(61)

and

χR =
2(ρ/α)R

(ρ/α)L + (ρ/α)R
(62)

for each phase.
Definition 4. Using the terminology of Wada and Liou [28], we will henceforth

refer to the FVS scheme modified with the splittings (60) and the choice of χ described
by (61) and (62) as the AUSMV scheme. That is, the convective fluxes of AUSMV
are described by

• mass flux,

(ραv)AUSMV
j+1/2 = (ρα)LṼ

+(vL, cj+1/2, χL) + (ρα)RṼ
−(vR, cj+1/2, χR),(63)

• momentum flux,

(ραv2)AUSMV
j+1/2 = Ṽ +(vL, cj+1/2, χL)(ραv)L + Ṽ −(vR, cj+1/2, χR)(ραv)R.

(64)

Definition 5. Similarly, we will henceforth refer to the van Leer scheme modified
with the splittings (60) and the choice of χ described by (61) and (62) as the AUSMD
scheme. That is, the convective fluxes of AUSMD are described by

• mass flux,

(ραv)AUSMD
j+1/2 = (ρα)LṼ

+(vL, cj+1/2, χL) + (ρα)RṼ
−(vR, cj+1/2, χR),(65)

• momentum flux,

(ραv2)AUSMD
j+1/2 =

1

2
(ραv)j+1/2(vL + vR) − 1

2
|(ραv)j+1/2|(vR − vL).(66)

We note that χL and χR given by (61) and (62) satisfy the relation (36). Conse-
quently, as remarked in section 4.1, it is easy to check by direct calculation that the
AUSMV and AUSMD convective fluxes hold the following property; see also [9].

Proposition 2. The convective fluxes (ραv)AUSMV
j+1/2 and (ραv)AUSMD

j+1/2 are mass
coherent in the sense of Definition 1.

7.3. WIMF-AUSMD and WIMF-AUSMV. We are now in a position where
we can give a precise definition of fully discrete MF schemes. We shall consider the
following two different choices for (FA

k )n and (GA
k )n leading to two different MF

schemes.



1466 STEINAR EVJE AND TORE FLÅTTEN

Definition 6. We will use the term WIMF-AUSMV to denote the numerical
scheme given by (43)–(50), where (FD

k )
n+1/2
j+1/2 is given by the pressure coherent com-

ponent (55) whereas (FA
k )nj+1/2 and (GA

k )nj+1/2 are given by

(FA
k )nj+1/2 = (ραv)AUSMV,n

k,j+1/2 , (GA
k )nj+1/2 = (ραv2)AUSMV,n

k,j+1/2 .

Definition 7. We will use the term WIMF-AUSMD to denote the numerical
scheme given by (43)–(50), where (FD

k )
n+1/2
j+1/2 is given by the pressure coherent com-

ponent (55) whereas (FA
k )nj+1/2 and (GA

k )nj+1/2 are given by

(FA
k )nj+1/2 = (ραv)AUSMD,n

k,j+1/2 , (GA
k )nj+1/2 = (ραv2)AUSMD,n

k,j+1/2 .

The following result holds for WIMF-AUSMV and WIMF-AUSMD.

Proposition 3. WIMF-AUSMV and WIMF-AUSMD satisfy the following prop-
erties: (i) The mass fluxes of WIMF-AUSMV and WIMF-AUSMD are mass coherent
in the sense of Definition 1, and (ii) both schemes obey Abgrall’s principle.

Proof. In view of Lemma 1, result (i) follows directly from Proposition 1 and
Proposition 2.

Result (ii) follows by observing that the flux component GA
k of both schemes (see

Definitions 6 and 7) satisfy the relation (32) for flow with uniform velocity (31) and
then by applying Lemma 2.

Remark 9. We observed in [9] that the convective fluxes of AUSMV were con-
siderably more diffusive on volume fraction waves than those of AUSMD. Thus, for
numerical simulations we prefer to use the WIMF-AUSMD scheme which applies
AUSMD mass and momentum fluxes for FA

k and GA
k , respectively. However, we will

take advantage of the robustness of the convective fluxes of AUSMV and apply these
in combination with the convective fluxes of AUSMD in an appropriate manner when
we consider flows which locally involve transition to single-phase flow. We refer to
section 8.3 for details.

8. Numerical simulations. In the following, some selected numerical examples
will be presented. We will consider the performance of the WIMF-AUSMD scheme
given by Definition 7. To ensure that this scheme can handle flow cases which in-
volve transition to single-phase flow, we introduce a slight modification whose basic
purpose is to introduce more numerical dissipation near the single-phase zone. This
is explained in detail in section 8.3.

As our main concern will be to demonstrate the inherent accuracy and stability
properties of the WIMF-AUSMD scheme, we limit ourselves to first-order accuracy in
space and time. The boundary conditions are implemented using a simple ghost cell
approach, where the variables are either imposed or determined by simple (zeroth-
order) extrapolation from the computational domain.

In the first example we explore more carefully central mechanisms of the WIMF-
AUSMD scheme.

8.1. A large relative velocity shock. We consider a Riemann initial value
problem investigated by Cortes, Debussche, and Toumi [5] for a similar two-fluid
model. Our primary motivation for studying this problem is to investigate the per-
formance of WIMF-AUSMD on sonic waves. The initial states are given by
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Fig. 1. LRV shock tube problem. WIMF-AUSMD versus Roe scheme for a grid of 100 cells.
Top left: liquid fraction. Top right: pressure. Bottom left: liquid velocity: Bottom right: gas
velocity.

WL =

⎡
⎢⎢⎣

p
αl

vg

vl

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

265000 Pa
0.71

65 m/s
1 m/s

⎤
⎥⎥⎦(67)

and

WR =

⎡
⎢⎢⎣

p
αl

vg

vl

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

265000 Pa
0.7

50 m/s
1 m/s

⎤
⎥⎥⎦ .(68)

8.1.1. Comparison with explicit scheme. We aim here to compare the
WIMF-AUSMD with an explicit Roe scheme at the same spatial and temporal grid.
We refer to [9] for a description of the implementation of the Roe scheme. We assume
a grid of 100 cells and use the time step

Δx

Δt
= 400 m/s.(69)

The results, plotted at time t = 0.1 s, are given in Figure 1. The reference solution
was computed using the Roe scheme on a grid of 10,000 cells.

We note that the implicit pressure-momentum coupling used in WIMF-AUMSD
causes a stronger numerical dissipation associated with the sonic waves as compared
to the explicit Roe scheme, whereas the approximation of the volume fraction waves
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Fig. 2. LRV shock tube problem. Pressure is shown for a grid of 1000 cells. Different time
steps are considered by considering different values for Δx/Δt for the WIMF-AUSMD scheme.

located at about 50 m seems to be very similar. The approximation properties regard-
ing the slow volume fraction waves for WIMF-AUSMD are explored in more detail in
section 8.2 (water faucet problem).

8.1.2. Test of time step sensitivity for calculation of pressure using
the WIMF-AUSMD scheme. We now investigate what happens when the time
step is increased beyond the sonic CFL criterion. The two-fluid model possesses an
approximate mixture velocity of sound given by

c =

√
ρlαg + ρgαl

∂ρg

∂p ρlαg + ∂ρl

∂p ρgαl

(70)

(see [26, 9] for details). Hence the mixture sound velocity is approximately given by
the sound velocity of the gas phase, giving

c ≈ 317 m/s.(71)

Hence for time steps satisfying

Δx

Δt
< c,(72)

the sonic CFL criterion is broken. For a grid of 1000 cells, the results of the pressure
calculation for several different values of Δx/Δt are given in Figure 2. We observe
that increasing the time step beyond the sonic CFL criterion (1) does not induce
instabilities. However, a significant increase of the numerical dissipation of the sonic
waves follows the increased time step.
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Fig. 3. LRV shock tube problem. Grid refinement for the WIMF-AUSMD scheme. Top left:
liquid fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas velocity.

8.1.3. Test of stability and convergence for the WIMF-AUSMD scheme
under violation of sonic CFL condition. Using the time step Δx/Δt = 100
m/s, the effect of grid refinement for the WIMF-AUSMD scheme is demonstrated in
Figure 3. We observe that the Roe reference solution is approached in a monotone way
and by that verifies that the stability of the WIMF-AUSMD scheme is not governed
by the maximal speed of the sonic waves.

8.1.4. Test of using purely explicit mass fluxes Fk. We now wish to illus-
trate the need for using the implicitly calculated mass fluxes In+1

k as given by (55)
when we approximate the mass equations. We consider a slight modification of the
flux component FD

k given by (55), where we instead use the momentum from the
previous time step as follows:

(FD
k )nj+1/2 =

1

2
(Ink,j + Ink,j+1) +

1

4

Δx

Δt
(mn

k,j −mn
k,j+1).

Results are given in Figure 4 for the time steps Δx/Δt = 1000 m/s and Δx/Δt = 100
m/s using a grid of 1000 cells. We observe that this works well for Δx/Δt = 1000 m/s
when the sonic CFL condition is satisfied. However, increasing the time step by an
order of magnitude leads to CFL-like instabilities, although the pressure-momentum
coupling still is implicit. It seems to be a crucial step to use information from time
level tn+1 to achieve stable mass calculations.

Remark 10. In particular, these results illustrate that the combination of using
the pressure evolution equation (45) and the mixture mass fluxes (49) and (50), where
(FD

k )n+1/2 is given by (55), makes the pressure calculation independent of any sonic
CFL condition.
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The strength of the mixture fluxes (49) and (50) lies in their ability to properly
combine the stability of an implicit scheme with the accuracy of an explicit scheme,
at least for the resolution of volume fraction waves. This is the central issue in the
next example.

8.2. Water faucet problem. We now wish to focus more on the resolution of
volume fraction waves. For this purpose, we study the faucet flow problem of Ransom
[20], which has become a standard benchmark [27, 26, 4, 17, 18].

We consider a vertical pipe of length 12 m with the initial uniform state

W =

⎡
⎢⎢⎣

p
αl

vg

vl

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

105 Pa
0.8
0

10 m/s

⎤
⎥⎥⎦ .(73)

Gravity is the only source term taken into account, i.e., in the framework of (6) and
(7) we have

Qk = gρkαk,(74)

with g being the acceleration of gravity. At the inlet we have the constant conditions
αl = 0.8, vl = 10 m/s, and vg = 0. At the outlet the pipe is open to the ambient
pressure p = 105 Pa.

We restate the approximate analytical solution presented in [18, 27],

vl(x, t) =

{√
v2
0 + 2gx for x < v0t + 1

2gt
2,

v0 + gt otherwise,
(75)
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αl(x, t) =

{
α0(1 + 2gxv−2

0 )−1/2 for x < v0t + 1
2gt

2,
α0 otherwise,

(76)

where the parameters α0 = 0.8 and v0 = 10 m/s are the initial states.

8.2.1. Comparison with explicit Roe scheme. We now compare the WIMF-
AUSMD scheme with the explicit Roe scheme under equal conditions. That is, we
assume a grid of 120 cells and use the time step

Δx

Δt
= 103 m/s.(77)

Results are given in Figure 5 after t = 0.6 s. We note that there is little visible
difference between WIMF-AUSMD and the Roe scheme on the volume fraction wave.
However, the WIMF-AUSMD is somewhat more diffusive on pressure. This is consis-
tent with our observations in section 8.1.1.

8.2.2. Effect of increasing the time step for WIMF-AUSMD. An eigen-
value analysis (see [26, 9]) reveals that the velocities of the volume fraction waves are
approximately given by

λ±
v =

ρgαlvg + ρlαgvl

ρgαl + ρlαg
±
√

Δp(ρgαl + ρlαg) − ρlρgαlαg(vg − vl)2

(ρgαl + ρlαg)2
.(78)
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For a weakly implicit scheme as defined by (2) we must then have

Δx

Δt
≥ max

j,n
(λ±

v ).(79)

Having ρl >> ρg we obtain from (78)

λ±
v ≈ vl,(80)

and hence we expect a weakly implicit scheme to encounter CFL-related stability
problems near time steps corresponding to the liquid velocity.

We now study the effect of increasing the time step for the WIMF-AUSMD scheme.
We consider the following time steps:

• Δx/Δt = 1000 m/s,
• Δx/Δt = 25 m/s,
• Δx/Δt = 17 m/s,
• Δx/Δt = 14 m/s.

Results for these time steps are given in Figure 6. We observe that increasing the time
step toward the time step corresponding to the liquid velocity significantly improves
the accuracy of WIMF-AUSMD on the volume fraction wave, as seen on the plots of
velocities and volume fraction. The rate of improvement in accuracy is largest near
the optimal time step Δx/Δt = vl. Increasing the time step further violates the weak
CFL criterion (79) and instabilities occur. The increased accuracy in volume fraction
is accompanied by increased numerical dissipation in the pressure variable, consistent
with our observations in section 8.1.2.
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8.2.3. Optimal WIMF-AUSMD versus Roe scheme. To emphasize the
increased accuracy in volume fraction that is allowed by increasing the time step
beyond the sonic CFL criterion, the explicit Roe scheme at Δx/Δt = 1000 m/s is
plotted together with the optimal WIMF-AUSMD scheme (Δx/Δt = 17 m/s) in
Figure 7. The improvement of the WIMF-AUSMD scheme is rather striking and is
equivalent to an increase in the number of grid cells by an order of magnitude for the
Roe scheme.

8.2.4. Test of convergence for WIMF-AUSMD. In Figure 8 we investigate
how the scheme converges to the expected analytical solution as the grid is refined.
The optimal time step Δx/Δt = 17 m/s is used. As we can see, the expected analytical
solution is approached in a nonoscillatory way.

8.3. Separation problem. We consider a gravity-induced phase separation
problem introduced by Coquel et al. [4] and also investigated by Paillère, Corre,
and Cascales [18]. This problem tests the ability of numerical schemes to handle the
transition to one-phase flow under stiff conditions.

We assume a vertical pipe of length 7.5 m, where gravitational acceleration and
possibly interfacial friction are the source terms taken into account. Initially the pipe
is filled with stagnant liquid and gas with a uniform pressure p0 = 105 Pa and a
uniform liquid fraction αl = 0.5.

Assuming that the liquid column falls freely under the influence of gravity, the
following approximate analytical solution can be derived for the transient period:

vl(x, t) =

⎧⎪⎨
⎪⎩
√

2gx for x < 1
2gt

2,

gt for 1
2gt

2 ≤ x < L− 1
2gt

2,

0 for L− 1
2gt

2 < x,

(81)
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αl(x, t) =

⎧⎪⎨
⎪⎩

0 for x < 1
2gt

2,

0.5 for 1
2gt

2 ≤ x < L− 1
2gt

2,

1 for L− 1
2gt

2 < x,

(82)

where L = 7.5 m is the length of the tube. This approximate solution consists of a
contact discontinuity at the top of the tube and a shock-like discontinuity at the lower
part of the tube. After the time

T =

√
L

g
= 0.87 s(83)

these discontinuities will merge and the phases will become fully separated. The
volume fraction reaches a stationary state, whereas the other variables slowly con-
verge toward a stationary solution. Assuming hydrostatic conditions the pressure will
approximately be given by

p(x, t) =

{
p0 for x < L/2,

p0 + ρlg (x− L/2) for x ≥ L/2.
(84)

8.3.1. Transition to one-phase flow. We observed that the basic WIMF-
AUSMD scheme would produce instabilities in the transition to one-phase flow. In-
deed, this is a common problem for two-phase flow models, observed by, among others,
Coquel et al. [4] for their kinetic scheme, Paillére, Corre, and Cascales [18] for their
AUSM+ scheme, and Romate [21] for his Roe scheme. Romate suggested a scheme
switching strategy for solving this problem, where the original scheme is replaced
with a stable, diffusive scheme near one-phase regions. Here we will follow a similar
approach, using a strategy that has been previously applied with success [9]. We
proceed as follows.
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8.3.2. Modification of basic AUSMV and AUSMD splitting formulas.
We modify the parameters χ used in the splitting formulas (60) corresponding to the
AUSMV and AUSMD schemes,

χL = (1 − φL)
2(ρ/α)L

(ρ/α)L + (ρ/α)R
+ φL(85)

and

χR = (1 − φR)
2(ρ/α)R

(ρ/α)L + (ρ/α)R
+ φR,(86)

for each phase. Here φ is the transition fix function

φ = φ(αg) = e−Γgαg + e−Γl(1−αg),(87)

where Γk is a parameter controlling the diffusive effect of the transition fix. This fix
ensures that we recover the more stable FVS/van Leer fluxes, as given by (56)–(59),
in one-phase regions.

We observe that the transition to one-phase liquid flow (the denser phase) more
easily induces instabilities than the transition to one-phase gas flow (the less dense
phase). For the purposes of this paper, we choose the parameters

Γg = 50(88)

and

Γl = 500.(89)

Definition 8. The modified AUSMD scheme as described by (85) and (86)
will be denoted as the AUSMD∗ scheme. Similarly, the modified AUSMV scheme as
described by (85) and (86) will be denoted as the AUSMV∗ scheme.

8.3.3. WIMF-AUSMDV∗. We consider convective fluxes which are a hybrid
of those employed by AUSMD∗ and AUSMV∗ and are denoted as AUSMDV∗. More
precisely, the numerical convective fluxes (αρv)j+1/2 and (αρv2)j+1/2 are given by the
following expression:

(αρv)AUSMDV∗

j+1/2 = s(αρv)AUSMV∗

j+1/2 + (1 − s)(αρv)AUSMD∗

j+1/2 ,

(αρv2)AUSMDV∗

j+1/2 = s(αρv2)AUSMV∗

j+1/2 + (1 − s)(αρv2)AUSMD∗

j+1/2 .
(90)

Here s is chosen as

s = max(φL, φR),(91)

where φ is the transition fix function given by (87). Note that this hybridization
affects only the momentum convective fluxes since (αρv)AUSMV∗

j+1/2 = (αρv)AUSMD∗

j+1/2 .

The construction (90) ensures that AUSMDV∗ uses the accurate AUSMD∗ fluxes
in two-phase regions and switches to the more stable AUSMV∗ fluxes in one-phase
regions.

The WIMF-AUSMDV∗ scheme is now constructed straightforwardly by associat-
ing the fluxes FA

k and GA
k with the corresponding AUSMDV∗ fluxes as follows.
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Definition 9. We will use the term WIMF-AUSMDV∗ to denote the numer-
ical scheme given by (43)–(50), where (FD

k )
n+1/2
j+1/2 is given by the pressure coherent

component (55) whereas (FA
k )nj+1/2 and (GA

k )nj+1/2 are given by

(FA
k )nj+1/2 = (ραv)AUSMDV∗,n

k,j+1/2 , (GA
k )nj+1/2 = (ραv2)AUSMDV∗,n

k,j+1/2 .

Remark 11. It should be noted that we have no formal proof which guaran-
tees that negative mass fractions will never be calculated by the proposed WIMF-
AUSMDV∗ scheme. It does, however, work well on practical cases, while retaining
the property of being fully consistent with the model formulation.

The idea of increasing the numerical dissipation near one-phase regions may be
explored more systematically with the aim of obtaining more general relations that
do not involve free parameters. Paillère, Corre, and Cascales [18] used a related
approach, introducing a diffusion term depending on the pressure gradient to improve
the performance of their AUSM+ scheme near one-phase liquid regions.

8.3.4. Numerical results. We now consider two different formulations of the
two-fluid model:

• Frictionless flow. We assume that gravity is the only source term taken into
account. In this case, the lack of friction terms causes the gas velocity to
become large as the gas phase is disappearing. We note that for one-phase
liquid flow we have αl >> αg and the volume fraction velocities (78) are
dominated by this large gas velocity. Hence the weak CFL criterion (79)
becomes very restrictive here. With this model we use the relatively low time
step

Δx

Δt
= 500 m/s.(92)

For stability of the FVS scheme, which AUSMDV∗ employs in the transi-
tion to single phase flow, we rescale the sound velocity c as described in the
appendix, using

c = 750 m/s(93)

instead of the sound velocity determined from (12). This choice was based
on the fact that we observed that the gas velocity could become as high as
approximately 400 m/s. According to (120) in the appendix, we should then
choose c such that 200 ≤ c ≤ 800. We consistently have chosen c in the upper
region.

• Interfacial momentum exchange. The low time step needed for the friction-
less model is undesirable. In addition, the assumption of frictionless low is
unphysical. In reality we expect the last remnants of the disappearing phase
to be completely dissolved, and we expect vg ≈ vl near one-phase regions. To
more realistically model this situation, we consider an interfacial momentum
transfer model also used by Paillère, Corre, and Cascales [18]. For the gas
momentum equation, we introduce the source term

MD
g = Cαgαlρg(vg − vl),(94)

where C is a positive constant. Likewise, the liquid momentum source term
is given as

MD
l = −MD

g = −Cαgαlρg(vg − vl),(95)
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conserving total momentum. We write

C = C0φ,(96)

making the exchange term kick in more strongly near one-phase regions. Fol-
lowing [18], we set

C0 = 50000 s−1.(97)

To avoid stability problems related to stiffness in this term, we use a semi-
implicit implementation as follows:

(MD
g )

n+1/2
j = Cn

j (αgαlρg)
n
j

[
(Ig)

n+1
j

(mg)nj
−

(Il)
n+1
j

(ml)nj

]
.(98)

We found that we could now increase the time step to

Δx

Δt
= 75 m/s,(99)

consistent with the largest gas (volume fraction) velocities during the tran-
sient period. The sound velocity is rescaled as

c = 150 m/s.(100)

Again, this choice is based on the criterion (120), where we now can assume
that the fluid velocity becomes zero in the transition to single-phase flow (due
to the inclusion of the interfacial momentum transfer model). This gives us
that c should be chosen in the interval 0 ≤ c ≤ 2λ = 2Δx/Δt.

Results after t = 0.6 s are plotted in Figure 9, using a grid of 100 cells. The
approximate analytical solutions (81) and (82) are used for reference. We note that
good accordance with the expected analytical solutions is achieved. The most notable
effect of the interfacial momentum exchange term is the reduction of the gas velocity
in the one-phase liquid region.

Although the phases will be separated for t < 1.0 s, it takes some seconds before
the excess momentum has been dissipated at the endpoints. Results for fully station-
ary conditions (t = 5.0 s) are plotted in Figure 10. We note that the frictionless model
does not exactly yield the expected hydrostatic pressure distribution. This seems to
be due to the strong velocity gradients at the separation point, and hydrostatic con-
ditions are never fully reached. The inclusion of the interfacial friction term removes
these gradients.

In Figure 11 the effect of grid refinement on the resolution of volume fraction is
illustrated for the WIMF-AUSMDV∗ scheme with momentum exchange terms. The
time step Δx/Δt = 75 m/s is used. The expected analytical solution is approached
in a monotone way.

8.4. Oscillating manometer problem. Finally, we consider a problem intro-
duced by Ransom [20] and investigated by Paillère, Corre, and Cascales [18] and Evje
and Fl̊atten [9]. This problem tests the ability of numerical schemes to handle a
change in the flow direction.
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Fig. 9. Separation problem, T = 0.6 s, 100 grid cells. WIMF-AUSMDV∗ scheme with and
without interfacial momentum exchange terms. Top left: liquid fraction. Top right: pressure.
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We consider a U-shaped tube of total length 20 m. The geometry of the tube is
reflected in the x-component of the gravity field

gx(x) =

⎧⎪⎪⎨
⎪⎪⎩

g for 0 ≤ x ≤ 5 m,

g cos
(

(x−5 m)
10 m π

)
for 5 m < x ≤ 15 m,

−g for 15 m < x ≤ 20 m.

(101)

Initially we assume that the liquid fraction is given by

αl(x) =

⎧⎪⎨
⎪⎩

10−6 for 0 ≤ x ≤ 5 m,

0.999 for 5 m < x ≤ 15 m,

10−6 for 15 m < x ≤ 20 m.

(102)

The initial pressure is assumed to be equal to the hydrostatic pressure distribution. We
assume that the gas velocity is uniformly vg = 0, and the liquid velocity distribution
is given by

vl(x) =

⎧⎪⎨
⎪⎩

0 for 0 ≤ x ≤ 5 m,

V0 for 5 m < x ≤ 15 m,

0 for 15 m < x ≤ 20 m,

(103)

where V0 = 2.1 m/s.
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Fig. 12. Oscillating manometer, WIMF-AUSMDV∗ scheme. Time development of the liquid
velocity.

Ransom [20] suggested treating the manometer as a closed loop. We will follow
the approach of Paillère, Corre, and Cascales [18], assuming that both ends of the
manometer are open to the atmosphere. We assume that the liquid column will move
with uniform velocity under the influence of gravity, giving the following approximate
analytical solution for the liquid velocity [18]

vl(t) = V0 cos(ωt),(104)

where

ω =

√
2g

L
,(105)

where L = 10 m is the length of the liquid column.
To exploit the possibility of taking large time steps, we include the interfacial

momentum exchange term as described in section 8.3.4. The sound velocity is rescaled
to c = 30 m/s, which is consistent with (120), where we use that the fluid velocity is
negligible in the transition to single-phase flow.

8.4.1. Numerical results. We consider the following grids:
• 100 cells—we use a time step corresponding to Δx/Δt = 50 m/s, and
• 500 cells—we use a time step corresponding to Δx/Δt = 15 m/s.

For the fine grid with 500 cells, the critical time step was found to be consistent with
the weak CFL criterion (79). For the coarse grid consisting of 100 cells, a lower CFL
number was needed to ensure stability. The evolution of the center cell liquid velocity
is given in Figure 12. We note that the results for 100 and 500 cells are virtually
identical, indicating that the resolution of the liquid velocity is not grid sensitive. We



WEAKLY IMPLICIT NUMERICAL SCHEMES 1481

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

Li
qu

id
 fr

ac
tio

n

Distance (m)

WIMF-AUSMDV*

 100000

 105000

 110000

 115000

 120000

 125000

 130000

 135000

 0  2  4  6  8  10  12  14  16  18  20

P
re

ss
ur

e 
(P

a)

Distance (m)

WIMF-AUSMDV*

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  2  4  6  8  10  12  14  16  18  20

Li
qu

id
 v

el
oc

ity
 (

m
/s

)

Distance (m)

WIMF-AUSMDV*

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  2  4  6  8  10  12  14  16  18  20

G
as

 v
el

oc
ity

 (
m

/s
)

Distance (m)

WIMF-AUSMDV*

Fig. 13. Oscillating manometer, t = 20.0 s, 500 grid cells. WIMF-AUSMDV∗ scheme. Top
left: liquid fraction. Top right: pressure. Bottom left: liquid velocity. Bottom right: gas velocity

observe a slight phase difference from the approximate analytical solution, as was also
observed in [18, 9].

The distribution of all variables after t = 20 s is given in Figure 13 for the grid
of 500 cells. We observe that the variables are approximated without any numerical
oscillations. In particular there is little numerical diffusion for the volume fraction
variable. The strong gradients in the velocities are a consequence of the sudden volume
change at the transition points between the phases. We remark that the gas velocity
was extrapolated at the boundaries, whereas the liquid velocity was forced to zero at
the boundaries to avoid liquid mass leakage.

9. Summary. We have proposed a general framework for constructing weakly
implicit methods for a two-fluid model. Particularly, we have constructed a weakly
implicit numerical scheme, denoted as WIMF-AUSMD, that allows the CFL criterion
for sonic waves to be violated. All the numerical experiments indicate that a weaker
CFL criterion applies with relation to the slow-moving volume fraction waves.

The scheme is based on a mixture flux approach which properly combines diffusive
and nondissipative fluxes to yield an accurate and robust resolution of sonic and
volume fraction waves on nonstaggered grids. The sonic CFL criterion is violated by
enforcing a coupling between the pressure wave component of the mixture flux, the
cell center momenta, and the cell interface pressure. In particular all convective (mass
and momentum) fluxes are treated in an explicit manner.

The numerical evidence indicates that the WIMF-AUSMD is highly robust and
efficient and gives an accuracy potentially superior to the explicit Roe scheme on
volume fraction waves. An added advantage of the WIMF-AUSMD scheme is that
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it does not require a full eigenstructure decomposition of the Jacobi matrix for the
system. However, the scheme is diffusive on pressure waves, especially for large time
steps.

By increasing the numerical dissipation near one-phase regions, we have demon-
strated that the framework allows for accurate, efficient, and robust solutions also for
flow cases which locally involve the transition from one-phase to two-phase flow.

Appendix.

Rescaling the sound velocity. A problem with the original FVS scheme is
that it can produce instabilities for large time steps if the discretization parameter
λ = Δx/Δt is chosen much smaller than the sound velocity. For an explicit scheme
this will never be a problem as the CFL criterion limits the time steps we can take.
For a semi-implicit method, however, we wish to use a value for λ that may be several
orders of magnitude smaller than the physical sound velocity and the issue becomes
of relevance. To describe the problem, we consider the mass conservation equation

∂u

∂t
+

∂(uv)

∂x
= 0,(106)

where u = ρkαk. We now consider the FVS scheme

(uv)j+1/2 = V +(vj , c)uj + V −(vj+1, c)uj+1,(107)

where we use the splitting formulas (56), assuming v < c,

V ±(v, c) = ± 1

4c
(v ± c)2.(108)

Total variation stability. We now take advantage of the following theorem due
to Harten, as stated by Tadmor [24]

Theorem 1. Consider the scalar equation

∂u

∂t
+

∂f(u)

∂x
= 0(109)

solved by the numerical scheme

un+1
j − uj

Δt
+

1

Δx

(
F(un

j , u
n
j+1) − F(un

j−1, u
n
j )
)

= 0,(110)

where the numerical flux F(un
j , u

n
j+1) is written in viscous form

Fj+1/2 = F(un
j , u

n
j+1) =

1

2

(
f(un

j ) + f(un
j+1)

)
− 1

2

Δx

Δt
Qn

j+1/2(u
n
j+1 − un

j ).(111)

The scheme (110) is total variation nonincreasing provided its numerical viscosity
coefficient Qn

j+1/2 = Q(un
j , u

n
j+1) satisfies

Δt

Δx

∣∣∣∣∣f(un
j+1) − f(un

j )

un
j+1 − un

j

∣∣∣∣∣ ≤ Qn
j+1/2 ≤ 1.(112)

For the scheme (107) using the splitting formulas (108) we obtain the numerical
viscosity coefficient

Qn
j+1/2 =

Δt

Δx

v2 + c2

2c
.(113)
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Using this and assuming uniform velocity we can write the requirement (112) as

Δt

Δx
v ≤ Δt

Δx

v2 + c2

2c
≤ 1,(114)

which yields the following lemma.
Lemma 3. Let the mass equation (106) be solved using the numerical fluxes given

by (107) and (108). Then the resulting scheme is total variation nonincreasing if

Δx

Δt
≥ v2 + c2

2c
(115)

and

c > 0.(116)

The criterion (115) attains its minimum value for v = c, for which we obtain

Δx

Δt
≥ v,(117)

which is the standard CFL criterion.
To further investigate how c should be chosen, we now assume that

λ =
Δx

Δt
(118)

is known and investigate which criteria govern the possible choices for c. From (115)
we obtain

c2 − 2cλ + v2 ≤ 0.(119)

Solving this equation we obtain the following corollary.
Corollary 1. Let the linear advection equation (106) be solved using the numer-

ical fluxes given by (107) and (108). Assume the time step λ = Δx/Δt is known. Then
the resulting scheme is total variation nonincreasing if the sound velocity c satisfies

λ−
√
λ2 − v2 ≤ c ≤ λ +

√
λ2 − v2.(120)

This result is confirmed by numerical experiments and illustrates that if c >> λ
the FVS scheme is unstable. We hence propose to rescale the sound velocity used in
the flux splitting schemes such that the requirement (120) is satisfied also for large
time steps. We stress that this step is necessary to achieve stability on the advective
effects for the FVS scheme. Stability of the sonic waves is an independent problem
that we wish to achieve through taking advantage of the implicit pressure-momentum
coupling together with the decomposition of Fk into FD

k and FA
k .

Acknowledgments. The authors thank the reviewers for carefully reading
through the manuscript and making several useful comments.



1484 STEINAR EVJE AND TORE FLÅTTEN
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