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Abstract
It is shown that the main characteristics of mixed-wet capillary
pressure curves with hysteretic scanning loops can be repro-
duced by a bundle-of-triangular-tubes model. Accurate expres-
sions for the entry pressures are employed, truly accounting for
the mixed wettability and the diverse fluid configurations that
arise from contact angle hysteresis and pore shape. The simu-
lated curves are compared with published correlations that have
been suggested by inspection of laboratory data from core plug
experiments.

Introduction
Knowledge of the functional relationship between capillary
pressure and saturation is required in numerical models to solve
the equations for fluid flow in the reservoir. In practice, this
relationship is formulated as a capillary pressure correlation
with several parameters that usually are to be determined from
experimental data. Generally it is not evident how these pa-
rameters should be adjusted to account for variations in phys-
ical properties like wettability, pore shape, pore-size distribu-
tion, and the underlying pore-scale processes. Hence, a more
physically-based correlation, accounting for observable proper-
ties, would improve the reliability of the correlation and extend
its applicability range.

Among the correlations reported in the litterature, the
Brooks-Corey formula is one of the most frequently used be-
cause of its simplicity and solid experimental validation.1 This
correlation may be written as

Pc = cS−a
w , . . . . . . . . . . . . . . . (1)

where c is the entry pressure, 1/a the pore-size distribution in-
dex, and Sw the normalized water saturation. Skjaeveland et
al.2 extended the correlation to account for imbibition, sec-
ondary drainage and hysteresis scanning loops for mixed-wet
conditions, resulting in the expression

Pc = cwS−aw
w + coS−ao

o , . . . . . . . . . . . (2)

where So is the normalized oil saturation. In general, Eq. 2 re-
quires different sets of the constants aw, ao, cw and co for differ-
ent drainage and imbibition capillary pressure curves. Hence,
a systematic method based on physical principles to determine
the sets of parameters is advisable, as this would increase the
reliability of Eq. 2 in practical applications.

Analytical correlations may be derived assuming a bundle-
of-tubes representation of the pore network. Following this ap-
proach for a model of cylindrical tubes, Huang et al. 3 derived a
capillary pressure correlation for primary drainage and the hys-
teresis bounding loop, accounting for variations in wettability.
Princen4 computed numerically the relationship between cap-
illary pressure and saturation for primary drainage and imbibi-
tion for a bundle of tubes with curved triangular cross-sections
of uniform wettability. He made no attempt, however, to de-
velop any correlation.

We have chosen to generate artificial capillary pressure
curves from a simple simulation model, and then compare the
simulation results to Eqs. 1, 2 with estimated parameters. We
assume that the pore network is represented by a bundle-of-
tubes model, the tubes having triangular, equilateral, cross-
sections. This cross-sectional shape allows representation of
physical processes such as the development of mixed wettabil-
ity within a single pore5, 6 and oil drainage through layers in the
crevices.7–9 Hui and Blunt9 studied trends in two- and three-
phase relative permeabilities for this pore geometry. Our model
is programmed in MATLAB1 and generates capillary pressure
curves for primary drainage with wettability alteration, imbi-
bition and secondary drainage with provisions for hysteresis
loops from any reversal point. This sequence of processes leads
to a diversity of cross-sectional fluid configurations due to the
angular pore shape and contact angle hysteresis.

1MATLAB is a registered trademark of TheMathWorks Inc.
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The objective of this paper is twofold. First we demonstrate
that the model reproduces the main characteristics of realis-
tic capillary pressure curves with hysteretic scanning loops for
mixed-wet conditions. Second we derive algebraic expressions
that correlate saturation and capillary pressure. The simulated
curves are finally compared with Eqs. 1, 2.

Model Description
The pore network is represented as a bundle of parallel tubes,
the tubes having equilateral, triangular cross-sections. The ge-
ometry of an equilateral triangle is readily described by the
half-angle of the corner, α = π

6 , and the radius of the inscribed
circle R. The pore-size frequency is described by a truncated
two-parameter Weibull distribution10 which we believe is ad-
equate for characterizations of a wide range of core samples.
For convenience, we take R as the distributed parameter. The
density is then given by

f (R) =

[ R − Rmin

Rch

]η−1 η

Rch
exp(−

[ R − Rmin

Rch

]η

)

1 − exp(−
[ Rmax − Rmin

Rch

]η

)

, (3)

where Rmax, Rmin and Rch are the inscribed radii of the largest,
smallest and characteristic pore sizes, respectively, and η is a
dimensionless parameter. The pore sizes in the model are se-
lected from the corresponding cumulative distribution function
in the following manner: Pick random numbers x ∈ [0, 1] and
calculate the the inscribed radius from

R = Rch
( − ln[(1 − x) exp(−

[ Rmax − Rmin

Rch

]η

)

+ x]) 1
η + Rmin.

. . (4)

The cross-sectional area A is then related to R by

A = 3R2

tan α
. . . . . . . . . . . . . . . . . (5)

An invasion process is simulated by increasing or decreas-
ing the capillary pressure stepwise until some maximum or min-
imum value is reached. At each step the tubes are tested for
invasion and the saturation is calculated.

The capillary entry pressures are calculated by the MS-P
method named after the contributions from Mayer and Stowe 11

and Princen.12–14 This method is founded on an energy bal-
ance equation which equates the virtual work with the associ-
ated change of surface free energy for a small displacement of
the interface in the direction along the tube. The energy bal-
ance equation then relates the entry radius of curvature to the
cross-sectional area exposed to change of fluid occupancy, the
bounding cross-sectional fluid-solid and fluid-fluid lengths, and
the contact angle. Following this approach, Ma et al. 15 de-
rived the entry pressures for primary drainage and imbibition
for mixed-wet triangular pores.

There are generally two scenarios that need to be considered
separately depending on the contact angle θ . As an example,

consider oil invasion into a uniformly wetted tube initially filled
with water. If

θ <
π

2
− α, . . . . . . . . . . . . . . . (6)

oil invasion results in a cross-sectional fluid configuration where
oil has occupied the bulk area while water is still residing in the
corners. If the contact angle does not satisfy Eq. 6, oil occupies
the entire tube during invasion. The invading interface separat-
ing the bulk fluids is referred to as the main terminal menis-
cus (MTM), and the interface separating bulk fluid from corner
fluid is referred to as the arc meniscus (AM). The curvature of
an AM is represented by a cross-sectional circular arc of radius
r . Hence, the applied capillary pressure may be expressed as

Pc = σ

r
, . . . . . . . . . . . . . . . . . (7)

where σ is the interfacial tension.
The total area of fluid residing in the corners of a tube after

invasion is given by

Ac(θ) = 3r2(θ + α − π

2
+ cos θ(

cos θ

tan α
− sin θ)). . (8)

Combinations of Eqs. 5, 8 provide the expressions employed in
the saturation calculations, accounting for all fluid configura-
tions.

We simulate primary drainage with wettability alteration,
imbibition and secondary drainage with provisions for hystere-
sis loops from arbitrary reversal points. The different cross-
sectional fluid configurations that may arise during the simu-
lations are depicted in Fig. 1. Configuration A shows a tube
that always has been waterfilled. The configurations B–F rep-
resent tubes that at some point have been invaded by oil. The
areas where oil has contacted the pore walls, marked by the
bold lines, have altered wettability.

A B C

D E F

Figure 1: Fluid configurations for primary drainage, imbibi-
tion, and secondary drainage, with water in light blue, and
oil in dark red. The bold lines along the sides indicate al-
tered wettability.
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Primary Drainage. All tubes are waterfilled and strongly wa-
terwet initially, and hence we assume that the contact angle dur-
ing primary drainage, θpd, always is small and satisfies Eq. 6.
Oil invasion is then a displacement from configuration A in
Fig. 1 to the configuration shown in Fig. 2. The capillary entry
pressure for this event is given by

Pc = σ

R

[
cos θpd+

√
tan α

2
(sin 2θpd − 2θpd − 2α + π)

]
.(9)

As primary drainage proceeds, oil invades successively smaller
tubes, whereas the water content in the corners of the invaded
tubes is reduced according to Eq. 7. We assume that oil always
contacts the pore walls, leaving the sides wettability-altered and
the corners waterwet after terminated primary drainage. The
length bpd of the solid surface that remains waterwet is

bpd = σ cos(θpd + α)

Pmax
c sin α

. . . . . . . . . . . . (10)

The Pmax
c - value and the corresponding water saturation is

the reversal point on the primary drainage curve. According
to Eq. 10, the area of the waterwet surface is the same for all
tubes invaded by oil during primary drainage. Thus the smaller
tubes have the largest fraction of waterwet surface and should
therefore exhibit a more waterwet behavior than the larger ones
during imbibition.

pdb

Figure 2: Final configuration of a tube after primary
drainage. The bold lines along the sides represent the
lengths of the pore wall with altered wettability. The dis-
tances bpd in the corners remain waterwet.

Imbibition. The amount of contact angle hysteresis between
primary drainage and imbibition depends on the degree of wet-
tability alteration and surface roughness.16, 17 To study differ-
ent wetting conditions we allow all advancing contact angles
θa measured on the wettability-altered surface, that satisfies
θa ≥ θpd.

Pore filling during waterflooding may in general occur by
two different mechanisms: Piston-like displacement (invasion
of an MTM) and snap-off (coalescence of the AMs as a result
of increased water content in the corners). Even though the
model is programmed to check for snap-off events, we find that
piston-like invasion always is the favorable displacement type.
For a description of the snap-off equations we refer to Hui and
Blunt.9 They comment that snap-off may only occur in network
representations of the pore space when piston-like displacement
is impossible.

As the capillary pressure decreases from P max
c , the AMs

are hinging at position bpd with the hinging contact angle θh
increasing from θpd towards θa according to

θh = cos−1
[ Pcbpd sin α

σ

]
− α. . . . . . . . . (11)

If θa satisfies Eq. 6, the hinging contact angle may reach θa
before invasion of an MTM. In this case the AMs are free to
move with contact angle θa on the surface of altered wettability,
and configuration B is attained. If θa does not satisfy Eq. 6, the
AMs are still hinging, and the tubes assume configuration C.

Along with the increase of water content in the corners
during imbibition, piston-like invasion must be considered for
both configuration B and C. When configuration B occurs for
the first time during imbibition, Eq. 6 is always satisified, and
hence invasion of an MTM is a spontaneous displacement from
configuration B to D. The entry pressure is given by

Pc = σ

R

[
cos θa +

√
tan α

2
(sin 2θa − 2θa − 2α + π)

]
. (12)

For invasion into tubes of configuration C there are two
different expressions for the capillary entry pressure. If θ a ≤
π
2 + α, the displacement is always from configuration C to D.
In this case the hinging contact angle differs from the advancing
contact angle, and the entry pressure must be calculated numer-
ically. From the energy balance, equating the virtual work with
the change of surface free energy for a small displacement of
the MTM, the entry radius of curvature may be expressed as

r = Aeff

Ls cos θa + L f
, . . . . . . . . . . . . (13)

where

Aeff = R2

2 tan α
− rbpd sin(α + β)

2
+ r2β

2
, . . . . (14)

Ls = R

tan α
− bpd, . . . . . . . . . . . . . (15)

L f = rβ, . . . . . . . . . . . . . . . . (16)

r sin β = bpd sin α, . . . . . . . . . . . . . (17)

with β defined as

β = π

2
− α − θh . . . . . . . . . . . . . . (18)

Eqs. 13–17 are iteratively solved to find r , and the capillary
entry pressure is finally obtained from Eq. 7.

The displacement from configuration C to D may be spon-
taneous or forced. The limiting condition for spontaneous im-
bibition is zero capillary pressure, and hence the AMs are flat.
From Eq. 13 this condition is

Ls cos θa + L f = 0, . . . . . . . . . . . . (19)

with L f = bpd sin α. From Eq. 19 the advancing contact angle
corresponding to zero capillary entry pressure is 15

θ crit
a = cos−1

[−bpd sin α

R
tanα

− bpd

]
. . . . . . . . . . (20)
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Notice that the value of θ crit
a depends on the reversal point from

primary drainage since bpd is a function of Pmax
c , according

to Eq. 10. Since the corners are waterwet, the critical contact
angle is always larger than π

2 . If Eq. 19 instead is solved for R
to find the pore size corresponding to zero capillary pressure,
we find that

R = bpd tan α
(

1 − sin α

cos θa

)
, . . . . . . . . . (21)

and hence R increases linearly with bpd provided θa > π
2 .

By Eqs. 20, 21, the triangular tube model induces a relation
between wettability and reversal point from primary drainage.
This is in agreement with the observation made by Jerauld and
Rathmell18 that reservoir wettability may be correlated with ir-
reducible water saturation.

When the displacement from configuration C to D is en-
forced, the simple Young-Laplace equation has previously been
used to estimate the capillary entry pressures.9, 19, 20 However,
this simple expression does not incorporate the wettability vari-
ation with pore size as a result of the amount of water residing
in the corners after primary drainage. In Fig. 3 the capillary
entry pressure obtained from Eqs. 13–17 is presented as a func-
tion of pore size for several values of P max

c when θa = 110◦,
θpd = 0◦ and σ = 0.050 N/m. As expected, the smaller tubes
show a more waterwet behavior than the larger ones due to a
larger fraction of waterwet surface. At negative capillary pres-
sures, the invasion order depends on both wettability and pore
size. Fig. 3 also demonstrates that the tubes become more oil-
wet as Pmax

c increases.

0 5 10 15 20 25 30 35 40 45
−4000
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−2000

−1000

0

1000

2000

3000

R (µm)

P c (
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)

P
c
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    ’’      15 kPa
    ’’      25 kPa
    ’’      35 kPa
    ’’      50 kPa

Figure 3: Capillary entry pressures as a function of pore
size R for a displacement from configuration C to D when
θa = 110◦.

Finally we consider invasion of an MTM when θa > π
2 +α.

In this case oil layers may form between water in the corners
and the bulk portion, and the displacement is from configura-
tion C to E at a capillary entry pressure given by

Pc = σ

R

[
cos θa−

√
tan α

2
(− sin 2θa + 2θa − 2α − π)

]
.(22)

We assume that the oil layers in configuration E collapse when
the AMs meet at their midpoint. For this event the capillary
pressure is

Pcol
c = σ(ξ2

1 − 1)

bpd
(
ξ1 cos α +

√
1 − ξ2

1 sin2 α
) , . . . . . (23)

where

ξ1 = cos θa

sin α
+ 2, . . . . . . . . . . . . . . (24)

and the displacement is from configuration E to D.
However, if the water content in the corners is large, the in-

vading interface may interfere with the AMs already present. In
this case oil layers do not form and the capillary entry pressure
is affected by the water in the corners. This situation is treated
as follows: Assume that the displacement is from configuration
C to E and calculate the entry pressure from Eq. 22 and the
collapse pressure from Eq. 23. If Pc ≤ Pcol

c , oil layer forma-
tion does not occur, and the entry pressure is again calculated
from Eqs. 13–17, assuming that the water invasion is a direct
displacement from configuration C to D.

Secondary Drainage. Because of contact angle hysteresis, we
allow all receding contact angles θr in secondary drainage that
satisfies θpd ≤ θr ≤ θa . To study saturation reversals from
any point on the imbibition capillary pressure curve, we have
to consider the configurations A–E separately. Any AMs lo-
cated on the wettability-altered surface after imbibition are as-
sumed to be hinging at their positions while the contact angle
decreases from θa towards θr with increased capillary pressure.

The tubes remaining at configuration A are strongly water-
wet and assigned the same contact angle as in primary drainage,
i.e., θpd. Oil invasion occurs when the secondary drainage curve
reaches the first reversal point on the primary drainage curve,
i.e., when Pc ≥ Pmax

c . Then oil invasion is a displacement from
configuration A to the configuration shown in Fig. 2 at a capil-
lary entry pressure given by Eq. 9. A previously waterflooded
tube attains a configuration shown in Fig. 2 when Pc = Pmax

c .
This ensures that the imbibition and secondary drainage curves
constitute a closed hysteresis loop. During further increments
of the capillary pressure, the AMs move towards the corners
with contact angle θpd, and the length of waterwet surface, bpd,
decreases.

In configuration B and C oil occupies the bulk area, and
hence invasion of MTMs does not occur. In configuration C
the AMs are hinging at position bpd while the contact angle de-
creases with increasing capillary pressure according to Eq. 11.
When Pc = Pmax

c , the contact angle has decreased to θpd and
the AMs are free to move towards the corners during further
capillary pressure increments. In configuration B the AMs are
stuck at position bimb corresponding to the capillary pressure
Pmin

c at which the imbibition was terminated,

bimb = σ cos(θa + α)

Pmin
c sin α

. . . . . . . . . . . . (25)
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The AMs are hinging while the contact angle decreases from
θa to θr according to

θh = cos−1
[ Pcbimb sin α

σ

]
− α. . . . . . . . . (26)

When θh = θr , the AMs move towards position bpd with in-
creasing capillary pressure, and eventually configuration C is
reached.

For piston-like oil invasion into tubes of configuration D,
there are two different expressions for the entry pressure de-
pending on the displacement type and contact angle. If θ r ≥
π
2 − α, the displacement is always from configuration D to C.
As for the reversed displacement during imbibition, the entry
pressure is calculated numerically. The equivalent of Eq. 13 is

r = Aeff

Ls cos θr + L f
. . . . . . . . . . . . . (27)

Eqs. 14–17, 27 provide the set of equations to be solved iter-
atively for r . The capillary entry pressure is finally calculated
from Eq. 7. If θr < π

2 − α, the displacement is either from
configuration D to B or from D to C. We consider from D to B,
first. The capillary entry pressure is then calculated from

Pc = σ

R

[
cos θr +

√
tan α

2
(sin 2θr − 2θr − 2α + π)

]
, (28)

and the corresponding position b of the invading AMs for the
associated displacement is

b = σ cos(θr + α)

Pc sin α
. . . . . . . . . . . . . (29)

If b > bpd, the displacement is indeed from configuration D
to B, and the capillary entry pressure is given by Eq. 28. If
b ≤ bpd, the displacement is from configuration D to C, and the
correct entry pressure is calculated from Eqs. 14–17, 27.

Finally we consider configuration E. After terminated imbi-
bition the innermost AMs (separating oil from bulk water) are
located at position

bimb = σ cos(θa − α)

Pmin
c sin α

. . . . . . . . . . . . (30)

As the capillary pressure increases, the hinging contact angle
decreases from θa towards θr according to

θh = cos−1
[ Pcbimb sin α

σ

]
+ α. . . . . . . . . (31)

At the same time, the corner AMs (separating oil from water
in the corners) are stuck at position bpd, with the contact angle
varying according to Eq. 11. These events lead to a swelling of
the oil layers. If θr > π

2 + α, the innermost AMs may begin
to move away from the corners at a negative capillary pressure
when the contact angle has reached θr .

For MTM invasion into configuration E, there are three ex-
pressions for the capillary entry pressures. If θr > π

2 + α, the
displacement is from configuration E to C, and the entry pres-
sure is given by

Pc = σ

R

[
cos θr−

√
tan α

2
(− sin 2θr + 2θr − 2α − π)

]
.(32)

Eq. 32 is exact when the contact angle of the innermost AMs
has reached θr before invasion, and approximate otherwise.

If π
2 − α ≤ θr ≤ π

2 + α, the displacement is still from
configuration E to C. In this case the innermost AMs do not
move before invasion, and the capillary entry pressure is again
calculated numerically. The entry radius of curvature is now
given by

r = Aeff

Ls cos θr − L f
, . . . . . . . . . . . . (33)

where

Aeff = R2

2 tan α
− rbimb sin(β − α)

2
− r2β

2
, . . . . (34)

Ls = R

tan α
− bimb, . . . . . . . . . . . . . (35)

L f = rβ, . . . . . . . . . . . . . . . . (36)

r sin β = bimb sin α, . . . . . . . . . . . . (37)

with β defined as

β = π

2
+ α − θh . . . . . . . . . . . . . . (38)

The parameters bimb and θh are given by Eq. 30, 31, respec-
tively. Eqs. 33–37 are solved by iterations, and the capillary
entry pressure is finally obtained from Eq. 7.

If θr < π
2 −α, invasion of an MTM may result in formation

of water layers surrounded by bulk oil and oil in layers. In this
case the displacement is from configuration E to F, at a capil-
lary entry pressure given by Eq. 28. The water layer collapses
when the bounding AMs meet at their midpoints at a capillary
pressure given by

Pcol
c = σ(ξ2

2 − 1)

bimb
(
ξ2 cos α −

√
1 − ξ2

2 sin2 α
) , . . . . (39)

where

ξ2 = cos θr

sin α
− 2. . . . . . . . . . . . . . . (40)

The displacement is from configuration F to C. However, be-
cause of the swelling of the oil layers prior to the MTM in-
vasion, the invading AMs may likely interfere with the AMs
already present, indicating a direct displacement from configu-
ration E to C. This situation is treated in the same way as for
the oil layers during imbibition: Assume a displacement from
configuration E to F and calculate the corresponding entry pres-
sure from Eq. 28 and the collapse pressure from Eq. 39. If
Pc ≥ Pcol

c , water layers do not form, and the entry pressure is
again calculated from Eqs. 33–37, assuming a direct displace-
ment from configuration E to C.

The displacements from configuration D to C and from E to
C may be spontaneous or forced. As opposed to waterflooding,
oil invasion is a spontaneous process when the receding contact
angle is larger than some value θ crit

r corresponding to zero cap-
illary pressure. For the displacement from configuration D to C



6 J.O. HELLAND AND S.M. SKJÆVELAND SPE 89428

the critical contact angle is given by Eq. 20. The displacement
from configuration E to C exhibits a somewhat different capil-
lary behavior due to the existence of oil layers in configuration
E. In this case the equivalent of Eq. 20 is derived from Eq. 33
resulting in the expression

θ crit
r = cos−1

[
bimb sin α

R
tanα

− bimb

]
. . . . . . . . . . (41)

Notice that θ crit
r depends on the reversal point from imbibition

since bimb is a function of Pmin
c . The bulk water in config-

uration E is bounded by oil layers in the corners, and hence
the critical contact angle is always smaller than π

2 . In Fig. 4
the capillary entry pressure estimated from Eqs. 33–37 is pre-
sented as a function of pore size for several values of P min

c when
Pmax

c = 50 kPa, θpd = 0◦, θa = 180◦, θr = 70◦ and σ = 0.050
N/m. In this case the capillary entry pressure is increasingly
affected by the oil layers with decreasing pore size, and hence
the smaller tubes exhibit a more oilwet behavior than the larger
ones in the sense of decreased entry pressures. When P min

c de-
creases, the innermost AMs in configuration E move towards
the corners and the effect of the oil layers on the drainage entry
pressure is reduced resulting in a less oilwet behavior.
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Figure 4: Capillary entry pressures as a function of pore
size R for a displacement from configuration E to C when
θr = 70◦.

The capillary behavior illustrated by Figs. 3, 4 indicates that
the wettability of angular pore shapes may not be appropriately
described by the contact angle measured on the surface of al-
tered wettability. A macroscopic measure based on interpreta-
tions of the capillary pressure curves seems more plausible.

Additional Saturation Reversals. To account for subsequent
saturation reversals it is assumed that new fluid configurations
do not arise during the processes following secondary drainage.
When configuration B arises for the first time in secondary
drainage it is possible that oil layers may form during the sub-
sequent imbibition process. However, in this case we always

assume that water invasion is a displacement from configura-
tion B to D for any value of θa . We believe this is a reason-
able simplification since the high water content in the corners
of configuration B makes oil layer formation less likely. If θ a
satisfies Eq. 6, the capillary entry pressure for this displacement
is calculated from Eq. 12. This expression is accurate when the
hinging contact angle of the AMs has reached θa before the
MTM invasion, and is used as an approximation otherwise. If
Eq. 6 is not satisfied, the capillary entry pressure is calculated
from Eqs. 13–17 with bpd replaced by the updated positions
of the AMs after terminated secondary drainage. Similarly, a
water invasion into tubes of configuration F is always assumed
to displace all of the bulk oil, resulting in a displacement from
configuration F to E. The capillary entry pressure for this dis-
placement is calculated from Eqs. 13–17 with bpd replaced by
the updated positions of the innermost AMs in configuration F
at the end of the secondary drainage process.

With the simplified treatment of configuration B and F dur-
ing secondary imbibition the model provides for scanning hys-
teresis loops starting from any reversal point. In all cases an
invasion event is a displacement between two of the configura-
tions A–F. At each capillary pressure step the hinging contact
angles of the stuck AMs and the positions b of the moving AMs
are calculated. The imbibition entry pressures are updated be-
fore each imbibition process, and the drainage entry pressures
are updated before each drainage process.

Simulation Results. We have performed simulations of capil-
lary pressure curves for a bundle of 2000 tubes. The pore sizes
are calculated from Eq. 4 assuming Rmin = 0.1µm, Rmax =
100µm, Rch = 20µm and η = 1.5. In all experiments we
let θpd = 0◦, reflecting displacements on water-coated surfaces
during primary drainage. The interfacial tension employed is
σ = 0.050 N/m. For the sample of results presented here, pri-
mary drainage is always terminated at a P max

c - value at which
some of the smallest tubes remain waterfilled. The correspond-
ing value of Sw may serve as an irreducible water saturation
Swr .

Fig. 5 illustrates the effect of the advancing contact angle
on the imbibition curve. When θa = 100◦, the displacement
is from configuration C to D, and the effect of the waterfilled
corners on the entry pressure decreases with increasing pore
size, as demonstrated by Fig. 3. This produces a large, al-
most horizontal, segment on the imbibition curve with a smooth
transition from positive to negative capillary pressure. When
θa = 140◦, the water invasion is a displacement from config-
uration C to D for the smaller tubes and a displacement from
configuration C to E for the larger tubes. The smaller tubes are
invaded at entry pressures heightened by the water content re-
siding in the corners. As a consequence, both displacement
types are possible within the same capillary pressure range.
This effect is also observed when θa = 180◦, even though the
displacement from configuration C to E is predominant.

Fig. 6 shows imbibition curves originating at different re-
versal points from primary drainage when θa = 180◦. At low
Pmax

c - values the displacement is primarily from configuration
C to D due to a considerable water content in the corners. An in-
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Figure 5: Imbibition curves for three different advancing
contact angles: θa = 100◦, θa = 140◦ and θa = 180◦.

creased Pmax
c reduces this water content, and the displacement

from configuration C to E becomes predominant. The satura-
tion change caused by the hinging AMs during imbibition is
conspicuous for intermediate P max

c - values as the contribution
to the water saturation from tubes of configuration C is at a
maximum.
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Figure 6: Imbibition curves from different reversal points
on the primary drainage curve when θ a = 180◦.

Fig. 7 shows the bounding hysteresis loop with a scanning
loop inside assuming small contact angle hysteresis, with θa =
120◦ and θr = 100◦. Even though the contact angles indicate
oilwet conditions and the Pc - curves are almost horizontal, the
bounding loop includes spontaneous and forced invasion pro-
cesses during both imbibition and secondary drainage in addi-
tion to smooth crossings at zero capillary pressure.

A bounding hysteresis loop with two scanning loops inside
is presented in Fig. 8 assuming large contact angle hysteresis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2000

0

2000

4000

6000

8000

10000

S
w

P c (
Pa

)

Primary drainage
Imbibition
Secondary drainage

Figure 7: Bounding hysteresis loop with a scanning loop
inside when θa = 120◦ and θr = 100◦.

with θa = 180◦ and θr = 70◦. The main imbibition process
was terminated when Sw = 1, and hence the following sec-
ondary drainage process is a totally enforced invasion process
from configuration D to C. However, drainage curves originat-
ing from less negative P min

c - values provide both spontaneous
and forced displacements from configuration E to C since the
oil layers tend to lower the capillary entry pressure. The con-
spicuous step on the middlemost drainage curve occurs when
all tubes of configuration E have been invaded, and the scan-
ning curve proceeds at a higher level with displacements from
configuration D to C at a positive capillary pressure. Notice
also that the last scanning loop is entirely enclosed by the pre-
vious one. This effect is emphasized by the dependency of P min

c
on the entry pressure for tubes of configuration E as illustrated
in Fig. 4.
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Figure 8: Bounding hysteresis loop with two scanning
loops inside when θa = 180◦ and θr = 70◦.
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So far we have only considered uniform contact angles dur-
ing each of the drainage and imbibition processes. As a conse-
quence, all possible displacements and observed generic trends
are not included in the individual numerical experiments. Uni-
form contact angles provide capillary pressure curves with sharp
corners and pronounced steps in the transitions between the dif-
ferent pore-scale events. The pore walls of real rock samples
are composed of different mineralogical surfaces that have dif-
ferent affinity to crude oil. Hence, to reproduce realistic mixed-
wet capillary pressure curves we assume that the advancing
and receding contact angles are distributed. All the types of
displacements and associated trends in capillary behavior may
then be incorporated in a single simulation. A dispersion of
the pore-scale events will smooth the curves, and extend the
transition ranges of capillary pressure where different types of
displacements may occur.
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Figure 9: Bounding hysteresis loop with two scanning
loops inside when θa is randomly distributed between 90◦
and 180◦ and θr = θa/2.

We consider randomly distributed θa ∈ [90◦, 180◦] and as-
sume θr = θa/2. The bounding hysteresis loop with two scan-
ning loops inside is presented in Fig. 9. The bounding imbibi-
tion curve was terminated at a capillary pressure where oil lay-
ers still existed in some of the tubes. Even though the selected
contact angles indicate oilwet conditions during imbibition and
waterwet conditions during secondary drainage, the curves in-
clude forced and spontaneous displacements in both cases. This
demonstrates the applicability of the triangular tube model. The
small step on the bounding secondary drainage curve represents
the point where all tubes of configuration E has been invaded
by oil. Further capillary pressure increments result in displace-
ments from configuration D to C and from D to B. This step is
not visible in the drainage scannning curves as there is a transi-
tion region where both displacement types from configuration
E to C and from D to C occurs. The distributed contact angles
also produce a dispersion of the oil-layer-collapse events during
imbibition. To have crossings of zero capillary pressure located
closer to each other, other contact angle distributions combined

with smaller contact angle hysteresis may be assumed. To our
knowledge, however, there is no experimental technique avail-
able to measure contact angle distributions for reservoir core
samples.21

Correlation
Brooks and Corey1 claimed that Eq. 1 only could be derived an-
alytically if a uniform pore-size distribution was assumed. This
implies a fixed pore-size distribution index, i.e., a = 1/3, and
hence the flexibility of the correlation is reduced. We consider
a more general distribution with the pore-size density

fm(R) = νR−ν
max Rν−1, . . . . . . . . . . . (42)

which includes the adjustable parameter ν > 0. The uniform
case corresponds to ν = 1. The flexibility of Eq. 42 is demon-
strated in Fig. 10. In some cases Eq. 42 may suffice as an ap-
proximation to pore-size distributions from core analysis.
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Figure 10: Pore-size density fm as a function of R.

To derive a correlation for primary drainage based on Eq. 42
for the bundle-of-tubes model, we express the water saturation
as a sum of two terms:

Sw = Swb + Swc, . . . . . . . . . . . . . (43)

where Swb represents the contribution from the tubes completely
filled with water, and Swc is the contribution from the tubes with
water residing in the corners after oil invasion. The saturations
may be expressed as

Swb =
∫ Ro

0 fm Ad R∫ Rmax
0 fm Ad R

, . . . . . . . . . . (44a)

Swc = Ac
∫ Rmax

Ro
fmd R

∫ Rmax
0 fm Ad R

, . . . . . . . . . . (44b)

where Ro is the smallest pore size invaded by oil, and A is the
cross-sectional area, Eq. 5. Notice that the area of water in the
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corners, Ac, is independent of pore size by Eq. 8. Furthermore,
the capillary entry pressure is given by Eq. 9, and for the pore
sizes Rmax and Ro we denote the associated entry pressures by
c and Pc, respectively. After some algebra Eqs. 43–44 yield

Sw =
( c

Pc

)ν+2 + ε
ν + 2

ν

( c

Pc

)2[
1 −

( c

Pc

)ν]
, . . (45)

where ε is a geometry factor given by

ε =
cos θpd −

√
tan α

2 (sin 2θpd − 2θpd − 2α + π)

cos θpd +
√

tan α
2 (sin 2θpd − 2θpd − 2α + π)

. . (46)

The first term in Eq. 45 is the bulk saturation Swb , and the sec-
ond term is the corner saturation Swc. Hence, for a bundle of
triangular tubes, the Brooks–Corey expression is valid for the
bulk saturation provided that the pore-size density is given by
Eq. 42:

Pc = cS−a
wb , . . . . . . . . . . . . . . . (47)

where the pore-size distribution index is related to ν by

a = 1

ν + 2
, . . . . . . . . . . . . . . . . (48)

which implies a < 1/2. Eq. 47 may be inserted into Eq. 45 to
provide an equation which relates Swb to Sw:

Sw − Swb − ε
ν + 2

ν
(S

2
ν+2
wb − Swb) = 0. . . . . . (49)

Notice that Eq. 47 reduces to Eq. 1 when ε = 0. This cor-
responds to the special case when no water is residing in the
corners after oil invasion, or to the idealized model of cylindri-
cal pore shapes, i.e., when Sw = Swb.
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Figure 11: Capillary pressure curves for different parame-
ters ν.

We have solved Eqs. 43, 47, 49 to study trends in capillary
pressure and corner saturation for several values of ν. The re-
sults are shown in Figs. 11, 12. An increased value of ν yields
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Figure 12: Corner saturation as a function of total water
saturation for several values of ν.

a decreased level of capillary pressure and an increased maxi-
mum corner saturation.

We have not attempted to derive accurate algebraic expres-
sions similar to Eqs. 47, 49 for imbibition and secondary drain-
age. All the pore-scale events and the capillary trends observed
for different contact angles would complicate this approach and
increase the number of parameters that have to be determined.

Rather than continue the analysis based on Eq. 42, we have
chosen to compare the simulation model with the correlations
given by Eqs. 1, 2, still assuming Weibull-distributed pore sizes
obtained from Eq. 4. We consider the case of distributed ad-
vancing and receding contact angles, and compare the primary
drainage curve with Eq. 1 and the bounding imbibition and
secondary drainage curve with Eq. 2. A standard curvefitting
method is employed to estimate the correlation parameters. For
the imbibition and secondary drainage curves an irreducible
water saturation Swr is estimated in addition. The residual oil
saturation is set to zero. The curvefitting procedure for the
bounding curves is as follows: For small Sw only the first term
in Eq. 2 is fitted to estimate cw, aw and Swr . Similarly, the
second term in Eq. 2 provide estimates for co and ao when
So → 0. While the estimated Swr is fixed, the parameters
cw, aw, co and ao are optimized simultaneously for the entire
saturation range using both terms in Eq. 2. The results are pre-
sented in Fig. 13. The estimated parameters are as follows:
c = 1818.2 Pa, a = 0.7 (primary drainage), cw = 0.8 Pa,
aw = 2.1, co = −1593.8 Pa, ao = 0.3, Swr = 0.005 (im-
bibition), and cw = 563.9 Pa, aw = 0.67, co = −35.7 Pa,
ao = 1.14, Swr = 0.005 (secondary drainage). The simulated
curves agree fairly well with the correlation. A better match
may, however, be obtained using appropriate error weighting. 2

To describe three-phase transition zones and the dynamics
of water-oil and gas-oil contact movements, a three-phase cap-
illary pressure correlation is needed for mixed-wet reservoirs.
We are currently extending the triangular tube model to sim-
ulate physically reasonable three-phase saturation paths. The
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Figure 13: Primary drainage and bounding hysteresis loops
from the simulation model compared with the correlations.

proven applicability range and the good match between the sim-
ulated results and Eqs. 1, 2 for two phases indicate that the
model could also prove useful in the development of a three-
phase correlation. Special attention is required for situations
where one of the three phases appears or disappears, e.g., tran-
sitions between the gas and oil phase in condensate reservoirs,
or when zero residual oil saturation is approached by drainage
through connected layers. A correlation should be designed to
account for a smooth transition between two- and three-phase
flow.

Conclusions
1. A bundle-of-triangular-tubes model is developed to sim-

ulate mixed-wet capillary pressure curves with hysteretic
scanning loops originating from any reversal point. The
specific conclusions are:

• Six different cross-sectional fluid configurations may
occur for the sequence of processes primary drainage,
imbibition and secondary drainage.

• The effect of corner fluid occupancy on the cap-
illary entry pressures is demonstrated: Waterfilled
corners tend to increase the entry pressure, while
oil layers tend to decrease the entry pressure.

• The simulations demonstrate that the main charac-
teristics of realistic mixed-wet capillary pressure cur-
ves may be reproduced by the model.

2. The Brooks–Corey correlation, Eq. 1, is valid for a bun-
dle of triangular tubes when capillary pressure is corre-
lated with the bulk saturation and the pore-size density is
given by Eq. 42.

3. Results from the simulation model are compared with a
correlation validated by experimental data, Eq.2. Work

is in progress to investigate if Eq. 2 also suffices for a de-
scription of three-phase Pc - curves made by the model.

Nomenclature
a = Correlation parameter, see Eq. 1
A = Cross-sectional tube area
b = Position of arc meniscus
c = Correlation parameter, see Eq. 1
f = Probability density function
L = Cross-sectional length
P = Pressure
r = Radius of curvature
R = Radius of the inscribed circle
S = Saturation
x = Random number between 0 and 1
α = Corner half angle
β = Angle defined from geometry of the AMs in the

corners, see Eq. 18
ε = Geometry factor, Eq. 46
η = Parameter in the Weibull distribution
θ = Contact angle
ν = Parameter in modified pore-size distribution
ξ1 = Eq. 24
ξ2 = Eq. 40
σ = Interfacial tension

Subscripts

a = Advancing
b = Bulk
c = Capillary or corner

ch = Characteristic
eff = Effective

f = Fluid
h = Hinging

imb = Imbibition
m = Modified

max = Maximum
min = Minimum

o = Oil
pd = Primary drainage
r = Receding or residual
s = Solid
w = Water

Superscripts

col = Collapse
crit = Critical

max = Maximum
min = Minimum

Abbreviations

AM = Arc meniscus
MS–P = Mayer and Stowe – Princen
MTM = Main terminal mensicus
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