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Abstract
The Diffuse-Interface model for two-phase flow in porous me-
dia is applied to the invesigation of relative permeabilities in
unsteady-state flows. It is shown that relative permeabilities
have a transient regime where they can be significantly larger
than 1. It is also shown that, when normalized by their end-
point values, relative permeabilities can be calculated from for-
mulas involving thermodynamical and capillary pressure func-
tions. The end-point relative permeabilities are linearly related
to the fluid velocity, but the coefficients seem to be flow depen-
dent.

Introduction
A new model for two-phase flow in porous media has recently
been presented in two papers.1, 2 We shall here call it “the DI-
model.” It is described in detail in the next section. Its main
characteristic is that it is based on the diffuse interface model
of fluid mechanics, where the two phases are manifestations of
one and the same fluid, the transition from one phase to the
other being taken care of by an equation of state of the van der
Waals type. There is just one set of balance equations, in con-
tradistinction to the traditional two-continuum model of two-
phase flow, where each phase is considered as a separate fluid.

The model is at present restricted to fluids of one chemi-
cal component and is thus ideally suited to a steam-water situa-
tion. It could also be applied to oil-gas flows in situations where

looking at the oil and the gas as the two phases of one and the
same flud is considered to be a good approximation. Most of
the work done with the DI-model until the present has been
directed towards establishing a “dialogue” with the traditional
two-continuum model for two-phase flow.

On the one hand, the DI-model does not use relative perme-
abilities and is thus capable of making statements about these
quantities. In fact, expressions for relative permeabilities have
been proposed,2 giving these as expressions involving the ther-
modynamical properties of the fluid, the wetting properties of
the rock (as embodied in the capillary pressure), and some pa-
rameters.

On the other hand, the traditional two-continuum model has
provided the DI-model with the means to incorporate experi-
mentally obtained information about wetting, through capillary
pressure versus saturation correlations.2

In the present paper we continue the dialogue between the
two models by introducing, in the DI-model, information lead-
ing to a mixed-wet rock. We then use the DI-model with this
information to calculate relative permeabilities in two typically
unsteady-state situations. These are a drainage and an imbibi-
tion, starting from an initial state where capillary and gravita-
tional forces do not balance and ending in a state where they
do.

Description of the model
The model considers a fluid consisting of only one chemical
component, but capable of undergoing a phase transition. At
the pore level, the two phases (liquid and vapor) are treated as
a single fluid with variable density, according to the diffuse-
interface model.3, 4 This is called thef -fluid,1 to distinguish it
from the6-fluid, which is introduced as a means of accounting
for the wetting properties of the rock. The6-fluid is a surface
fluid with zero velocity, covering the rock surface.

The mass, momentum, and energy balance equations of the
f and6 fluids are upscaled from the pore level to the macro-
scopic level (also called the Darcy level), by using the Marle5

averaging technique. The upscaled equations describing two-
phase flow in porous media, involve essentially one variable,
R, the upscaledf -fluid density. The main characteristics of the
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model are outlined below.

Thermodynamics The temperature is assumed to be a con-
stant, different from the critical temperature. The fluid consists
of one chemical component, with an equation of state of the van
der Waals type, i.e., including the possibility of a phase transi-
tion. The phases are called liquid and vapor. The equation of
state is of the general form

Pb = R2 d

d R

(
9b

R

)
, . . . . . . . . . . . . (1)

where9b is the intrinsic Helmholtz free energy of the bulk fluid
(bulk referring to that part of the fluid where the gradient ofR
is negligible). It is of the form

9b(R) = W (R) + M̄ R − P̄, . . . . . . . . . (2)

whereM̄ and P̄ are the chemical potential and the pressure of
the fluid at equilibrium. It is easy to see that, when assuming
uniform temperature as we do here, the value ofM̄ is irrelevant
and that we can put

M̄ = 0. . . . . . . . . . . . . . . . . . (3)

The W (R)-function has just two minima, occuring at two dis-
tinct values,R = Rv andR = Rl , such thatW (Rv) = W (Rl) =
0. Rv and Rl are the densities of the pure vapor and liquid
phases.

Depending on the point of view, one can either calculateW
from a known equation of state by solving Eq. 1,2

W (R) = Pb(Rv)

(
1 −

R

Rv

)
+ R

∫ R

Rv

Pb(R′)
d R′

R′2 , (4)

or postulate aW -function having the required essential proper-
ties. An often used1, 2 W -function, which we shall also use in
the present paper is

W (R) = (Pc/R4
c )(R − Rv)

2(R − Rl)
2, . . . . . (5)

wherePc and Rc ≡ (Rl + Rv)/2 are the pressure and density
at the critical point.

If, at the pore scale, the wetting is incomplete (i.e., the wet-
ting angle is between 0 and 180◦), then to a good approxima-
tion, the only remaining trace of the6-fluid at the Darcy level
is a functionI (R) of the upscaledf -fluid densityR. This func-
tion is a Helmholtz free energy describing the interaction of the
f and6 fluids, which can also be seen as a free energy de-
scribing the wetting properties of the rock. It can be shown2

that

d2 I

d R2 =
1

R

d Pc

d R
, . . . . . . . . . . . . . . (6)

wherePc is the empirical capillary pressure function. This has
been termed the “incomplete wetting approximation”,2 and is
the approximation we are assuming in the present paper.

The determination of theI -function is described in a later
subsection (see especially Eqs. 21–27).

Flow equations The central equation describing fluid flow at
the Darcy level is the classical mass balance equation

∂ R

∂ t
+ ∇ · (RV) = 0. . . . . . . . . . . . . (7)

HereV is the Darcy-level velocity:

V = −
K R

φη
∇

(
d9

d R
− 3∇2 R + G

)
, . . . . . . (8)

where

9(R) = 9b(R) + I (R) . . . . . . . . . . . (9)

is the bulk fluid total Helmholtz free energy, and

G = g · x, . . . . . . . . . . . . . . . . (10)

is the gravitational potential energy. (gis vertical, points up-
wards, and|g| = g is equal to the acceleration due to gravity.)
K is the absolute permeability,3 a constant,φ the porosity,
andη the fluid viscosity. The formula forη that has been used
in the previous publications1, 2 is a modified form of a formula
proposed by Arrhenius:

η = η
Sl
l ηSv

v , . . . . . . . . . . . . . . . (11)

whereηl andηv are the viscosities of the pure liquid and va-
por phases, andSl andSv are the liquid and vapor saturations.
These are interpretated as follows:

Sl =
R − Rv

Rl − Rv

, Sv =
Rl − R

Rl − Rv

. . . . . . . (12)

Note that the flow equation, obtained by combining Eqs. 7 and
8,

∂ R

∂ t
= ∇ ·

(
K R2

φη
∇

(
d9

d R
− 3∇2 R + G

))
, . . (13)

is (whenG is identically zero) the Cahn-Hilliard equation.
It is, as a rule, convenient for the numerical solution, to

transform this equation into two coupled equations of the sec-
ond order in the space derivatives. This is done by setting

u1 = R, . . . . . . . . . . . . . . . . (14a)

u2 =
d9

d R
− 3∇2 R + G. . . . . . . . . . . (14b)

Eq. 13 then becomes

∂u1

∂ t
+ ∇ ·

[
−

K u2
1

φη
∇u2

]
= 0, . . . . . . . . (15a)

∇ · [3∇u1] =
d9

d R
− u2 + G. . . . (15b)
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Boundary Conditions A well-posed problem for Eq. 13 (or,
alternatively, for Eqs. 15) is obtained by supplying an initial
conditionR(x, 0) = F(x), and a boundary condition. The latter
must be one of the following:

(a) H = 0, . . . . . . . . . . . . . . (16a)

(b)

{
u1 = α1
u2 = α2,

. . . . . . . . . . . . . (16b)

(c)

{
u1 = α1
n · ∇u1 = G1,

. . . . . . . . . . . (16c)

(d)

{
n · ∇u2 = G2
u2 = α2,

. . . . . . . . . . . (16d)

(e)

{
n · ∇u1 = G1
n · ∇u2 = G2,

. . . . . . . . . . . (16e)

where:n is the unit normal to the boundary pointing out;H is a
function ofu1 andu2; α1 andα2 are two constants; andG1 and
G2 are functions ofx, and ofu1 andu2 and their derivatives.

A boundary condition onu1 in the present model is equiv-
alent, because of the equation of state, to a condition on the
pressure. A boundary condition onn ·∇u2 is a condition on the
velocity. The boundary conditions involvingn · ∇u1 are new
to this model and have been discussed in a previous publica-
tion.1 The boundary conditions which are relevant to reservoir
studies are thus the ones labelled (c) and (e) above. For one-
dimensional studies, as the ones presented in the present paper,
it is natural to useG1 = 0.1

Wetting and the I -function In summary, and provided the
function I (R) is known, the density and velocity of a bipha-
sic flow in a porous medium where

• the porous medium is characterized by constantsK , φ,
3,

• the fluid has one chemical component and is character-
ized by constantsRl , Rv, Pc, ηl , ηv , and by a Helmholtz
free energy given by Eqs. 2, 3, and 5 (alternatively Eq. 4
and a known equation of state),

can be obtained by solving Eqs. 15 (with definining Eqs. 9–12)
with an initial condition onR(x, t) and boundary conditions of
type (c) or (e) above.

Relative permeabilities do not exist in the model. The wet-
ting properties of the rock are entered by means of theI -func-
tion.

The determination of theI -function now follows. The prin-
ciple behind the determination of this function has been stated
and illustrated in a previous publication,2 for the case of a vapor-
wet rock. It is applied here to the case of a rock whose wetting
properties are a mixture of vapor and liquid-wetting. The deter-
mination of I is based on Eq. 6 relating it to capillary pressure.
This function is here assumed to be of the form6

Pc = Pc
l + Pc

v , . . . . . . . . . . . . . . (17)

where

Pc
l = Cl

(
1 − Slr

Sl − Slr

)al

, . . . . . . . . . . . (18a)

Pc
v = Cv

(
1 − Svr

1 − Svr − Sl

)av

. . . . . . . . . . (18b)

HereSl , Slr , andSvr are the liquid saturation, the residual liquid
saturation, and the residual vapor saturation, respectively. The
constantsCl andCv are usually referred to as entry pressures
and 1/al and 1/av as pore size distributions. It will be shown
that the DI-model imposes some conditions linking theC ’s, the
a’s, and the residual saturations.

We now use Eqs. 12 to get the saturations in the above for-
mulas:Sl is given directly by Eq. 12 (left), and

Slr =
R∗

v − Rv

Rl − Rv

⇐⇒ R∗
v = Rv + (Rl − Rv)Slr , (19a)

Svr =
Rl − R∗

l

Rl − Rv

⇐⇒ R∗
l = Rl − (Rl − Rv)Svr . (19b)

Eqs. 18 become

Pc
l = Cl

(
Rl − R∗

v

R − R∗
v

)al

, . . . . . . . . . . (20a)

Pc
v = Cv

(
R∗

l − Rv

R∗
l − R

)av

. . . . . . . . . . . (20b)

The integration of Eq. 6, using Eq. 17, gives

I (R) = Il(R) + Iv(R), . . . . . . . . . . . (21)

where

Ia(R) = R
∫

Pc
a

R2 d R − αa + βa R (a = l, v). . (22)

The bounds and constants of integration will be determined,
together with constantsCl andCv, in such a way thatW + I
as a function ofR is a distorted version ofW in the following
sense: it must have two minima atR = R∗

v and R = R∗
l , of

value zero.
It should be pointed out that the fact that it is possible to de-

termine the constants in this manner, with empirical functions
like those in Eqs. 18, shows that the present model is consistent
with experiments.

It should also be pointed out that the determination ofI for
all relevant fluid densities (say allR > 0) is not possible with
the empirical functions just mentioned. The reason is that these
functions are defined forSlr < Sl < 1 − Svr , so that Eqs. 20
are only valid for R∗

v < R < R∗
l . The determination ofI

over a broader interval, which is necessary for the integration
of Eq. 13, must be done with some physical principle in mind.

We first obtainIl andIv for R∗
v < R < R∗

l .
Il is that part of theI -function which is due to the “liquid-

wet part” of the capillary pressure function. We impose the
condition thatW + Il should be “as much as possible equal to
W ” for R in the neighborhood ofR∗

l :

Il(R∗
l ) = 0, I ′

l (R∗
l ) = 0
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(where the prime denotes derivation). Using these conditions
to determine the constants in Eq. 22 witha = l one easily gets

Il(R) = Cl Jl(R), . . . . . . . . . . . . . (23a)

Jl(R) =
(

Rl − R∗
v

R∗
l − R∗

v

)al
(

1 −
R

R∗
l

)

−R
∫ R∗

l

R

(
Rl − R∗

v

R′ − R∗
v

)al d R′

R′2 . . . (23b)

Iv is determined in the same way:W + Iv should be “as much
as possible equal toW ” for R in the neighborhood ofR∗

v :

Iv(R∗
v ) = 0, I ′

v(R∗
v ) = 0.

One gets

Iv(R) = Cv Jv(R), . . . . . . . . . . . . (24a)

Jv(R) =
(

R∗
l − Rv

R∗
l − R∗

v

)av
(

1 −
R

R∗
v

)

+R
∫ R

R∗
v

(
R∗

l − Rv

R∗
l − R′

)av d R′

R′2 . . . (24b)

It turns out thatJl andJv are monotonic functions, respectively
decreasing and increasing, forR∗

v < R < R∗
l (seeFig. 1). It

is then easy to obtain a functionW + I having two minima of
value zero atR = R∗

v andR = R∗
l . It suffices to put

Cl = −
W (R∗

v )

Jl(R∗
v)

, Cv = −
W (R∗

l )

Jv(R∗
l )

. . . . . . (25)

TheW+I -function is shown inFig. 2, together withW , −Cv Jv ,
and−Cl Jl .

R

*

v

R

*

l

J

v

J

l

R

v

R

l

Figure 1: Functions Jl (R) and Jv(R) for R∗
v < R < R∗

l .

It will be noted that, to obtain aW + I -function with the re-
quired characteristics, we have had to impose some conditions
linking the Cl andCv to some other central parameterts in the
problem. We see in fact that

Cl = Cl(Rl , Rv, Slr , Svr , al),

Cv = Cv(Rl , Rv, Slr , Svr , av).

R

v

R

*

v

R

*

l

R

l

W

W+I

-C

l

J

l

-C

v

J

v

Figure 2: Functions W (R) and W (R) + I (R).

A number of additional problems must be solved before one
can tackle the numerical integration of Eqs. 15. The first one
is the extension ofW + I outside the interval[R∗

v , R∗
l ]. Fig. 2

illustrates another problem: the extendedW + I -function will
in general not be differentiable at its minima and a number of
standard numerical solvers find this unacceptable.∗ Eqs. 23b
and 24b point out the third problem: if one of the parameters
al , av is chosen larger than or equal to 1, then one of the de-
nominators in Eqs. 25 would diverge, and the corresponding
Il or Iv-function would collapse to zero for allR. If both pa-
rameters are chosen larger than or equal to 1, then the entire
I -function would be identically zero.

A way to solve the last two problems is to smooth out the
I -function, or rather its two componentsIl and Iv as shown on
Fig. 3. We define a functionJ s

l as follows:

J s
l =

{
jl(R), R∗

v ≤ R < R∗
v + 2ε

Jl |R∗
v+ε R∗

v + 2ε ≤ R ≤ R∗
l ,

. . . . (26)

where Jl |R∗
v+ε is Jl with R∗

v replaced byR∗
v + ε. A typical

value for ε, or rather for its dimensionless counterpartε̃ (see
the Nomenclature section) is 0.01. (For the sake of readability,
the value ofε in Fig. 3 is greatly exagerated.)jl(R) is a second
degree polynomial inR which is such thatJ s

l and its derivative
are continuous atR = R∗

v + 2ε: it can easily be seen thatjl has
just one remaining degree of freedom. A functionJ s

v is defined
in a similar manner, with a polynomialjv(R). We now define a
smoothedI -function by

I s(R) = Cs
l J s

l (R) + Cs
v J s

v (R), . . . . . . . . (27)

and determine the constantsCs
l , Cs

v, and the two degrees of
freedom in jl and jv, with the four conditions

W (R∗
a ) + I s(R∗

a) = 0
W ′(R∗

a) + I s ′(R∗
a) = 0 (a = l, v)

∗We have used the FEMLAB (registered trademark of COMSOL AB)
solver, which uses the finite element method.
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R

v

R

*

v

R

*

l

R

l

W

2ε 2ε

-C J

-C

J

s s

s

s

l

l

v v

Figure 3: The functions W (R) and the two parts of function
I s (see Eq. 27). The broken lines represent second degree
polynomials in R (see Eq. 26. For clarity, the value of ε is
chosen unrealistically large.

(the prime denotes derivation). The calculations are elementary
and are not given here.

We now look at the problem of extending theI s -function,
to the left ofR∗

v and to the right ofR∗
l . We denote this function

by I se. The extension is done as follows. To the left ofR∗
v

we takeW + I se to be equal toW , translated by the amount
R∗

v − Rv : this is the gas phase region and we expect it to behave
approximately as a pure gas. To the right ofR∗

l we want the
liquid to behave as a nearly incompressible fluid and we impose
therefore that

W (R) + I se(R) =
Pc

R2
c

(R − R∗
l )2

4ε̃
,

whereε̃ is the small parameter used previously. The function
W (R) + I se(R) is shown inFig. 4. This function is needed
for the numerical solution of the differential equations of the
model.

Relative permeabilities As mentioned in the Introduction ex-
pressions for the relative permeabilities have been found,2 in-
volving the thermodynamical properties of the fluid, the wet-
ting properties of the rock (as embodied in the capillary pres-
sure), and some parameters. To write these expressions we need
the derivative of the capillary pressure with respect toR. The
smoothing of theI -function performed above implies that the
capillary pressure function is slighty modified and must be re-
calculated as (see Eq. 17)

d Pcs

d R
=

d Pcs
l

d R
+

d Pcs
v

d R
, . . . . . . . . . . . (28)

R

v

R

*

v

R

*

l

R

l

W

W+I

se

Figure 4: Functions W (R) and W (R) + I se(R). The later
results from the smoothing shown in Fig. 3, and from an
extension outside the interval [R̃∗

v , R̃∗
l ].

where, according to Eqs. 27 and 6,

d Pcs
l

d R
= R

d2

d R2 Cs
l J s

l (R), . . . . . . . . . . (29a)

d Pcs
v

d R
= R

d2

d R2 Cs
v J s

v (R). . . . . . . . . . (29b)

The relative permeabilities are then given by2

krl =
S∗

l

1 + γ (1 − S∗
l )/(g̃ R̃∗

l )
, . . . . . . . . (30a)

krv =
1 − S∗

l

1 + γ (S∗
l )/(g̃ R̃∗

v)
, . . . . . . . . . (30b)

where

S∗
l =

R̃ − R̃∗
v

R̃∗
l − R̃∗

v

, . . . . . . . . . . . . . . (31)

andγ is the generalization to the mixed-wet case of the one
given previously:2

γ (S∗
l ) = −


d P̃cs

v

d R̃

√
2

3̃
[W̃ (R̃) + Ĩ s(R̃)]




R̃=R̃(S∗
l )

−


d P̃cs

l

d R̃

√
2

3̃
[W̃ (R̃) + Ĩ s(R̃)]




R̃=R̃(1−S∗
l )

, (32)

where

R̃(S∗
l ) = R̃∗

v + (R̃∗
l − R̃∗

v )S∗
l , . . . . . . . (33a)

R̃(1 − S∗
l ) = R̃∗

l − (R̃∗
l − R̃∗

v )S∗
l . . . . . . . . (33b)

and the tilded quantities are dimensionless: see the Nomencla-
ture section.



6 P. PAPATZACOS AND S.M. SKJÆVELAND SPE 84546

Relative permeabilities in unsteady-state flows

As pointed out above, the DI-model does not use the relative
permeability concept and is therefore well-suited to investigate
the subject. Such investigations have already been carried out
in two previous publications.1, 2

In the first reference,1 a truly steady state process was set
up: a one-dimensional ganglionic flow of two phases. In the
framework of that process it was shown that the generalized
two-continuum model with viscous coupling is compatible with
the present model.

In the second reference,2 a nearly steady state situation was
studied, with drainage of a vapor wet rock. The above theoret-
ical expressions for relative permeabilities were found in con-
nection with that study and it was shown that they are in good
agreement with what one expects.

In the present paper we present results from two unsteady-
state flows, a drainage and an imbibition. The calculations have
been performed in one space dimension and the results are pre-
sented in terms of dimensionless quantities. These are defined
in the Nomenclature section. For future reference we give here
the main equations, written in these quantities.

The dimensionless velocity, and the dimensionless momen-
tum (to be used in a later section) are

Ṽ = −
ũ1

η̃(ũ1)

∂ ũ2

∂ x̃
, 0̃ = ũ1Ṽ . . . . . . . . (34)

The flow equations (see Eqs. 15) are

∂ ũ1

∂ t̃
+

∂

∂ x̃

[
−

ũ2
1

η̃

∂ ũ2

∂ x̃

]
= 0, . . . . . . . . . (35a)

∂

∂ x̃

[
3̃

∂ ũ1

∂ x̃

]
=

d9̃

d R̃
− ũ2 + g̃x̃ . . . . (35b)

where ũ1 = R̃. The unit of length is such that 0≤ x̃ ≤ 1
and we have taken thex-axis to point downwards so thatg is
negative.

The constants have been chosen as follows:

R̃l = 1.6, R̃v = 0.4, Slr = 0.4, Svr = 0.1,

3̃ = 0.01, g̃ = −0.5, ηv/ηl = 0.1.
(36)

Note that this leads to

R̃∗
l = 1.48, R̃∗

v = 0.88 . . . . . . . . . . (37)

(see Fig.4). These are now the densities of the liquid and vapor
phases allowed by the wetting properties of the rock.

The two remaining free parameters,al andav, have been
given the following values:

al = 0.50, av = 1.15, for drainage,
al = 1.00, av = 1.40, for imbibition. . . . (38)

The resulting capillary pressure curves are shown inFig. 5.

0

1

0.6 0.8 1 1.2 1.4

R

Figure 5: The capillary pressure curves used for drainage
(upper curve) and imbibition (lower curve).

Relative permeabilities for drainage We consider drainage
flow in a one-dimensional porous medium of mixed wetting
properties. We want the flow to be manifestly unsteady-state
at all times. This we achieve by arranging the drainage to
take place at diminishing velocities, leading to a static equi-
librium. Specifically, we consider a medium which is initially
filled mostly with liquid underlying a thin later of vapor, with
gravity forces larger that capillary forces so that drainage takes
place, the amount of vapor increasing at the top and the amount
of liquid decreasiing at the bottom. We fix the boundary con-
ditions so that this drainage process approaches, ast̃ → ∞,
a static final state with mostly vapor overlying a thin layer of
liquid.

The mathematical formulation is as follows.
R̃(x̃, 0) (or, equivalentlyũ1(x̃ , 0)) is given as a momotoni-

cally increasing function of̃x , rising rapidly fromR̃0 at x̃ = 0
to a plateau close tõR1, and reachingR̃1 at x̃ = 1. Here
R̃0 ≈ R̃∗

v and R̃1 ≈ R̃∗
l . The determination of the exact values

of R̃0 and R̃1 is given below.
The pressure is kept constant at both ends, which, in the

present model, means imposing boundary conditions

ũ1(0, t̃) = R̃0,
∂ ũ1

∂ x̃

∣∣∣∣
x̃=0,∀t̃

= 0,

ũ1(1, t̃) = R̃1,
∂ ũ1

∂ x̃

∣∣∣∣
x̃=1,∀t̃

= 0.

. . . . . (39)

The solution of Eqs. 35 will represent the drainage flow de-
scribed above if the values of̃R0 and R̃1 allow the existence
of the state of equilibrium specified. To make sure that this is
the case we first solve these equations with no-flow boundary
conditions at top and bottom and with̃u1(x̃, 0) equal to a con-
stantC. By trial and error we find a value ofC that leads to a
state that can reasonably be described as “mostly vapor overly-
ing a thin layer of liquid.” With the numerical values given in
Eqs.36–38 we found

R̃0 = 0.7902, R̃1 = 1.4824.
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t = 0.4

t = 0.02

Figure 6: Drainage. Left plot: fluid density versus x̃ for
t̃ = 0 (broken curve) to t̃ = 0.4 (rightmost curve), in steps
1t̃ = 0.02. Right plot: fluid velocity versus x̃ for t̃ = 0.02 to
t̃ = 0.4, in steps 1t̃ = 0.02.

The plots illustrating the solution of the drainage problem are
shown inFig. 6: a plot of the density (left) and a plot of the
fluid velocity (right), both versus̃x , for values oft̃ in the range
[0, 0.4]. It is interesting to note that the part of the fluid that is
predominantly vapor flows upwards, while the fluid that is pre-
dominantly liquid flows downwards. We have, in other words,
countercurrent flow.

“Experimental” relative permeabilites are calculated from
the results of the drainage calculation and compared to the the-
oretical formulas given above (Eqs. 30–33b). We start with the
definitions in terms of dimensionless quantities:2

Ṽ ∗
l =

krl(exp)

η̃(R̃∗
l )

(
−

∂ p̃∗
l

∂ x̃
+ g̃ R̃∗

l

)
, . . . . . . . (40a)

Ṽ ∗
v =

krv(exp)

η̃(R̃∗
v )

(
−

∂ p̃∗
v

∂ x̃
+ g̃ R̃∗

v

)
. . . . . . . . (40b)

These formulas mean that we look at the fluid in the transition
region (i.e., the region wherẽR∗

v < R̃ < R̃∗
l ) as a mixture of

two phases, each phase having a density singled out by a min-
imum of the functionW + I se (Fig. 4). Ṽ ∗

a is the velocity of
phasea, and p̃∗

a is the pressure in phasea (a = l, v). The
present model does not provide these quantities, and we know
of no rigorous derivation. To obtain them, we proceed by gen-
eralizing the method described previoulsy2 to the mixed-wet
case. With this in mind we introduce the following notation
for the velocities and momenta at, respectively,S∗

l = 0 and
S∗

l = 1:

Ṽ0 = Ṽ |S∗
l =0, Ṽ1 = Ṽ |S∗

l =1,

0̃0 = 0̃|S∗
l =0, 0̃1 = 0̃|S∗

l =1.
. . . . . . (41)

We now postulate that2

Ṽ ∗
l =

0̃0 − 0̃

0̃0 − 0̃1
Ṽ1, Ṽ ∗

v =
0̃ − 0̃1

0̃0 − 0̃1
Ṽ0, . . . (42)

Figure 7: Drainage relative permeabilities versus S∗
l . Left

plot: Experimental relative permeabilities calculated for the
different time steps shown in Fig. 6: the points approach
the horizontal axis as time increases. Right plot: Gray
crosses: experimental values, normalized by the endpoint
values; full lines: theoretical values, Eqs. 30.

Figure 8: Drainage case. Left: krl(exp) at S∗
l = 1 versus

dimensionless fluid velocity at S∗
l = 1. Right: krv(exp) at

S∗
l = 0 versus dimensionless fluid velocity at S∗

l = 0.

where the right-hand sides are obtained by using the solution to
the differential equations of the model. It is further postulated
that

∂ p̃∗
l

∂ x̃
= −γexp(1 − S∗

l ),
∂ p̃∗

v

∂ x̃
= −γexp(S∗

l ). . . (43)

where

γexp(S∗
l ) =

[
∂ P̃cs

v

∂ R̃

∂ R̃

∂ x̃

]

S∗
l

+

[
∂ P̃cs

l

∂ R̃

∂ R̃

∂ x̃

]

1−S∗
l

. . . (44)

In this expression, the derivatives of̃Pcs
l and P̃cs

v are given by
Eqs. 29, while the partial derivative of̃R is obtained by using
the solution of the partial differential equations.
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Thus, at chosen time steps, the solution of the partial dif-
ferential equations are used to calculatekrl(exp) andkrv(exp) at
values ofx̃ where the densitỹu1 is intermediate betweeñR∗

v

and R̃∗
l . These values are shown inFig. 7. The left-hand plot

shows the “raw” values and it is seen that a large number of
them are larger than 1. A closer look reveals that this is charac-
teristic for short times and is an indication that Eqs. 40 are too
simple to describe the transient behavior of the flow. However,
when the experimental values are normalized by the end-point
values, i.e., when plotting

krl(exp)

krl(exp) at S∗
l = 1

and
krv(exp)

krv(exp) at S∗
l = 0

versusS∗
l for given t̃, all points gather remarkably well around

the theoretical curves given by Eqs. 30. See Fig.7 (right).
The left plot also shows that the relative permeabilities be-

come gradually flatter as the fluid decelerates to zero velocities.
We have plotted the end-point relative permeabilities versus the
fluid velocity: seeFig. 8. The straight lines shown are the least-
squares fits. Specifically, it is found that

krl(exp)(S∗
l =1) = (3.20± 0.02) Ṽ(S∗

l =1)

+(0.015± 0.004), . . . . . (45a)

krv(exp)(S∗
l =0) = (1.53± 0.02) Ṽ(S∗

l =0)

+(0.05± 0.01), . . . . . . (45b)

where the errors on the coefficients are calculated by using the
usual formulas of linear regression, assuming the end-point rel-
ative permeabilities to be normally distributed. The errors orig-
inate from the numerical integration of the differential equa-
tions.

Relative permeabilities for imbibition We consider imbibi-
tion in a one-dimensional porous medium of mixed wetting
properties. Preliminary results have been presented elsewhere.∗

As for the case of drainage, we want the flow to be manifestly
unsteady state at all times and achieve this by arranging imbi-
bition to take place at diminishing velocities, leading to a static
equilibrium. Specifically, we consider a medium which is ini-
tially filled mostly with vapor overlying a thin layer of liquid,
with capillary forces larger that gravity forces so that imbibition
takes place, the amount of vapor decreasing at the top and the
amount of liquid increasiing at the bottom. We fix the boundary
conditions so that imbibition approaches, ast̃ → ∞, a static fi-
nal state with mostly liquid underlying a thin layer of vapor.

The mathematical formulation is quite similar to the drain-
age case:R̃(x̃, 0) (or, equivalentlyũ1(x̃ , 0)) is given as a mo-
motonically increasing function of̃x , whereũ1 stays close to
R̃0 for most values of̃x < 1, then rises rapidly tõR1, reaching
R̃1 at x̃ = 1. Here R̃0 ≈ R̃∗

v and R̃1 ≈ R̃∗
l . The determina-

tion of the exact values of̃R0 and R̃1 is similar to the drainage
case: Eqs. 35 are first solved with no-flow boundary conditions
at top and bottom and with̃u1(x̃ , 0) equal to a constantC. By

∗P. Papatzacos and S. Skjaeveland,Imbibition Relative Permeabilities from
the Diffuse-Interface Theory, presented at the 1-st International Scientific Con-
ference “Oil Recovery 2003”, Moscow, 19–23 May, 2003.

trial and error we find a value ofC that leads to a state that
can reasonably be described as “mostly liquid underlying a thin
layer of vapor.” With the numerical values given in Eqs. 36–38
we arrive atR̃0 = 0.8427, andR̃1 = 1.4866. These values
then determine the initial condition and the boundary condi-
tions (through Eqs. 39) for the imbibition problem.

Figure 9: Imbibition. Left plot: fluid density versus x̃ for
t̃ = 0 (broken curve) to t̃ = 0.4 (leftmost curve), in steps
1t̃ = 0.02. Right plot: fluid velocity versus x̃ for t̃ = 0.02 to
t̃ = 0.4, in steps 1t̃ = 0.02. The dotted curved is referred to
in Fig. 10.

The plots illustrating the solution of the imbibition problem
are shown inFig. 9: a plot of the density (left) and a plot of the
fluid velocity (right), both versus̃x , for values oft̃ in the range
[0, 0.4]. It will be noted that flow is countercurrent here as in
the drainage case. The dotted curve shows a curious oscillation
in the velocity, taking place at both ends of the transition region.
These might be due to the smoothing of theI -function, or to
some calculational error that is damped out at later times. As
will be seen below, the relative permeabilities calculated at the
value of t̃ corresponding to the dotted curve deviate somewhat
from the relative permeabilities obtained at othert̃-values.

“Experimental” relative permeabilites are calculated from
the results of the imbibition calculation, in a manner which is
completely similar to the one used for drainage, and compared
to the theoretical formulas given by Eqs. 30 and 32: the “raw”
values forkrl(exp) andkrv(exp) are shown inFig. 10 (left). The
right-hand plot shows

krl(exp)

krl(exp) at S∗
l = 1

and
krv(exp)

krv(exp) at S∗
l = 0

versusS∗
l for given t̃. The black crosses in the right-hand plot

show the relative permeabilities calculated at the time corre-
sponding to the dotted curve in Fig.9.

As in the case of drainage, the left plot shows that the rela-
tive permeabilities become gradually flatter as the fluid deceler-
ates to zero velocities. The end-point relative permeabilities are
plotted against the fluid velocity onFig. 11, where the straight
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Figure 10: Imbibition relative permeabilities versus S∗
l . Left

plot: Experimental relative permeabilities calculated for
the different time steps shown in Fig. 9: the points ap-
proach the horizontal axis as time increases. Right plot:
Gray crosses: experimental values, normalized by the end-
point values; full lines: theoretical values, Eqs. 30; black
crosses: experimental values resulting from the dotted
curve in Fig. 9

lines

krl(exp)(S∗
l =1) = (3.295± 0.006) Ṽ(S∗

l =1)

+(0.011± 0.002), . . . . . (46a)

krv(exp)(S∗
l =0) = (1.81± 0.04) Ṽ(S∗

l =0)

+(−0.01± 0.02), . . . . . (46b)

are the least-squares fits. The comments following Eqs. 45 ap-
ply here as well.

Conclusions
We have presented some investigations into the relative per-
meability concept by using a model where the concept is not
used. These investigations were carried out for non-steady-state
flows. The conclusions to be drawn are as follows.

1. The relative permeability curves depend on the fluid ve-
locities.

2. The normalized relative permeability curves are in good
agreement with theoretical expressions giving them in
terms of the thermodynamic properties of the fluid, and
of the wetting properties inferred by the capillary pres-
sure correlations.

3. Each end-point relative permeability can be significantly,
although transiently, larger than 1. In drainage as in im-
bibition, it is the end-point relative permeability of the
phase that flows fastest that shows this behavior.

4. Each end-point relative permeability depends linearly on
the velocity of the fluid at the corresponding normalized

Figure 11: Imbibition case. Left: krl(exp) at S∗
l = 1 versus

dimensionless fluid velocity at S∗
l = 1. Right: krv(exp) at

S∗
l = 0 versus dimensionless fluid velocity at S∗

l = 0.

saturation (0 or 1). It is improbable that the coefficients
are independent of the flow type.

The last statement is based on the comparison of the linear re-
gression Eqs. 45 and 46.

Nomenclature
al = Defined by Eq. 18a
av = Defined by Eq. 18b
Cl = Defined by Eq. 18a
Cs

l = Defined by Eq. 27
Cv = Defined by Eq. 18b
Cs

v = Defined by Eq. 27
F = Arbitrary function ofx
g = Upwards pointing vector,|g| = g
g = Acceleration due to gravity
g̃ = (Rc L/Pc)g

G = Gravitational potential. See Eq. 10
G1 = Arbitrary function ofu1, u2, and their derivatives.

See Eqs. 16c, 16d, and 16e
G2 = Same definition asG1
H = Arbitrary function ofu1 andu2
I = Free energy of interaction between the fluid proper

and the6-fluid. See Eq. 6
Ĩ = I/Pc
I s = SmoothedI -function. See Eq. 27
Ĩ s = I s/Pc
I se = Smoothed and extendedI -function

Il = See Eqs. 21, 22, and 23
Iv = See Eqs. 21, 22, and 24

jl(R) = Second degree polynomial inR. See Eq. 26
Jl = See Eq. 23b
J s

l = SmoothedJl . See Eq. 26
jv(R) = Second degree polynomial inR

Jv = See Eq. 24b
J s
v = SmoothedJv .
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K = Absolute permeability
krl = Relative permeability to liquid
krv = Relative permeability to vapor

L = Unit of length
M̄ = Fluid chemical potential at equilibrium
n = Unit normal to the boundary, pointing out

p̃∗
l = Pressure in liquid phase (with residual vapor), di-

vided byPc. Eq. 40a
p̃∗
v = Pressure in vapor phase (with residual liquid), di-

vided byPc. Eq. 40b
P̄ = Fluid pressure at equilibrium

Pb = Pressure of bulk fluid
P̃b = Pb/Pc
Pc = Capillary pressure. See Eqs. 17 and 18
Pc = Critical pressure
Pc

l = Defined by Eqs. 17 and 18a
Pc

v = Defined by Eqs. 17 and 18b
Pcs = Defined by Eqs. 28 and 29
Pcs

l = Defined by Eq. 29a
Pcs

v = Defined by Eq. 29b
P̃cs

l = Pcs
l /Pc

P̃cs
v = Pcs

v /Pc
R = Density of fluid
R̃ = R/Rc

Rc = Critical density of fluid
Rl = Density of liquid
R∗

l = Density of liquid with residual vapor. Eq. 19b
R̃l = Rl/Rc
R̃∗

l = R∗
l /Rc

Rv = Density of vapor
R∗

v = Density of vapor with residual liquid. Eq. 19a
R̃v = Rv/Rc
R̃∗

v = R∗
v/Rc

R̃0 = Density atx̃ = 0
R̃1 = Density atx̃ = 1
Sl = Liquid saturation. Eq. 12 (left)
Sv = Vapor saturation. Eq. 12 (right)
S∗

l = Normalized liquid saturation. Eq. 31
Slr = Residual liquid saturation. Eq. 19a
Svr = Residual vapor saturation. Eq. 19b

t = Time
t̃ = (K Pc/(φηc L2))t

u1 = R. See Eq. 14a
u2 = Defined by Eq. 14b
ũ1 = R̃
ũ2 = See Eqs. 35
V = Velocity. See Eq. 8
V = Velocity (one dimensional flow)
Ṽ = (φηc L/(K Pc))V . Dimensionless version of V

Ṽ ∗
l = Dimensionless velocity of liquid (with residual va-

por). Eq. 40a
Ṽ ∗

v = Dimensionless velocity of vapor (with residual liq-
uid). Eq. 40b

Ṽ0 = Defined by Eq. 41 (left)
Ṽ1 = Defined by Eq. 41 (right)
W = See Eqs. 2, 4, 5

W̃ = W/Pc
x = Vector of space coordinates
x = Space coordinate (one dimensional flow)
x̃ = x/L
α = (possibly with index) Constant
β = (possibly with index) Constant
ε = Small density, used to smooth theI -function. See

Eq. 26
ε̃ = ε/Rc
γ = Defined by Eq. 32

γexp = (“Experimental”γ ) Defined by Eq. 44
0̃ = Dimensionless fluid momentum. See Eq. 34 (right)

0̃0 = Defined in Eq. 41
0̃1 = Defined in Eq. 41
η = Viscosity of fluid. See Eq. 11

η̃(R̃) = η/ηc = (ηv/ηl)
r , r = (R̃l + R̃v − 2R̃)/(2(R̃l −

R̃v))

ηv = Viscosity of vapor
ηl = Viscosity of liquid
ηc =

√
ηvηl

3 = Constant related to microscopic interfacial tension
3̃ = (R2

c /(Pc L2))3

φ = Porosity
9 = Helmoltz free energy. See Eq. 9

9b = Bulk free energy. See Eqs. 1, 2, 9
9̃ = 9/Pc

Subscripts

c = Critical
exp = “Experimental”

l = Liquid
v = Vapor

Superscripts
′ = Derivative. Also, indicates an integration variable

b = Bulk
c = Capillary

Overstrikes

˜= Dimensionless variable
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