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Abstract
A new theory is reviewed for single-component, two-phase
flow in porous media. It includes wettability and capillary
pressure as integral parts of the thermodynamic description and
does not make use of the relative permeability concept. How-
ever, by providing a capillary pressure correlation, we are able
to extract relative permeabilities and to show good consistency
between rock property correlations.

Introduction
A new theory for two-phase flow in porous media has recently
been developed and presented in a paper1 referred to below as
P1. A short review is given in the next section.

At the pore level, the two phases, liquid and its vapor,
are treated as a single fluid with variable density, according
to the diffuse-interface model.2, 3 Wettability4, 5 and capillary
pressure are included in the thermodynamic description while
phase pressures and relative permeabilities are irrelevant. Al-
though the fluid description is restricted to a single-component
system, practical examples may be found in the steam-water
literature.6, 7

The upscaling from pore level equations to the macro-
scopic, Darcy-level equations is done by the Marle8 averag-
ing technique. The equation of state is of the van der Waals
type and describes two-phase flow by a single partial differ-
ential equation of the Cahn-Hilliard type coupled to a set of
functions for the thermodynamic properties of the fluid, includ-
ing capillary pressure. The differential equation is solved by a

numerical procedure. To our knowledge, this theory is the only
one published that includes wettability and capillary pressure as
integral parts of the thermodynamical description of two-phase
flow in porous media.

Capillary pressure and relative permeability both depend on
the same fluid-fluid and rock-fluid interaction energies. If the
capillary pressure vanishes, the residual saturations approach
zero and the relative permeability of a phase becomes equal
to its saturation. Relative permeability models in the litera-
ture are therefore often inferred from a capillary pressure cor-
relation coupled with pore network models, e.g., the Corey-
Burdine relative permeability correlations from the Brooks-
Corey power-law capillary pressure correlation and the bundle-
of-tubes model.9

Introducing a capillary pressure correlation of the Brook-
Corey type, we generate relative permeability curves from the
theory without any further specifications of the pore network.
The curves compare favorably with the Corey-Burdine type,
thus validating their simple power-law form. The solution of
the Cahn-Hilliard equation is made for a downwards primary
drainage process where non-wetting water diplaces wetting va-
por, for a range of capillary pressure levels and pore-size distri-
bution indices.

The theory and methods can be used to check consistency
between models for capillary pressure and relative permeabili-
ties, e.g., hysteretic fluid flow processes with wettability incor-
porated in the thermodynamic description.

Theoretical Background

At pore level, P1 assumes a fluid consisting of a single chem-
ical component, capable of existing in either a one-phase state
which is a liquid or a vapor, say, or in a two-phase state which
would then be a coexistence of a liquid and a vapor. The equa-
tion of state is of the van der Waals type. The diffuse-interface
theory of two-phase flow2, 3 is then adopted. In short terms,
this theory, called DI below, is as follows. It postulates that,
in the case of a coexistence of two phases, a transition region
exists between the phases, where the fluid density varies con-
tinuously, thus allowing a single-fluid description. (Note that
this is in strong contrast to the traditional view of a two-phase
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system as two distinct fluids separated by a surface.) The tran-
sition region in DI is thin and the gradient of density is large in
that region. Accordingly, DI incorporates, in the thermodynam-
ical description of the fluid, an additional energy proportional
to the squared gradient of the density,|∇ρ|2, the effect of which
is twofold: (i) the fluid dynamics of DI consist of the Navier-
Stokes equations modified by an additional term proportional
to ∇∇2ρ;2, 3 (ii) the thermodynamics of DI needs to emphasize
that pressure and chemical potential have the traditional mean-
ings in the bulk fluid(meaning far from the transition region)
and this is done by letting pressure and chemical potential of
the bulk fluid carry the superscriptb.

Seppecher5 has shown that the wetting properties in DI are
described by the Cahn theory of wetting.4 It is important for
the appreciation of what follows to point out that Cahn de-
scribes wetting through a very short-range interaction between
the fluid and the solid. This interaction gives rise in DI to an
extra boundary condition, of the Neumann type, which answers
to the extra term in the Navier-Stokes equations. This boundary
condition on the densityρ which states that∇ρ along the nor-
mal to the solid surface is proportional to the cosine of the wet-
ting angle.1, 5 Thus wetting implies a modification of the fluid
density near the surface, the nearness being characterized by a
length` ≈ 10−10 m. (̀ is also the thickness of the transition re-
gion between phases, at pore level.1) This extreme localization
makes it possible, in the process of averaging to macroscopic
level, to look at wetting as having the same effect as a surface
fluid, called the6-fluid, with densityρ6 , obeying its own flow
equations.1

The averaging of the pore level equations over many pores
inside a representative volume is done in P1 by assuming that
the following parameters are uniform throughout the porous
medium: porosityφ, pore surface per unit volumeA6 , and tem-
perature.

This averaging produces the equations for two-phase flow
in porous media arising, as stated, from DI. The dependent vari-
ables in these equations are the macroscopic averages ofρ and
ρ6 , namelyR an R6. In P1, ρ and R carry a subscriptf and
are said to be quantities of thef -fluid, as a necessary distinc-
tion from the6-fluid introduced above; the subscriptf is here
suppressed for simplicity, andρ andR are said to be quantities
of the fluid proper when the necessity to distinguish from the
6-fluid arises. The central equation is a mass balance equation
for R:

∂ R

∂ t
+ ∇ · (RV) = 0, . . . . . . . . . . . . (1)

whereV is the macroscopic (Darcy-like) velocity:

V = −
K R

φη
∇(Mb + Mc − 3∇2 R + G). . . . . (2)

In this expression,K is the absolute permeability,3 is a con-
stant, andG is the gravitational potential giving rise an accel-
eration equal to−∇G; η is the fluid viscosity, assumed to be
a known function ofR (see at the end of this section);Mb is
the bulk chemical potential and is a function ofR; Mc is the
chemical potential due to wetting and is a function ofR and
R6 .

Chemical potentials replace pressures as the naturally oc-
curing quantities in the Darcy-like velocity, but we shall see
that pressures can be reinstated in certain circumstances. The
information which is necessary to determine these chemical po-
tentials is contained in the Helmholtz free energy of the bulk
fluids (fluid proper and6-fluid), which has the form

φ9(R, R6) = φ9b(R) + A6 F6(R6) + φ I (R, R6). (3)

Here 9b is the free energy of the averaged fluid proper,F6

is the free energy of the averaged surface fluid, andI is the
energy of interaction between the two fluids. TheMb andMc

are defined below, together with the corresponding chemical
potentials of the6-fluid:

Mb =
d9b

d R
, . . . . . . . . . . . . . . . (4a)

Mc =
∂ I

∂ R
, . . . . . . . . . . . . . . . . (4b)

M6 =
d F6

d R6

, . . . . . . . . . . . . . . . (4c)

Mc
6 =

φ

A6

∂ I

∂ R6

. . . . . . . . . . . . . . . (4d)

For neutral wetting the interaction energyI is identically zero
so thatMc drops out of Eq. 2. The6-fluid becomes irrelevant
and the problem is completely defined by Eqs. 1, 2, and 4a. For
non-neutral wettingI (R, R6) determinesMc as a function of
R and R6 . There is a need for an additional equation which,
according to P1 is

M6 = M, . . . . . . . . . . . . . . . . (5)

where the left-hand side is defined by Eq. 4c while the right-
hand side is

M = Mb − 3∇2 R −
1

2
|V|2. . . . . . . . . . (6)

P1 concludes that the equations for two-phase flow in porous
media resulting from DI are Eqs. 1, 2, and 5. As additional
input, all thermodynamic functions appearing on the right-hand
side of Eq. 3 must be known, as weel as the fluid viscosityη in
Eq. 2.

It is also pointed out in P1 that the chemichal potentials can
be replaced, in Eq. 2, by the more familiar pressures, through
the following formulas:

1

R

d Pb

d R
=

dMb

d R
, . . . . . . . . . . . . . (7a)

R∇Mc = ∇Pc. . . . . . . . . . . . . . (7b)

HerePb is the bulk pressure, related to the densityR through an
equation of state, whilePc is the capillary pressure. Eq. 7a is a
thermodynamical relation valid at constant temperature. Eq. 7b
on the other hand is just a formal definition which is not com-
patible with Pc being a function ofR and R6 . Indeed, the
assumptionPc = Pc(R, R6) leads directly to

∂

∂ R6

∂ Pc

∂ R
−

∂

∂ R

∂ Pc

∂ R6

=
∂Mc

∂ R6

,
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so that, strictly speaking,Pc is not a function of state. We shall
return to this presently.

It is of some interest to point out that the combination of
Eqs. 1 and 2, and of Eqs. 3, 4a, and 4b, gives

∂ R

∂ t
= ∇ ·

(
K R2

φη
∇

(
∂9

∂ R
− 3∇2 R + G

))
. . . . (8)

When G is identically zero this reduces to the Cahn-Hilliard
equation.

This completes the review of P1. What follows are further
developments to the model.

The Incomplete-Wetting Approximation. It is shown in P1

(Eqs. 35) that, at equilibrium,

Mb + Mc + G − 3∇2 R = M̄, . . . . . . . (9a)

M6 + Mc
6 + G = M̄, . . . . . . . (9b)

whereM̄ is a constant (see below, Eq. 13). Assuming equilib-
rium with zero macroscopic velocity everywhere, we get from
Eq. 6, thatM = Mb − 3∇2 R so that Eqs. 9 above can be
written

M + Mc + G = M̄,

M6 + Mc
6

+ G = M̄ .

These equations, together with Eq. 5, now giveMc = Mc
6

which, with Eqs. 4b and 4d yields

∂ I

∂(φR)
=

∂ I

∂(A6 R6)
. . . . . . . . . . . . . (10)

It is easy to show that this is a necessary and sufficient condition
for I to be a function ofφR + A6 R6 .

It is shown in P1 that φR/(A6 R6) (the ratio of averaged
fluid proper to averaged6-fluid per unit volume) is of the same
order of magnitude asq = φ/(`A6). Using the Karman-Kozeny
equation10 (K = φ3/(5A2

6
)) one gets

q =
√

5K/φ/`.

We shall, in this paper, say that we havecomplete wettingwhen
the wetting angle is either 0 or 190 degrees; otherwise, we shall
say that we haveincomplete wetting.

It is known1 that for incomplete wetting,̀ ≈ 10−10 m so
that q is quite large and the dependence ofI on A6 R6 can
be neglected. For complete wetting on the other hand, experi-
ments11 indicate that̀ may increase by a factor of many hun-
dreds: the dependence ofI on A6 R6 can then become impor-
tant for permeabilities of the order of the millidarcy.

Accordingly, we callI = I (R) the incomplete-wetting ap-
proximation. We assume, for the rest of this paper, that this
approximation is valid .

A direct consequence of the incomplete-wetting approxi-
mation is that

Mc =
d I

d R
. . . . . . . . . . . . . . . . . (11)

The equations for two-phase flow in porous media resulting
from DI are now Eqs. 1 and 2 where the chemical potentials

are defined by Eqs. 4a and 11. In addition, theF6 contribution
to the free energy9, Eq. 3, can be neglected so that one can
write

9(R) = 9b(R) + I (R). . . . . . . . . . . . (12)

The two functions on the right-hand side,9b and I , must be
known sinceMb andMc are their derivatives. They are deter-
mined below. The fluid viscosityη appearing in Eq. 2 must also
be known.

The Helmholtz Free Energy of the Bulk Fluid. The incomp-
lete-wetting approximation has no bearing on the calculations
of this section.

Usually, the relevant thermodynamic properties of the fluid
are known through an equation of statePb = Pb(R). It would
then be easy to get the neededMb-function by using Eq. 7a. It
will, however, be made clear in a later section that knowledge
of the free energy9b(R) is important, so that this section con-
centrates on a method to calculate it. It has been shown12 that,
for van der Waals typePb(R) curves,9b has the form

9b(R) = W(R) + M̄ R − P̄, . . . . . . . . . (13)

whereW(R) has two minima where it is zero;̄M and P̄ (the
chemical potential and the pressure of the fluid at equilibrium)
are functions of the temperature alone so that they can be con-
sidered constant for calculations at uniform temperature.Fig. 1
shows a typical equation of state of the van der Waals type and
its resultingW-function. It is stated here for later reference that
a continuousPb versusR curve implies a smoothW function.
However, solutions to the Cahn-Hilliard equation, Eq. 8, are
known13 where, for physical reasons,W that is not smooth at
the minima. The only important feature ofW is to have two
global minima of value zero. FunctionW is then said to sup-
port two phases,13 the densities of which are the values of the
density at which the minima ofW occur.

The densities of the phases, say vapor and liquid, are de-
noted byRv and Rl , and are such that the Maxwell construc-
tion (also calledthe Maxwell equal area rule14 when referring
to the pressure versus volume diagram) applies:

∫ Rl

Rv

Pb d R

R2 = Pb(Rv)

(
1

Rv

−
1

Rl

)
. . . . . . . (14)

Note that theP̄ of Eq. 13 is eitherPb(Rv) or Pb(Rl).
By definition,

Pb = R2 d

d R

(
9b

R

)
.

Using Eq. 13 on the right-hand side one easily gets

W(R) = Pb(Rv)

(
1 −

R

Rv

)
+ R

∫ R

Rv

Pb(R′)
d R′

R′2 . . (15)

Note thatW(Rv) = 0 by choice of integration constants, and
thatW(Rl ) = 0 because of the Maxwell construction. It is also
eaily checked that the derivativeW′(R) vanishes atRv andRl .
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Figure 1: A van der Waals type equation of state (top) and
the W -function (bottom)

The expression forMb now follows from its definition, as
given by Eq. 4a:

Mb =
∫ R

Rv

1

R′
d Pb

d R′ d R′ + M̄ . . . . . . . . . . (16)

Since only the gradient ofMb appears in the the flow equation
the value ofM̄ is irrelevant and one can set

M̄ = 0. . . . . . . . . . . . . . . . . . (17)

Note that we must haveMb(Rv) = Mb(Rl) = M̄ = 0. This is
easily checked by using partial integration in Eq. 16, and refer-
ring to Eq. 14. The determination ofMb through the equation
of state is thus completed. The determination ofMc follows.

The Interaction Energy due to Wetting. The incomplete--
wetting approximation is now assumed, i.e., we assume that the
interaction energy depends exclusively onR. An unambiguous
definition of the capillary pressurePc as a function ofR is then
possible by Eqs. 7b and 11. One gets

d Pc

d R
= R

dMc

d R
. . . . . . . . . . . . . . . (18)

Apparently, this determinesMc when the capillary pressure is
known, but we shall see that the determination ofI is an essen-

tial first step. To getI we use the defining Eq. 4b, now rewritten
as

Mc =
d I

d R
,

in Eq. 18:

d2 I

d R2 =
1

R

d Pc

d R
.

The formal integration of this equation gives

I (R) = R
∫

Pc

R2 d R− α + β R. . . . . . . . . (19)

The bounds of integration and the constantsα andβ depend on
the wetting properies, as will be shown below. It is convenient
to start by defining saturation.

The averaged fluid is at equilibrium in a two-phase state if
its densityR is betweenRv and Rl (seeFig. 1). The volume
fractions of the two phases can be taken as the definitions of
the vapor and liquid saturations,Sv andSl . This implies that

Sv =
Rl − R

Rl − Rv

, . . . . . . . . . . . . . . (20a)

Sl =
R − Rv

Rl − Rv

. . . . . . . . . . . . . . . (20b)

If the rock is vapor-wet, there will be a residual vapor satura-
tion, Svr , due to the fact that the density of what is now the
liquid phase isR∗

l < Rl . According to Eq. 20a,

Svr =
Rl − R∗

l

Rl − Rv

. . . . . . . . . . . . . . . (21)

If the rock is liquid-wet there will, correspondingly, be a resid-
ual liquid saturation

Slr =
R∗

v − Rv

Rl − Rv

, . . . . . . . . . . . . . . (22)

where R∗
v > Rv is now the density of the vapor phase. See

Fig. 2. From a different point of view, one can say that the

R

v

R

l

R

*

v

R

*

l

Shift due to

liquid wet rock

Shift due to

vapor wet rock

Figure 2: Shifts in the densities of the liquid and vapor
phases due to the wetting properties. The W -function is
shown in broken line.

shifted densities are inferred from measured residual satura-
tions by

R∗
v = Rv + (Rl − Rv)Slr , . . . . . . . . . (23a)

R∗
l = Rl − (Rl − Rv)Svr . . . . . . . . . . (23b)
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The free energy9, Eq. 12, reduces to9b, Eq. 13, for neutral
wetting (I = 0). The phase transition mechanism is then reg-
ulated byW. For non-neutral wetting this mechanism is reg-
ulated byW + I . One then expectsW + I to be a modified
W-function, the modification consisting in a shift of the min-
ima along theR-axis.

We now turn to the determination ofI . We shall in this
paper limit ourselves to the case of a vapor-wet medium.

R

v

R

l

R

*

l

W
(
R

)
 
+

 
J
(
R

)

R

Figure 3: Expected form of the W + I function for vapor-
wet rock. Note that it is not necessarily smooth at R∗

l . The
W -function is shown in broken line.

The Interaction Energy for Vapor-Wet Rock. The rock be-
ing vapor-wet one expects a residual vapor saturation in a pro-
cess where, say, the porous medium is filled initially with vapor
which is then displaced by liquid. The equilibrium value of the
averaged vapor saturation remains unchanged, equal toRv, but
the averaged liquid density will beR∗

l < Rl . We then want
I (R) to be such thatW + I has the form shown inFig. 3. Ob-
viously, there is a minimum of three necessary conditions onI :

I (Rv) = 0, . . . . . . . . . . . . . . . (24a)

I ′(Rv) = 0, . . . . . . . . . . . . . . . (24b)

I (R∗
l ) = −W(R∗

l ), . . . . . . . . . . . . (24c)

whereI ′ is the derivative ofI . The two first conditions imply
that W + I resemblesW nearR = Rv, the third implies that
W + I vanishes atR = R∗

l . Since, for vapor-wet medium,
Pc(Rv) is a finite constant (usually called the entry pressure)
we can write Eq. 19 as

I (R) = R
∫ R

Rv

Pc(R′)

R′2 d R′ + β R − α.

β andα are determined by Eqs. 24a and 24b. One finds

I (R) = Pc(Rv)

(
1 −

R

Rv

)
+ R

∫ R

Rv

Pc(R′)

R′2 d R′. . (25)

We now use a capillary pressure versus saturation correlation
of the form

Pc = C

(
1 − Svr

Sv − Svr

)a

, 0 < a < 1, . . . . . (26)

whereC is the entry pressure while 1/a is the pore size distri-
bution index (a= 0 corresponding to uniform pore size). Using

Eqs. 20a and 21 one finds that

I (R) = C J(r ), . . . . . . . . . . . . . (27a)

J(R) = 1 −
R

Rv

+ R
∫ R

Rv

1

R′2

(
R∗

l − Rv

R∗
l − R′

)a

d R′. (27b)

Plots ofJ(R) are shown onFig. 4.
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Figure 4: Function J(R) for vapor-wet rock, Eq. 27b, plotted
versus R for the numerical values indicated.

Eq. 24c now turns out to be a condition onC:

C = −
W(R∗

l )

J(R∗
l )

. . . . . . . . . . . . . . . (28)

We see thatC < 0. Eq. 28 is an equation betweenRv, R∗
l , C,

anda, involving the thermodynamic functionW of the fluid.
Referring to Eq. 23b we see that we can look upon Eq. 28 as an
equation containing the pure liquid and vapor densitiesRv and
Rl as parameters, and linking the two constantsC anda to the
residual vapor saturationSvr . Referring toFig. 5 we see thatC
goes to zero whenSvr goes to zero, sinceR∗

l goes then toRl .
The I function is now determined for the vapor-wet case

andW + I has the form shown inFig. 5. Note that the deter-
mination of the constantC in the capillary pressure correlation,
Eq. 26, is essential to make sure thatW + I function has two
minima thus supporting the existence of two phases.

The functionMc(R) for the vapor-wet case is now known
through its definition, Eq. 11.

The capillary pressure function being defined forSv > Svr
only, I and consequentlyMc are only known forRv < R < R∗

l
(see Eqs. 27). For most numerical applications one must supply
a functionMc which is valid outside this interval. Obviously,
it seems natural to use Eq. 27b forR < Rv also (this was done
in the plots ofFigs. 4 and 5). For R > R∗

l , however, a contin-
uation must be found that is best adapted to the physics of the
problem. An example is given in elsewhere in this paper.
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Figure 5: Vapor-wet case: function I (R) resulting from Pc

versus saturation given by Eq. 26, plotted versus R. Func-
tions W and W + I are also shown. Concerning the broken
lines, see the text following Eqs. 37.

The Fluid Viscosity. We shall use a formula for viscosity pro-
posed by Arrhenius and used in P1, namely

η(R) = η
Sl
l ηSv

v , . . . . . . . . . . . . . . (29)

whereSl andSv are the liquid and vapor saturations defined by
Eqs. 20.

Application: Relative Permeabilities
The numerical experiments described here are restricted to one-
dimensional situations. The coordinate axis (orx-axis) points
in the direction of the gravitational force. The solutionR(x, t)
to the following equation is sought (see Eqs. 1 and 2):

∂ R

∂ t
=

∂

∂x

{
K R2

φη

∂

∂x

[
d9

d R
− 3

∂2 R

∂x2 + G

]}
. . . (30)

In this equation,G = −gx (g > 0 is the axceleration due to
gravity); η is the fluid viscosity given by Eq. 29;9 is given by
Eqs. 12, 13, and 17. Thus

d9

d R
=

dW

d R
+

d I

d R
= Mb + Mc. . . . . . . . (31)

Following P1 we now introduce dimensionless variables. The
dimensionless counterpart of any quantityq is denoted̃q. The
definitions of the dimensionless variables are given in the Nom-
enclature section. The dimensionless version of Eq. 30 is

∂ R̃

∂ t̃
=

∂

∂ x̃

{
R̃2

η̃

∂

∂ x̃

[
M̃b + M̃c − 3̃

∂2 R̃

∂ x̃2 − g̃x̃

]}
. (32)

We shall also need the dimensionless version of the velocity,
Eq. 2:

Ṽ = −
R̃

η̃(R̃)

∂

∂ x̃

[
M̃b + M̃c − 3̃

∂2 R̃

∂ x̃2
− g̃x̃

]
. . . (33)

The I appearing in Eq. 31 will be an extended version of Eqs. 27
and 28. As forW, we shall use the following (called the pseudo
van der Waals form in P1):

W̃(R̃) = (R̃ − R̃v)
2(R̃ − R̃l)

2, . . . . . . . . (34)

so that

M̃b = 2(R̃− R̃v)(R̃ − R̃l)(2R̃ − R̃v − R̃l). . . . (35)

Since we are not trying to replicate the behavior of any specific
fluid we have chosen ãW that is very easy to use: it allows
us to choosẽRv and R̃l at will; otherwise, using van der Waals
or more realistic equations of state (Peng-Robinson and others),
these constants must be obtained through calculations involving
the Maxwell rule.

Vapor-Wet Rock. Gravity Drainage by Liquid Phase. We
consider a one dimensional porous medium where flow occurs
vertically. It is initially filled with vapor and it is assumed that
liquid is provided at the top, at a constant pressure, and that the
vapor can flow out at the bottom, also at constant pressure.

The mathematical formulation, inside the P1 model, is as
follows.

• The x̃-axis points downwards and 0≤ x̃ ≤ 1.

• Initial condition:

R̃(x̃, 0) = R̃0(x̃), . . . . . . . . . . (36)

where R̃0 ≈ R̃∗
l for small values ofx̃, and R̃0 ≈ R̃v

otherwise.

• Boundary conditions:

R̃(0, t̃) = R̃∗
l , . . . . . . . . . . . (37a)

R̃(1, t̃) = R̃v, . . . . . . . . . . . (37b)

∂ R̃

∂ x̃
(0, t̃) = 0, . . . . . . . . . . . . (37c)

∂ R̃

∂ x̃
(1, t̃) = 0. . . . . . . . . . . . . (37d)

The I -function which is needed to defineMc, is defined here
by Eqs. 27 and 28, where we have chosen

R̃v = 0.4, R̃l = 1.6, a = 0.5, Svr = 0.4, . . (38)

implying that R̃∗
l = 1.12. In addition, we have chosen

ηv/ηl = 0.1, g̃ = 0.5, 3̃ = 0.01. . . . . (39)

The solution is expected to show a gradual sinking of the liq-
uid displacing the gas so that there should be, after some time
has elapsed, a layer of liquid with densitỹR∗

l at the top, a two-
phase transition region, and a layer of gas with densityRv at
the bottom. The above value of̃3 has been chosen so that
the three regions should have about the same thickness. (It is
shown in P1 that the thickness of the transition region is about
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2
√

3̃/(R̃l − R̃v), as referred to the unit of length.) We have used
a commercially available program using finite elements (FEM-
LAB, operating under MATLAB)1 . The program requires con-
tinuous and smooth functions as input, implying that: (i)R̃0(x̃)

must be smooth (infinitely differentiable is best) and; (ii)I must
be continued smoothly, to the right of̃R∗

l , as indicated onFig. 5
by the broken lines. The most important consequence, related
to the second smoothing above, implies removing the infinity
from thePc curve.

Figure 6: Vapor wet rock. Gravity drainage by liquid phase.
Plot of R̃(x̃, t̃) vs. x̃ for (left to right) t̃ = 0.05 to 0.5 in steps
of 0.05. Equations solved: 32, 36, and 37; numerical values:
38 and 39. Inset: long-time solution of the same equations
with the same numerical values as above, except that g̃ = 0.

The result of the calculation of̃R(x̃, t̃) is shown inFig. 6.
The following facts emerge from this figure:

• The transition from the liquid (̃R ≈ R̃∗
l ) plateau to the

steep-slope region is fast when compared to the transition
from steep-slope region to the vapor (R̃ ≈ R̃v) plateau.
This is obviously due to the medium being vapor wet.

• R̃(x̃, t̃) behaves like a wave, travelling at constant ve-
locity and without distortion, so that̃R(x̃, t̃1) is (up to
calculational errors) a translated version ofR̃(x̃, t̃2).

• EachR̃(x̃, t̃) is a translated version of the curve shown in
the inset. The latter is the long-time solution of Eqs. 32,
36, and 37 with the numerical values given in 38 and 39,
except that̃g = 0. In other words, the curve in the inset is
the static equilibrium solution without gravity. As such,
it must (and does) satisfy Eq. 9a withG = 0. Keeping in
mind Eq. 17 and using dimensionless quantities, we see
that the curve in the inset obeys

M̃b + M̃c − 3̃
d2 R̃

dx̃2
= 0.

1FEMLAB is a registered trademark of COMSOL AB; MATLAB is a reg-
istered trademark of TheMathWorks Inc.

We mention here for future reference that, when one takes
into account Eqs. 4a and 11, the following first integral
can be found:

∂ R̃

∂ x̃
= −

√
2(W̃(R̃) + Ĩ (R̃)

3̃
, . . . . . . (40)

obeying conditions 37.

We shall return to these properties of the solution later.
We now present a method for using the above solution to

calculate relative permeabilities to vapor and liquid,krv and
krl . These do not exist in the P1 model, so that their calculation
presupposes that they can be defined with quantities that can be
calculated in the model. The definitions, in terms of dimension-
less quantities, are

Ṽv =
krv

η̃(R̃v)

(
−

∂ p̃v

∂ x̃
+ g̃R̃v

)
, . . . . . . . (41a)

Ṽ∗
l =

krl

η̃(R̃l)

(
−

∂ p̃∗
l

∂ x̃
+ g̃R̃∗

l

)
. . . . . . . . (41b)

One here assumes that, at a point in the two-phase region, the
fluid consists of a vapor phase with densityR̃v, viscosityη̃(R̃v),
velocity Ṽv and pressurẽpv, and a liquid phase where the corre-
sponding quantities are primed and have subscriptl (the prime
as used here reminds that the medium is vapor wet so that the
liquid phase is a mixture of liquid and residual vapor).

We now consider a timẽt0 at which the solution has, as
closely as possible, the characteristics of an infinite one-dimen-
sional system consisting of liquid (and residual vapor) to the
left, a transitional two-phase region in the middle, and vapor
to the right, the whole flowing from left to right as a standing
wave. Referring toFig. 6 we see that a number of solutions
with values oft̃0 around 0.5 have the required characteristics.
The considerations which now follow are valid for solutions at
sucht̃0’s.

The phase densities and viscosities to use in Eqs. 41 are
already well defined and the main problem is to derive phase
velocities and phase pressures. We have not found a rigorous
derivation, so that the results presented are based on guesses
based on the physics of the situation.

Basing the definition of phase velocities on the concept of
momentum one can say that the local momenta carried by each
phase should add to the the fluid momentumR̃Ṽ :

R̃v Ṽv + R̃∗
l Ṽ∗

l = R̃Ṽ . . . . . . . . . . . . (42)

This equation does not allow the calculation of the two phase
velocities but we can use it as a guide: any formulas we derive
for Ṽv andṼ∗

l should verify it.
We use the following shorthand notation in what follows:

0∗
v (x̃, t̃0) =

R̃(0, t̃0)Ṽ(0, t̃0) − R̃(x̃, t̃0)Ṽ(x̃, t̃0)

R̃(0, t̃0)Ṽ(0, t̃0) − R̃(1, t̃0)Ṽ(1, t̃0)
. . (43)

Note that0∗
v is a normalized vapor momentum, constructed on

the same lines as the normalized vapor saturation

S∗
v (x̃, t̃0) =

R̃(0, t̃0) − R̃(x̃, t̃0)

R̃(0, t̃0) − R̃(1, t̃0)
=

R̃∗
l − R̃

R̃∗
l − R̃v

, . . . (44)
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where the second equality follows from Eqs. 37a and 37b.
The simplest expressions for the local phase velocities, sat-

isfying Eq. 42, are

Ṽv(x̃, t̃0) = Ṽ(1, t̃0)0
∗
v(x̃, t̃0), . . . . . . . (45a)

Ṽ∗
l (x̃, t̃0) = Ṽ(0, t̃0)[1 − 0∗

v (x̃, t̃0)]. . . . . . (45b)

A confirmation of the fact that these expressions are the cor-
rect choices comes from a comparison of the plot of0∗

v versus
x̃ with that of S∗

v versusx̃: seeFig. 7. The two curves are

Figure 7: Plot of 0∗
v vs. x̃ (solid line) and of S∗

v vs. x̃ (dotted
line) at t̃ = 0.5. See the caption of Fig. 6.

practically undistinguishable, meaning thatṼv andṼ∗
l are pro-

portional to, respectively,S∗
v and 1− S∗

v . We shall see later
that this leads to relative permeabilty curves with the desired
straight-line behavior when the capillary pressure vanishes.

The numerical solution leads then to

Ṽv(x̃, t̃0) = Ṽ(1, t̃0)S
∗
v , . . . . . . . . . . (46a)

Ṽ∗
l (x̃, t̃0) = Ṽ(0, t̃0)[1 − S∗

v ]. . . . . . . . . (46b)

We can go one step further and express the boundary velocities
in terms of densities by using Eq. 33. Indeed, since the density
at t̃0 has flat plateaus near the left and right boundaries (Fig. 6),
the first, second, and third derivatives ofR̃ with respect tox̃
vanish atx̃ = 0 andx̃ = 1 (this is verified to be the case, up to
numerical errors) we find that

Ṽ(0, t̃) =
R̃∗

l

η̃(R̃∗
l )

g̃, . . . . . . . . . . . . (47a)

Ṽ(1, t̃) =
R̃v

η̃(R̃v)
g̃, . . . . . . . . . . . . (47b)

so that

Ṽv(x̃, t̃0) =
R̃v

η̃(R̃v)
g̃S∗

v , . . . . . . . . . . (48a)

Ṽ∗
l (x̃, t̃0) =

R̃∗
l

η̃(R̃∗
l )

g̃(1 − S∗
v ). . . . . . . . . (48b)

We now turn to the definitions of the phase pressures, or rather
of the pressure gradients, needed in Eqs. 41.

R

v

R

*

l

R

A B

Figure 8: Pb+Pc versus density, corresponding to the W+I
curve of Fig. 5 (broken line). Compare with Fig. 1.

The required definitions are based first on the observation
that, since the phase separating mechanism is now based on
the W + I -function shown inFig. 5 (broken curve) then the
gradient ofPb + Pc at equilibriumis zero, in analogy with the
fact that the gradient ofPb at equilibrium is zero when onlyW
is present: seeFig. 1 where the horizontal line between A and
B is theequilibrium Pb, and compare withFig. 8. This means
that

[
∂ P̃b

∂ x̃

]

eq

= −
∂ P̃c

∂ x̃
. . . . . . . . . . . . . (49)

The right-hand side of this equation is easily obtained in terms
of ∂ R̃/∂ x̃, keeping in mind thatP̃c is a function ofS∗

v only,
and thatS∗

v is defined Eq. 44. We know, however, that due to
the properties of the solution,∂ R̃/∂ x̃ is given by Eq. 40. Thus
∂ P̃b/∂ x̃ at equilibrium can be written in terms of the derivative
of the capillary pressure with respect to the normalized vapor
saturation, and of the thermodynamic functionsW and I . We
introduce the following notation

γ (S∗
v ) =

[gRv(Rl − Rv)]−1

(1 − Svr )

d Pc

dS∗
v

√
2[W(R̃) + I (R̃)]

3
, (50)

where the argument of theW and I functions is

R̃ = R̃v + (R̃l − R̃v)(1 − Svr )(1 − S∗
v ), . . . . . (51)

and obtain
[

∂ P̃b

∂ x̃

]

eq

= −g̃R̃vγ (S∗
v ).

Note, incidentally, thatγ is dimensionless and can be written
with tilded as well as with non-tilded quantities. We now pos-
tulate that

∂ p̃v

∂ x̃
= −g̃R̃vγ (S∗

v ), . . . . . . . . . . . (52a)

∂ p̃∗
l

∂ x̃
= −g̃R̃vγ (1 − S∗

v ). . . . . . . . . . . (52b)
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Using these equations, together with Eqs. 48 in Eqs. 41, we
obtain

krv =
S∗
v

1 + γ (S∗
v )

, . . . . . . . . . . . . (53a)

krl =
1 − S∗

v

1 + (Rv/R∗
l )γ (1 − S∗

v )
. . . . . . . . (53b)

These equations express relative permeabilities in terms of, es-
sentially, the equation of state and the capillary pressure and, in
addition, of the parameter3 which is related to the thickness of
the two-phase region. Note that the relative permeability curves
reduce to two straight lines when the capillary pressure is zero,
sinceγ then vanishes.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

k

rl

k

rv

Figure 9: Vapor wet rock. Gravity drainage by liquid phase.
Relative permeabilities, krv and krl , versus S∗

v for a = 0.1
(full line), a = 0.5 (broken line), and a = 0.9 (dotted line).

Fig. 9 shows a plot ofkrv andkrl versusS∗
v , for three values

of a; the other parameters needed are those of Eqs. 38 and 39.
Concerning thermodynamic functions,Pc is given by Eq. 26,
W by Eq. 34, andI by Eqs. 27 and 28. Note in particular
that theI -function used inFig. 9 is not the smoothed one (the
broken line inFig. 5): the latter was only introduced for the
numerical solution of Eq. 32.

Discussion

The Incomplete-Wetting Approximation. We presented abo-
ve the incomplete-wetting approximation and assumed that it
holds for the calculations presented in the paper. We have,
however, used a capillary pressure versus saturation correlation,
Eq. 26, which holds for a completely vapor-wet medium. This
was done in the interest of simplicity and has lead to results that
make sense both mathematically and physically, leading to the
conclusion that the model presented is robust. The conclusions
are, however, restricted to cases where the incomplete wetting
approximation holds, i.e., essentially cases where the perme-
ability is well above the millidarcy.

Work is in progress on the strictly incomplete-wetting case,
with a capillary pressure correlation of the form15

Pc = Cv

(
1 − Svr

Sv − Svr

)av

+ Cl

(
1 − Slr

Sl − Slr

)al

.

Comparison with Corey-Burdine. A comparison of the rel-
ative permeability curves presented in this paper with the well
known Corey-Burdine expressions is shown inFig. 10. We re-
mind that the Corey-Burdine formulas are, with our notation
for the normalized vapor saturation,

krl = [1 − (S∗
v )2a+1][1 − S∗

v ]m, . . . . . . (54a)

krv = (S∗
v )2a+1+m, . . . . . . . . . . . . (54b)

wherem is the tortuosity exponent. The Corey-Burdine curves

0
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0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

k

rl

k

rv

Figure 10: Relative permeability curves given by Eqs. 53
(solid line) and by Eqs. 54 (broken lines), plotted versus
normalized vapor saturation S∗

v . For the numerical values
of the various parameters see the text.

shown are drawn witha = 0.5 andm = 2. Our curves were
obtained with the parameters given in Eqs. 38 and 39. Consid-
ering the difference in the approaches and the difference in the
dependence on numerical parameters, the agreement between
the two sets of curves is somewhat surprising. However, the
agreement is probably more than a coincidence since the pa-
rameters appearing in theγ -function, Eq. 50, have been tuned
to each other as described above: we have produced a solu-
tion which has the characteristics of an infinite one-dimensional
system consisting of three regions (liquid, two-phase, vapor) of
about the same thickness.

The Entry Pressure in Terms of Residual Saturation. The
entry pressureC is given above by Eq. 28. It depends on the
equation of state of the fluid throughW (see Eq. 15) and on the
capillary pressure correlation throughJ (see Eqs. 26 and 27b).
It can easily be seen thatC depends on the fluid parametersRl
and Rv. More importantly,C is a function of two variables,a
andSvr .
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a = 0.1

a = 0.2

a = 0.3

a = 0.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.1 0.2 0.3 0.4 0.5

Figure 11: The dimensionless entry pressure C̃ versus Svr ,
for different values of a. See text for details.

For the sake of a simple illustration, we have chosen theW̃-
function given by Eq. 34 and have plotted the resulting dimen-
sionlessC̃-function inFig. 11 for R̃v = 0.4 andR̃l = 1.6. This
plot can be used for a quick determination of the residual vapor
saturation in the case of a vapor-wet porous medium, whenever
the constanta and the entry pressureC are either known or can
easily be determined experimentally.

Conclusions
We have presented a new theory for two-phase flow in porous
media for a fluid consisting of one chemical component.

We have also presented some conclusions of the theory, in
the case of a vapor-wet medium. These are as follows:

• The relative permeabilities for a wave-like flow type can
be expressed in terms of the equation of state of the fluid
and of the capillary pressure correlation.

• There is a relation between the pore size distribution pa-
rameter, the entry pressure, and the residual vapor satu-
ration. This can be used for a quick determination of the
residual vapor saturation.

Nomenclature
a = See Eq. 26

A6 = Pore surface per unit volume
C = Entry pressure. See Eq. 26
C̃ = C/Pc

F6 = Free enbergy of the6-fluid. Eq. 3
g = Axceleration due to gravity
G = Gravitational potential giving rise to an accelera-

tion -∇G
g̃ = (Rc L/Pc)g
G̃ = (Rc/Pc)G = g̃x̃
I = Free energy of interaction between the fluid proper

and the6-fluid. Eqs. 3, 12
Ĩ = I /Pc
J = See Eqs. 27

K = Absolute permeability
krl = Relative permeability to liquid
krv = Relative permeability to vapor

` = Thickness of transition region between phases (po-
re level)

L = Unit of length
m = Tortuosity exponent
M = Eq. 6
M̄ = Fluid chemical potential at equilibrium

Mb = Chemical potential of bulk fluid (macroscopic)
M̃b = (Rc/Pc)Mb

Mc = Chemical potential of bulk fluid, due to capillary
effects or wetting (macroscopic)

M̃c = (Rc/Pc)Mc

M6 = Eq. 4c
Mc

6
= Eq. 4d

p̃∗
l = Dimensionless pressure in averaged liquid phase

(with residual vapor)
p̃v = Dimensionless pressure in averaged vapor phase
P̄ = Fluid pressure at equilibrium

Pb = Pressure of bulk fluid (macroscopic)
P̃b = Pb/Pc
Pc = Capillary pressure (macroscopic)
P̃c = Pc/Pc
Pc = Critical pressure of averaged fluid
q = φ/(`A6)

R = Density of averaged fluid (macroscopic level)
R̃ = R/Rc

Rc = Critical density of averaged fluid
Rl = Density of averaged liquid
R̃l = Rl/Rc
R̃v = Rv/Rc
Rv = Density of averaged vapor
R∗

l = Density of averaged liquid with residual vapor
R̃∗

l = R∗
l /Rc

R̃0 = Density of averaged fluid at initial time
R∗

v = Density of averaged vapor with residual liquid
R6 = Density of averaged6-fluid (macroscopic level)
Sl = Liquid saturation. Eq. 20b. Also(R̃ − R̃v)/(R̃l −

R̃v)

Sv = Vapor saturation. Eq. 20a. Also(R̃l−R̃)/(R̃l−R̃v)

S∗
v = (R̃∗

l − R̃)/(R̃∗
l − R̃v). Normalized vapor saturation

(vapor wet medium)
Svr = Residual vapor saturation
Slr = Residual liquid saturation

t = Time
t̃ = (K Pc/(φηc L2))t
t̃i = Particular values of̃t (i = 1, 2, 3)
V = Velocity (macroscopic level)
V = Velocity (macroscopic level) in one dimension
Ṽ = (φηc L/(K Pc))V . Dimensionless version of V

Ṽ∗
l = Dimensionless velocity of averaged liquid (with res-

idual vapor)
Ṽv = Dimensionless velocity of averaged vapor
W = Eq. 13, 15
W̃ = W/Pc. Eq. 34
x = Space coordinate (one dimensional system)
x̃ = x/L
α = Integration constant



SPE 77540 RELATIVE PERMEABILITY FROM CAPILLARY PRESSURE 11

β = Integration constant
γ = Eq. 50

0∗
v = Normalized vapor momentum. Eq. 43
η = Viscosity of averaged fluid. Eq. 29

η̃(R̃) = η/ηc = (ηv/ηl)
r , r = (R̃l + R̃v −2R̃)/((2(R̃l −

R̃v))

ηv = Viscosity of averaged vapor
ηl = Viscosity of averaged liquid
ηc =

√
ηvηl

3 = Constant (macroscopic) related to interfacial ten-
sion (microscopic)

3̃ = (R2
c /(Pc L2))3

ρ = Fluid density (pore level)
ρ6 = Density of6-fluid (pore level)
φ = Porosity
9 = Helmoltz free energy. Eqs. 3, 12

9b = Bulk free energy. Eqs. 3, 12, 13

Subscripts

c = Critical
l = Liquid
v = Vapor
6 = 6-fluid

Superscripts
′ = Derivative. Also, indicates an integration variable

b = Bulk
c = Capillary
∗ = Normalized variable

Overstrikes

˜= Dimensionless variable

Abbreviations

P1 = Reference 1
DI = Diffuse-interface
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