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Abstract

A new theory is reviewed for single-component, two-phase
flow in porous media. It includes wettability and capillary
pressure as integral parts of the thermodynamic description and
does not make use of the relative permeability concept. How-
ever, by providing a capillary pressure correlation, we are able
to extract relative permeabilities and to show good consistency
between rock property correlations.

Introduction

A new theory for two-phase flow in porous media has recently
been developed and presented in a papeferred to below as
PL. A short review is given in the next section.

At the pore level, the two phases, liquid and its vapor,
are treated as a single fluid with variable density, according
to the diffuse-interface modél® Wettability>> and capillary
pressure are included in the thermodynamic description while
phase pressures and relative permeabilities are irrelevant. Al-
though the fluid description is restricted to a single-component
system, practical examples may be found in the steam-water
literature® 7

The upscaling from pore level equations to the macro-
scopic, Darcy-level equations is done by the M&rkverag-
ing technigue. The equation of state is of the van der Waals
type and describes two-phase flow by a single partial differ-
ential equation of the Cahn-Hilliard type coupled to a set of
functions for the thermodynamic properties of the fluid, includ-
ing capillary pressure. The differential equation is solved by a

numerical procedure. To our knowledge, this theory is the only

one published that includes wettability and capillary pressure as
integral parts of the thermodynamical description of two-phase
flow in porous media.

Capillary pressure and relative permeability both depend on
the same fluid-fluid and rock-fluid interaction energies. If the
capillary pressure vanishes, the residual saturations approach
zero and the relative permeability of a phase becomes equal
to its saturation. Relative permeability models in the litera-
ture are therefore often inferred from a capillary pressure cor-
relation coupled with pore network models, e.g., the Corey-
Burdine relative permeability correlations from the Brooks-
Corey power-law capillary pressure correlation and the bundle-
of-tubes mode?.

Introducing a capillary pressure correlation of the Brook-
Corey type, we generate relative permeability curves from the
theory without any further specifications of the pore network.
The curves compare favorably with the Corey-Burdine type,
thus validating their simple power-law form. The solution of
the Cahn-Hilliard equation is made for a downwards primary
drainage process where non-wetting water diplaces wetting va-
por, for a range of capillary pressure levels and pore-size distri-
bution indices.

The theory and methods can be used to check consistency
between models for capillary pressure and relative permeabili-
ties, e.g., hysteretic fluid flow processes with wettability incor-
porated in the thermodynamic description.

Theoretical Background

At pore level, B assumes a fluid consisting of a single chem-
ical component, capable of existing in either a one-phase state
which is a liquid or a vapor, say, or in a two-phase state which
would then be a coexistence of a liquid and a vapor. The equa-
tion of state is of the van der Waals type. The diffuse-interface
theory of two-phase flo&? is then adopted. In short terms,
this theory, called DI below, is as follows. It postulates that,
in the case of a coexistence of two phases, a transition region
exists between the phases, where the fluid density varies con-
tinuously, thus allowing a single-fluid description. (Note that
this is in strong contrast to the traditional view of a two-phase
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system as two distinct fluids separated by a surface.) The tran-
sition region in Dl is thin and the gradient of density is large in
that region. Accordingly, DI incorporates, in the thermodynam-
ical description of the fluid, an additional energy proportional
to the squared gradient of the dens|y |2, the effect of which
is twofold: (i) the fluid dynamics of DI consist of the Navier-
Stokes equations modified by an additional term proportional
to VV2p;23 (ii) the thermodynamics of DI needs to emphasize
that pressure and chemical potential have the traditional mean-
ingsin the bulk fluid(meaning far from the transition region)
and this is done by letting pressure and chemical potential of
the bulk fluid carry the superscript

Seppecherhas shown that the wetting properties in DI are
described by the Cahn theory of wettifiglt is important for
the appreciation of what follows to point out that Cahn de-
scribes wetting through a very short-range interaction between
the fluid and the solid. This interaction gives rise in DI to an
extra boundary condition, of the Neumann type, which answers
to the extra term in the Navier-Stokes equations. This boundary
condition on the density which states thaV p along the nor-
mal to the solid surface is proportional to the cosine of the wet-
ting angle>® Thus wetting implies a modification of the fluid

density near the surface, the nearness being characterized by a

length? ~ 10-1°m. (¢ is also the thickness of the transition re-
gion between phases, at pore lebeThis extreme localization
makes it possible, in the process of averaging to macroscopic
level, to look at wetting as having the same effect as a surface
fluid, called thex-fluid, with density oy, obeying its own flow
equationst

The averaging of the pore level equations over many pores
inside a representative volume is done thi#% assuming that
the following parameters are uniform throughout the porous
medium: porosityp, pore surface per unit volumé;, and tem-
perature.

This averaging produces the equations for two-phase flow
in porous media arising, as stated, from DI. The dependent vari-
ables in these equations are the macroscopic averagearnd
ps, namelyR an R. In PY, p andR carry a subscript and
are said to be quantities of thiefluid, as a necessary distinc-
tion from the Z-fluid introduced above; the subscriptis here
suppressed for simplicity, andland R are said to be quantities
of the fluid properwhen the necessity to distinguish from the
2 -fluid arises. The central equation is a mass balance equation
for R:

9R
2LV (RV) =0,

1
a1 ()
whereV is the macroscopic (Darcy-like) velocity:
KR
V=—¢—V(Mb+M°—AV2R+G). 2)
n

In this expressionK is the absolute permeabilityy is a con-
stant, andG is the gravitational potential giving rise an accel-
eration equal to-VG; 7 is the fluid viscosity, assumed to be
a known function ofR (see at the end of this sectiorly|? is
the bulk chemical potential and is a function Bf M€ is the
chemical potential due to wetting and is a function®fand
RE'

Chemical potentials replace pressures as the naturally oc-
curing quantities in the Darcy-like velocity, but we shall see
that pressures can be reinstated in certain circumstances. The
information which is necessary to determine these chemical po-
tentials is contained in the Helmholtz free energy of the bulk
fluids (fluid proper and=-fluid), which has the form

pU(R, Ry) = ¢UP(R) + A;Fx(Ry) + 61 (R Ry).  (3)

Here WP is the free energy of the averaged fluid propEs,

is the free energy of the averaged surface fluid, &nd the
energy of interaction between the two fluids. TKE and M¢®

are defined below, together with the corresponding chemical
potentials of thex-fluid:

dwb
M= TR (4a)
al
ME= . . (4b)
dF
M)::ﬁv (4C)
>
¢ 9l
ME = ) . (4d
2= A 9Rs (4d)

For neutral wetting the interaction energyis identically zero

so thatM® drops out of Eq. 2. Th&-fluid becomes irrelevant
and the problem is completely defined by Egs. 1, 2, and 4a. For
non-neutral wetting (R, Ry) determinesM® as a function of

R andR;. There is a need for an additional equation which,
according to P is

My =M, ®)

where the left-hand side is defined by Eq. 4c while the right-
hand side is
1

M =Mb—AV2R—§|V|2. (6)
P! concludes that the equations for two-phase flow in porous
media resulting from DI are Egs. 1, 2, and 5. As additional
input, all thermodynamic functions appearing on the right-hand
side of Eq. 3 must be known, as weel as the fluid viscasity
Eqg. 2.

It is also pointed out in Pthat the chemichal potentials can
be replaced, in Eg. 2, by the more familiar pressures, through
the following formulas:

1dPP dmP

- _ -7 7
RdR ~ dR’ (73)
RVMC = VP, (7b)

HerePP is the bulk pressure, related to the dengttshrough an
equation of state, whil®°€ is the capillary pressure. Eq. 7ais a
thermodynamical relation valid at constant temperature. Eq. 7b
on the other hand is just a formal definition which is not com-
patible with P¢ being a function ofR and Ry. Indeed, the
assumptiorP® = PS(R, Ry) leads directly to

9 0P° 9 9P°  9M°
IR, IR 0ROR, 0OR,’
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so that, strictly speakind?° is not a function of state. We shall
return to this presently.

It is of some interest to point out that the combination of
Egs. 1 and 2, and of Egs. 3, 4a, and 4b, gives

R K R? v
W _v (R (W _avriG)).. .. @®
ot on R
When G is identically zero this reduces to the Cahn-Hilliard
equation.

This completes the review of'P What follows are further
developments to the model.

The Incomplete-Wetting Approximation. It is shown in P

(Egs. 35) that, at equilibrium,
MP 4+ M®+G— AVZR=M,
Mg+ MS+G =M,

(92)
(9b)

whereM is a constant (see below, Eq. 13). Assuming equilib-
rium with zero macroscopic velocity everywhere, we get from
Eq. 6, thatM = MP — AVZR so that Egs. 9 above can be
written

M+MC+G=M,
Ms + M$+ G = M.

These equations, together with Eqg. 5, now giv¢ = MS
which, with Egs. 4b and 4d yields

al 9l
3@R)  3(AzRy)’

Itis easy to show that this is a necessary and sufficient condition
for | to be a function oppR + Az R;.

It is shown in P thatp R/(AxRy) (the ratio of averaged
fluid proper to average® -fluid per unit volume) is of the same
order of magnitude ag = ¢ /(£ Az). Using the Karman-Kozeny
equatiort? (K = ¢3/(5A2)) one gets

q=v5K/p/tL.

We shall, in this paper, say that we hax@mplete wettingvhen
the wetting angle is either 0 or 190 degrees; otherwise, we shall
say that we havencomplete wetting.

It is known' that for incomplete wetting¢ ~ 10-°m so
that q is quite large and the dependencelobn Az R; can
be neglected. For complete wetting on the other hand, experi-
mentg! indicate that? may increase by a factor of many hun-
dreds: the dependence bfon As Ry can then become impor-
tant for permeabilities of the order of the millidarcy.

Accordingly, we calll = | (R) the incomplete-wetting ap-
proximation. We assume, for the rest of this paper, that this
approximation is valid .

A direct consequence of the incomplete-wetting approxi-
mation is that

dl
MC=——. .
dR

The equations for two-phase flow in porous media resulting
from DI are now Egs. 1 and 2 where the chemical potentials

. (10)

. (11)

are defined by Egs. 4a and 11. In addition, thecontribution
to the free energy, Eg. 3, can be neglected so that one can
write

¥(R) = YP(R) + I (R). . . (12)
The two functions on the right-hand sid&? and I, must be
known sinceM® and M¢ are their derivatives. They are deter-
mined below. The fluid viscosity appearing in Eq. 2 must also
be known.

TheHelmholtz Free Energy of the Bulk Fluid. The incomp-
lete-wetting approximation has no bearing on the calculations
of this section.

Usually, the relevant thermodynamic properties of the fluid
are known through an equation of st = PP(R). It would
then be easy to get the neede®-function by using Eq. 7a. It
will, however, be made clear in a later section that knowledge
of the free energW?(R) is important, so that this section con-
centrates on a method to calculate it. It has been shbunat,
for van der Waals typ®®(R) curves,W? has the form

WP(R) = W(R) + MR- P, . (13)
whereW(R) has two minima where it is zerdyl and P (the
chemical potential and the pressure of the fluid at equilibrium)
are functions of the temperature alone so that they can be con-
sidered constant for calculations at uniform temperatbig. 1
shows a typical equation of state of the van der Waals type and
its resultingW-function. It is stated here for later reference that
a continuousP® versusR curve implies a smootkV function.
However, solutions to the Cahn-Hilliard equation, Eq. 8, are
known'® where, for physical reason$y that is not smooth at
the minima. The only important feature &Y is to have two
global minima of value zero. Functiow is then said to sup-
port two phases$? the densities of which are the values of the
density at which the minima A occur.

The densities of the phases, say vapor and liquid, are de-
noted byR, and R, and are such that the Maxwell construc-
tion (also calledhe Maxwell equal area rulé when referring
to the pressure versus volume diagram) applies:

R dR 1 1
PP =PR)[=——-=). .
/v R2 ( v) (Rv R] )
Note that theP of Eq. 13 is eithePP(R,) or P°(R).
By definition,

po_ e d <‘I’—b>
dR\ R

Using Eq. 13 on the right-hand side one easily gets

. (149

R R dR

WR =P R)(1-=—)+R[ P(R)=—.. (15
(R) (v)( Rv)+ /RU ( )R,2 (15)
Note thatW(R,) = 0 by choice of integration constants, and
thatW(R) = 0 because of the Maxwell construction. It is also

eaily checked that the derivativ®’ (R) vanishes aR, andR,.
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Figure 1: A van der Waals type equation of state (top) and
the W-function (bottom)

The expression foMP now follows from its definition, as
given by Eg. 4a:

R1dpP -
Mb=/-———dR+M”
R

.1
R dR (16)

v

Since only the gradient df1® appears in the the flow equation
the value ofM is irrelevant and one can set

M = 0. . (A7)
Note that we must havM?(R,) = MP(R) = M = 0. This is
easily checked by using partial integration in Eq. 16, and refer-
ring to Eq. 14. The determination &fi® through the equation
of state is thus completed. The determinatioM follows.

The Interaction Energy due to Wetting. The incomplete--
wetting approximation is now assumed, i.e., we assume that the
interaction energy depends exclusively BnAn unambiguous
definition of the capillary pressure® as a function oR is then
possible by Egs. 7b and 11. One gets

dpP¢  _dM°

dR  dR’
Apparently, this determine®!® when the capillary pressure is
known, but we shall see that the determination @ an essen-

. (18)

tial first step. To get we use the defining Eq. 4b, now rewritten
as

dl
M¢=—
dR’
in Eq. 18:
d?l  1dP°
dR2 RdR’

The formal integration of this equation gives

Cc
I(R):R/P—dR—a+ﬂR.. (29)
R2
The bounds of integration and the constamtnd g depend on
the wetting properies, as will be shown below. It is convenient
to start by defining saturation.

The averaged fluid is at equilibrium in a two-phase state if
its densityR is betweenR, and R (seeFig. 1). The volume
fractions of the two phases can be taken as the definitions of
the vapor and liquid saturationS, andS. This implies that

_R

=F?_R,..............(20a)
R—R,

SRR e (20D

If the rock is vapor-wet, there will be a residual vapor satura-
tion, Sy, due to the fact that the density of what is now the
liquid phase isR" < R;. According to Eq. 20a,

_R-R
“TR-R

If the rock is liquid-wet there will, correspondingly, be a resid-
ual liquid saturation

_R-R
R-R

whereR¥ > R, is now the density of the vapor phase. See
Fig. 2. From a different point of view, one can say that the

S - (21)

Sr - (22)

1 1
R, R, R, R

N N
Shift due to Shift due to

liquid wet rock vapor wet rock

Figure 2: Shifts in the densities of the liquid and vapor
phases due to the wetting properties. The W-function is
shown in broken line.

shifted densities are inferred from measured residual satura-
tions by

Rj = Rv+(RI - R‘U)Sra
R'=R - (R - R)Sr.

(23a)
(23b)
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The free energy, Eq. 12, reduces t&®, Eq. 13, for neutral
wetting (I = 0). The phase transition mechanism is then reg-
ulated byW. For non-neutral wetting this mechanism is reg-
ulated byW + |. One then expect8/ + | to be a modified
W-function, the modification consisting in a shift of the min-
ima along theR-axis.

We now turn to the determination df. We shall in this
paper limit ourselves to the case of a vapor-wet medium.

W(R) + J(R)

Figure 3: Expected form of the W + | function for vapor-
wet rock. Note that it is not necessarily smooth at RI*. The
W-function is shown in broken line.

Thelnteraction Energy for Vapor-Wet Rock. The rock be-
ing vapor-wet one expects a residual vapor saturation in a pro-
cess where, say, the porous medium is filled initially with vapor
which is then displaced by liquid. The equilibrium value of the
averaged vapor saturation remains unchanged, equRJ tbut
the averaged liquid density will b&* < R. We then want
I (R) to be such thatV + | has the form shown ifrig. 3. Ob-
viously, there is a minimum of three necessary condition$:on

(R, =0, . (24a)
'(R) =0, . . . . (24b)
I (R) = -W(R), . (24c)

wherel’ is the derivative ofl . The two first conditions imply
thatW + | resemblesV nearR = R,, the third implies that
W + | vanishes alR = R*. Since, for vapor-wet medium,
P¢(Ry) is a finite constant (usually called the entry pressure)
we can write Eq. 19 as

RPC(R/)

v

B anda are determined by Eqgs. 24a and 24b. One finds

Coc _B /R PC(R/)
I(R)—P(Rv)(l Rv>+R . Rz 9K

(25)

We now use a capillary pressure versus saturation correlation
of the form

a
PC:C(%) , O<a<l1,.
- r

whereC is the entry pressure while/a is the pore size distri-
bution index (a= 0 corresponding to uniform pore size). Using

(26)

Egs. 20a and 21 one finds that

I(R) =CJ(r), . e (27a)
R R1 /RF=R)\?

Plots of J(R) are shown orfig. 4.

Figure 4: Function J(R) for vapor-wet rock, Eq. 27b, plotted
versus R for the numerical values indicated.

Eq. 24c¢ now turns out to be a condition @n

__WRY)
IR

. (28)

We see thaC < 0. Eq. 28 is an equation betwedy, R, C,
anda, involving the thermodynamic functiokV of the fluid.
Referring to Eq. 23b we see that we can look upon Eq. 28 as an
equation containing the pure liquid and vapor densitigsand

R as parameters, and linking the two consta@tanda to the
residual vapor saturatioi,;. Referring toFig. 5 we see tha€C
goes to zero whef,; goes to zero, sincg’ goes then tdR .

The | function is now determined for the vapor-wet case
andW + | has the form shown ifrig. 5. Note that the deter-
mination of the constar® in the capillary pressure correlation,
Eq. 26, is essential to make sure thit+ | function has two
minima thus supporting the existence of two phases.

The functionM®¢(R) for the vapor-wet case is now known
through its definition, Eq. 11.

The capillary pressure function being defined fr> S
only, I and consequentlyl® are only known forR, < R < R*

(see Egs. 27). For most numerical applications one must supply
a functionM® which is valid outside this interval. Obviously,

it seems natural to use Eq. 27b fBr< R, also (this was done

in the plots ofFigs. 4 and 5). For R > Rf, however, a contin-
uation must be found that is best adapted to the physics of the
problem. An example is given in elsewhere in this paper.
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Figure 5: Vapor-wet case: function | (R) resulting from P¢
versus saturation given by Eq. 26, plotted versus R. Func-
tions W and W + | are also shown. Concerning the broken
lines, see the text following Eqgs. 37.

TheFluid Viscosity. We shall use a formula for viscosity pro-
posed by Arrhenius and used if,Mamely

n(R) =y,

where§ andS, are the liquid and vapor saturations defined by
Egs. 20.

. (29)

Application: Relative Permeabilities

The numerical experiments described here are restricted to one-
dimensional situations. The coordinate axis xeaxis) points

in the direction of the gravitational force. The soluti®&ix, t)

to the following equation is sought (see Egs. 1 and 2):

dR 8 [KR? § [dw 3°R

—=—]——|—=-A—+G|}. . (30

ot ax{ én 8x[dR a2 T “ (30)
In this equationG = —gx (g > O is the axceleration due to

gravity); n is the fluid viscosity given by Eq. 29V is given by
Egs. 12, 13, and 17. Thus

dv dw dI .,
av _dW al _ by ove.
dR_drR +

iR . (31)

Following P we now introduce dimensionless variables. The
dimensionless counterpart of any quantitys denotedj. The
definitions of the dimensionless variables are given in the Nom-
enclature section. The dimensionless version of Eq. 30 is

R R? b e« 9°R
a—ziiTi[Mb+Mc—Aa~ —QX]}- (32)

We shall also need the dimensionless version of the velocity,
Eqg. 2:

pull

R 9 |.- . <02
= = = Mb+MC—A
(R) 9%

<a

X2

(o8]

_gz}. .. (33)

Thel appearingin Eq. 31 will be an extended version of Eqs. 27
and 28. As folW, we shall use the following (called the pseudo
van der Waals form in B:

W(R) = (R— R)?(R— R)?, . (39
so that
MP =2(R- R)(R- R)2R-R, — R). (35)

Since we are not trying to replicate the behavior of any specific
fluid we have chosen 8V that is very easy to use: it allows
us to choos&R, andR at will; otherwise, using van der Waals

or more realistic equations of state (Peng-Robinson and others),
these constants must be obtained through calculations involving
the Maxwell rule.

Vapor-Wet Rock. Gravity Drainage by Liquid Phase. We
consider a one dimensional porous medium where flow occurs
vertically. It is initially filled with vapor and it is assumed that
liquid is provided at the top, at a constant pressure, and that the
vapor can flow out at the bottom, also at constant pressure.

The mathematical formulation, inside thé model, is as
follows.

e TheXx-axis points downwards and€ X < 1.
¢ Initial condition:

R(X, 0) = Ro(X), (36)

where Ry ~ R for small values of%, and Ry ~ R,
otherwise.

e Boundary conditions:

R, f) = R, (37a)
R(L ) =R, (37b)
IR _
g(o, fy=0, (37¢)
IR
D= 0 (37d)

The | -function which is needed to defing®, is defined here
by Egs. 27 and 28, where we have chosen

R,=04, R =16, a=05 S;=04, . . (38
implying thatR* = 1.12. In addition, we have chosen
m/m =01 §=05  A=00L . . (39)

The solution is expected to show a gradual sinking of the lig-
uid displacing the gas so that there should be, after some time
has elapsed, a layer of liquid with denslfy at the top, a two-
phase transition region, and a layer of gas with denBjyat

the bottom. The above value af has been chosen so that
the three regions should have about the same thickness. (It is
shown in P that the thickness of the transition region is about
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2\/X/(F~?| —R,), as referred to the unit of length.) We have used
a commercially available program using finite elements (FEM-
LAB, operating under MATLABY . The program requires con-
tinuous and smooth functions as input, implying that:Ri)%)

must be smooth (infinitely differentiable is best) and; [ibnust

be continued smoothly, to the right 6}* as indicated ofrig. 5

by the broken lines. The most important consequence, related
to the second smoothing above, implies removing the infinity
from the P¢ curve.

03 I I I I I I I I I
0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.8 1

Figure 6: Vapor wet rock. Gravity drainage by liquid phase.
Plot of R(X, f) vs. X for (left to right) = 0.05to 0.5 in steps
of 0.05. Equations solved: 32, 36, and 37; numerical values:
38 and 39. Inset: long-time solution of the same equations
with the same numerical values as above, exceptthat § = 0.

The result of the calculation dR(X, f) is shown inFig. 6.
The following facts emerge from this figure:

e The transition from the liquid R ~ R¥) plateau to the
steep-slope region is fast when compared to the transition
from steep-slope region to the vapd® (& R,) plateau.
This is obviously due to the medium being vapor wet.

e R(x, ) behaves like a wave, travelling at constant ve-
locity and without distortion, so thaR(X, f1) is (up to
calculational errors) a translated versionR(X, f2).

e EachR(x, f) is a translated version of the curve shown in
the inset. The latter is the long-time solution of Egs. 32,
36, and 37 with the numerical values given in 38 and 39,
exceptthafy = 0. In other words, the curve in the inset is
the static equilibrium solution without gravity. As such,
it must (and does) satisfy Eq. 9a with = 0. Keeping in
mind Eq. 17 and using dimensionless quantities, we see
that the curve in the inset obeys

. . .d?R
MP - MC — A
+ %2

1FEMLAB is aregistered trademark of COMSOL AB; MATLAB isareg-
istered trademark of TheMathWorks Inc.

=0.

We mention here for future reference that, when one takes
into account Egs. 4a and 11, the following first integral
can be found:

IR [2WR + (R
ax A ’

obeying conditions 37.

(40)

We shall return to these properties of the solution later.

We now present a method for using the above solution to
calculate relative permeabilities to vapor and liquid, and
kr1. These do not exist in thePnodel, so that their calculation
presupposes that they can be defined with quantities that can be
calculated in the model. The definitions, in terms of dimension-
less quantities, are

Y krv _8F~)v A D
V=i (o + %), “a)
7% ki < 3f)|* ~~*)
V"= —= ——= + .o 41b
= 5@ ok gR (41b)

One here assumes that, at a point in the two-phase region, the
fluid consists of a vapor phase with densRy, viscosityij(R,),
velocity V, and pressur@,, and a liquid phase where the corre-
sponding quantities are primed and have substr{fite prime

as used here reminds that the medium is vapor wet so that the
liquid phase is a mixture of liquid and residual vapor).

We now consider a timéy at which the solution has, as
closely as possible, the characteristics of an infinite one-dimen-
sional system consisting of liquid (and residual vapor) to the
left, a transitional two-phase region in the middle, and vapor
to the right, the whole flowing from left to right as a standing
wave. Referring td=ig. 6 we see that a number of solutions
with values offp around 0.5 have the required characteristics.
The considerations which now follow are valid for solutions at
suchip’s.

The phase densities and viscosities to use in Egs. 41 are
already well defined and the main problem is to derive phase
velocities and phase pressures. We have not found a rigorous
derivation, so that the results presented are based on guesses
based on the physics of the situation.

Basing the definition of phase velocities on the concept of
momentum one can say that the local momenta carried by each
phase should add to the the fluid moment&W:

RV, + RV = RV, . (42)
This equation does not allow the calculation of the two phase
velo~cities b~ut we can use it as a guide: any formulas we derive
for V, andV;* should verify it.

We use the following shorthand notation in what follows:
ve £ ROV, f) — R&, i)V (X, fo)
)= —=—-————""7"——"———"—.

R(0, to)V (0, to) — R(1, to)V (1, tp)
Note thatl"} is a normalized vapor momentum, constructed on
the same lines as the normalized vapor saturation
RO.f) - RX.f) R —R
RO,f) - R(LT) R -R,~

(43)

S fo) = (44)
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where the second equality follows from Eqgs. 37a and 37b.
The simplest expressions for the local phase velocities, sat-
isfying Eq. 42, are
Vu(%, f0) = V(L 0T (%, fo),
Vi*(%,T0) = V(0, fo)[1 - T (X, o)].

(45a)
(45b)

A confirmation of the fact that these expressions are the cor-
rect choices comes from a comparison of the plorpfversus
X with that of ¢ versusX: seeFig. 7. The two curves are

1

09 B

0.8 b

0.7 b

06 q

0.5 b

0.4r- b

0.3 b

0.2 b

0.1 b

0

I L I L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7: Plot of I';; vs. X (solid line) and of S} vs. X (dotted
line) at T = 0.5. See the caption of Fig. 6.

practically undistinguishable, meaning that andV* are pro-

portional to, respectivelys: and 1— Sf. We shall see later

that this leads to relative permeabilty curves with the desired

straight-line behavior when the capillary pressure vanishes.
The numerical solution leads then to

\71)()?7 fO) = \7(11 fO)S,T»
Vi*(%,f) =V(©O,0)1-ST1 . . .

(46a)
(46Db)

We can go one step further and express the boundary velocities
in terms of densities by using Eq. 33. Indeed, since the density
atfp has flat plateaus near the left and right boundaries (Big. 6
the first, second, and third derivatives Bfwith respect tox
vanish atk = 0 andX = 1 (this is verified to be the case, up to
numerical errors) we find that

<:
~~
o
—
N

Il

A

(o]}

—0, (47a)
n(R")
vab=~%g, (47b)
n(Ry)
so that
- e Ry .
v()zv 0) = ~ = gS.;v (48a)
n(Ry)
V" (X, f0) = —=—0(1 - S)). (48b)

We now turn to the definitions of the phase pressures, or rather
of the pressure gradients, needed in Egs. 41.

R R

v R 1
Figure 8: Pb+PCversus density, corresponding to the W+
curve of Fig. 5 (broken line). Compare with Fig. 1.

The required definitions are based first on the observation
that, since the phase separating mechanism is now based on
the W + | -function shown inFig. 5 (broken curve) then the
gradient of PP + P¢ at equilibriumis zero, in analogy with the
fact that the gradient oP® at equilibrium is zero when onlyw
is present: se€ig. 1 where the horizontal line between A and
B is theequilibrium P?, and compare witlfFig. 8. This means
that

[aﬁb] . 9P°
ax | A%’
€q

The right-hand side of this equation is easily obtained in terms
of dR/dX, keeping in mind thatP® is a function of S} only,
and thatS} is defined Eq. 44. We know, however, that due to
the properties of the solutiod,R/3x is given by Eq. 40. Thus

dPP /5% at equilibrium can be written in terms of the derivative
of the capillary pressure with respect to the normalized vapor
saturation, and of the thermodynamic functionsand|. We
introduce the following notation

. (49)

[gR,(R — R)I71dP®¢ [2[W(R) + I (R)]

= , (50

v(S) i-s,) d§ X (50)
where the argument of thé&/ and| functions is

R=R +(R-R)1-SN1-§), . . (51)

and obtain
PP =
[W] =—-0Ryy(S).
eq

Note, incidentally, thal is dimensionless and can be written
with tilded as well as with non-tilded quantities. We now pos-
tulate that

0Py .4
0% = —gRyY(S), (52a)
of -
o = —-gRyy(1-§)). (52b)



SPE 77540

RELATIVE PERMEABILITY FROM CAPILLARY PRESSURE 9

Using these equations, together with Egs. 48 in Egs. 41, we
obtain

krv - ia
1+y(S)

1-§
'TIFR/RYI-) (53b)

(53a)

These equations express relative permeabilities in terms of, es-
sentially, the equation of state and the capillary pressure and, in
addition, of the parametex which is related to the thickness of
the two-phase region. Note that the relative permeability curves
reduce to two straight lines when the capillary pressure is zero,
sincey then vanishes.

1 1\ N
IS v ,'/,’
0.8 1\ I/
E \‘\ krl k, ;
0.6
1 N /
| \\ ///
0.4 /
0.2 { \\?v\‘\/"l*,xi‘//,//
0 02 04 06 08 1

Figure 9: Vapor wet rock. Gravity drainage by liquid phase.
Relative permeabilities, kry and k;|, versus S; for a = 0.1
(full line), a= 0.5 (broken line), and a = 0.9 (dotted line).

Fig. 9 shows a plot ok, andk,| versusS, for three values

of a; the other parameters needed are those of Egs. 38 and 39.

Concerning thermodynamic functionBf is given by Eq. 26,
W by Eq. 34, andl by Egs. 27 and 28. Note in particular
that thel -function used irFig. 9 is not the smoothed one (the
broken line inFig. 5): the latter was only introduced for the
numerical solution of Eq. 32.

Discussion

Thelncomplete-Wetting Approximation. We presented abo-

ve the incomplete-wetting approximation and assumed that it
holds for the calculations presented in the paper. We have,
however, used a capillary pressure versus saturation correlation,
Eq. 26, which holds for a completely vapor-wet medium. This
was done in the interest of simplicity and has lead to results that
make sense both mathematically and physically, leading to the
conclusion that the model presented is robust. The conclusions
are, however, restricted to cases where the incomplete wetting
approximation holds, i.e., essentially cases where the perme-
ability is well above the millidarcy.

Work is in progress on the strictly incomplete-wetting case,
with a capillary pressure correlation of the foftn

1-Sr\* 1- S \®
e ($%) e (15)"
S — S S-S
Comparison with Corey-Burdine. A comparison of the rel-
ative permeability curves presented in this paper with the well
known Corey-Burdine expressions is showrFig. 10. We re-

mind that the Corey-Burdine formulas are, with our notation
for the normalized vapor saturation,

ke = [1— (SHZF1— 5™,
krv — (S:)2a+l+m’ .

(54a)
(54b)

wherem is the tortuosity exponent. The Corey-Burdine curves

Iy
0.8
0.6 * k, k. .
0.4 -
02

Figure 10: Relative permeability curves given by Eqs. 53
(solid line) and by Egs. 54 (broken lines), plotted versus
normalized vapor saturation Sj. For the numerical values
of the various parameters see the text.

shown are drawn witla = 0.5 andm = 2. Our curves were
obtained with the parameters given in Egs. 38 and 39. Consid-
ering the difference in the approaches and the difference in the
dependence on numerical parameters, the agreement between
the two sets of curves is somewhat surprising. However, the
agreement is probably more than a coincidence since the pa-
rameters appearing in the-function, Eq. 50, have been tuned

to each other as described above: we have produced a solu-
tion which has the characteristics of an infinite one-dimensional
system consisting of three regions (liquid, two-phase, vapor) of
about the same thickness.

The Entry Pressure in Terms of Residual Saturation. The
entry pressur€ is given above by Eq. 28. It depends on the
equation of state of the fluid through' (see Eq. 15) and on the
capillary pressure correlation through(see Eqgs. 26 and 27b).
It can easily be seen th&t depends on the fluid parametdrs
and R,. More importantly,C is a function of two variablesa
andS;.
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0.1 0.2 0.3 0.4 0.5 ¢ = Thickness of transition region between phases (po-
0 a=05 re level)
-0.2 B L = Unit of length
04 4= 07 m = Tortuosity exponent
e a=02 M= Eq.6
-0.6] M = Fluid chemical potential at equilibrium
MP = Chemical potential of bulk fluid (macroscopic)
-0.84 Mb: (RC/PC)Mb
11 M€ = Chemical potential of bulk fluid, due to capillary
a=01 effects or wetting (macroscopic)
2 M= (Ro/PoM®
My = Eq. 4c
Figure 11: The dimensionless entry pressure C versus Syr, M§ = Eq.4d
for different values of a. See text for details. pf = Dimensionless pressure in averaged liquid phase

(with residual vapor)

Dimensionless pressure in averaged vapor phase
Fluid pressure at equilibrium

Pressure of bulk fluid (macroscopic)

For the sake of a simple illustration, we have chosenhe
function given by Eq. 34 and have plotted the resulting dimen-

sionles<C-function inFig. 11 for R, = 0.4 andR = 1.6. This = Pb/p,
plot can be used for a quick determination of the residual vapor = Capillary pressure (macroscopic)
saturation in the case of a vapor-wet porous medium, whenever = PC/P;
the constana and_ the entry pressu@ are either known or can = Critical pressure of averaged fluid
easily be determined experimentally. = ¢/(LAs)
= Density of averaged fluid (macroscopic level)
Conclusions R/R:

Critical density of averaged fluid

Density of averaged liquid

R/Re

Ru/Re

Density of averaged vapor

Density of averaged liquid with residual vapor
R*/Re

Density of averaged fluid at initial time
Density of averaged vapor with residual liquid
Density of averaged -fluid (macroscopic level)
Liquid saturation. Eq. 20b. Als6R — R,)/(R —
Ry)

Vapor saturation. Eq. 20a. Als®k —R)/(R—R,)
(R*—R)/(R*— Ry,). Normalized vapor saturation
(vapor wet medium)

We have presented a new theory for two-phase flow in porous
media for a fluid consisting of one chemical component.

We have also presented some conclusions of the theory, in
the case of a vapor-wet medium. These are as follows:

e The relative permeabilities for a wave-like flow type can
be expressed in terms of the equation of state of the fluid
and of the capillary pressure correlation.

e There is a relation between the pore size distribution pa-
rameter, the entry pressure, and the residual vapor satu-
ration. This can be used for a quick determination of the
residual vapor saturation.

QKoY W PAIRIADDDID 5, 9aP L L Lo

Nomenclature
a= SeekEq. 26

; = Residual vapor saturation
As = Pore surface per unit volume 2” - Residual quEid saturation
C = Entry pressure. See Eq. 26 't — Time
C= C/P . f= (KPy/(ncL?t
Fz = Free enbergy of th&-fluid. Eq. 3 i = Particular values df (i = 1, 2, 3)
9 _ Axce_ler'c_1t|0n due to gravity V = Velocity (macroscopic level)
G= (_Brawtatlonal potential giving rise to an accelera- V = Velocity (macroscopic level) in one dimension
- t(lg?l_-/VPG) V = (¢ncL/(KP:))V. Dimensionless version of V
éj_ (Re/P, )ch_ g% Vi* = Dimensionless velocity of averaged liquid (with res-
= )G = .
| = Free energy of interaction between the fluid proper V. = 'gil:;‘l \rllaf)orrl) velocity of averaaed vapor
_ andthex-fluid. Egs. 3, 12 we Eq ;‘35105 €ss velocily of averaged vapo
= 1/P v - . ’
J= S/eeCEqs. 27 W= W/Pc. Eq.34 _ _
K = Absolute permeability X f Space coordinate (one dimensional system)
ki = Relative permeability to liquid X=x/L
ky = Relative permeability to vapor o = Integration constant
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B = Integration constant
y = Eqg.50

Iy = Normalized vapor momentum. Eq. 43
n = Viscosity of averaged fluid. Eq. 29
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7R = n/nc=(/m), 1 =(R+R-2R/(R -
Ry))
ny = Viscosity of averaged vapor
n = Viscosity of averaged liquid
Ne= /MMl
A = Constant (macroscopic) related to interfacial ten-
_ sion (microscopic)
A= (RE/(PcL?)A
p = Fluid density (pore level)
ps = Density of Z-fluid (pore level)
¢ = Porosity
W = Helmoltz free energy. Egs. 3, 12
Wb = Bulk free energy. Egs. 3, 12, 13
Subscripts
c= Critical
| = Liquid
v = Vapor
¥ = X-fluid
Super scripts
"= Derivative. Also, indicates an integration variable
b —
= Bulk
€= Capillary
* = Normalized variable
Overstrikes

"= Dimensionless variable

Abbreviations

Pl = Reference 1
DI = Diffuse-interface
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