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Abstract
The paper presents the results of anafyticaf and numerical

studies of the capillary trapping phenomena occurring in 3-
phase flow. Breed on theoretical results, a numerical
procedure and a softw.arc package has been developed
providing an easy way to compute distribution of residual oil
irr a heterogeneous 1D reservoir.

For a given set of relative permeabilities and capillary
pressure, the saturation profiles tare generated for different
types of wettahility of the rock and different types of boundary
conditions which are relevant for reservoir and laboratory.
The main characteristics influencing the process of capillary
trapping are nettability type, ,and the 2 capillary numbers
showing the relative strength of capillary forces for oil-water
and oil-gas w+compared to the viscous forces. It is shown that
the type of boundary conditions as well as nettability wifl
strongly influence the amount of the capillary trapped oil ,and
gas.

Introduction
Capillary trapping due to the reservoir heterogeneity plays an
important role in many oil recovery processes where
multiphase flow is encountered. In the present paper we are
not considering the trapping phenomena occurring on the
pore state. The dispersed phases saturation (i.e. relative
permeability is zero) which can not be reduced without
reduclion of interracial tension is therefore not ,addressed. The
subject of the p[iper is the capillary trapping effects due to
heterogeneity of medium scale. Taking place on the scafe of
order of centimeters to meters these effects can not be

explicitly simulated in a full-field scafe study, but are rather
represented indirectly, i.e., through the so called upscaled
relative permeabilities.

Capillary effects in two-phase steady-state flow have
previously been analyzed in a number of papers 8’3’6. To the
best of our knowledge this is the first paper addressing the
issue in case of three-phase flow. The system of equations
describing the steady-state three-phase flow is similar to the
previously considered system describing stable movement of
displacement fronts in case of three-phase gravity segregated
flow7 and is analysed in a similar manner.

The importance of considering three-phase flow is
dictated from practical needs. It makes it possible to consider
the influence of free gas on residual oil and therefore to
evaluate WAG or depressurization ,as compared to water
flooding. Another field of application is interpretation of the
three-phase core flooding experiments with account for
capillary effects. Since the classical papers it is recognized
that capillary forces significantly affect laboratory
experiments though neglected in a standard interpretation
procedure. In order to plan the experiments, and afso to
properly understand and interpret the results the considered
sttildy-state three-phase model may be utilized.

Steady-state three-phase flow
Three-phase steady state model is formulated as ,an extension
of a similar two-ph.me one described in Refs. 8 and 3.

The system of equations describing three-phase flow
under the assumptions that compressibility and volubility of
phases is neglected consists of a conservation law and the
D,arcy’s Iaw for each of the phases, two capillary pressure
relationships, and a trivial relationship for the saturations:

(3s, ~au,=~,
$—at ax ‘

i = 1, 2, 3 ...... ... (1)

k,,(s,,$ )ap
U, =–K(x) (

w,
;- PXJ1
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P,– P, ‘~,(~,)K), P3 ‘P2 ‘~3(+$3,K)t

We ,assume for convenience that the phases are numbered
with respect to wetL~bility, so that index 1 corresponds to (he
most wetting phase (e.g., water), index 3 corresponds to the
most non-wetting phase (gas), while index 2 is left for the
intermediate wetting phase (oil).

Note that in the above formulation (1) the capilhary
pressures ‘are ,wsumed to be functions of only one argument.
This type of representation of three-phase capillary pressures
is described in Ref. 1, ,and is implemented in some
commercial simulators, e.g., ECL/PSE. Though this is
justified by some experimental evidence, Ref. 4, the reason for
the usage of this formulation in simulations is, probably, of
pure] y uti Iit,ari,an nature: a set of 2 two-phase capillary
pressure curves constitutes the minimal amount of data
required to simulate three-phase flow which can be reliably
obktined from st,and.ard labonttory experiments. To the t!est of
our knowledge, there exists no standard procedure to
determine three-ph,ase capillary pressure functions (as
functions of 2 arguments).

The phase pressures may be eliminated from Eqs. (1) in a
st.and,ard way giving a closed system of two equations for two
unknown saturations.

q~+U~=~(K(X)A~) ...............................(2)

u~ d
~ =---(K(x@)@) ......... ........... ....................(3)

By integration one obtains

U(F(S)- F’) =K4(S)~, .................................. (4)

F“ = [1F:
~.” =ui /u.

F: ‘

Since

det A is non-positive.
triangle As defined by

It is zero on the boundaries of the

A,= {S,, S,1 S, 20, S, 20, S,+S35 1}.......,........(5)

where phase nobilities are zero.
If the capillarity matrix A has a non-zero determinant .an
inverse matrix exists

‘-’’&rK2-$:+
In case when the inverse matrix exists Eq, (4) may be
rewritten as

~ = ~A-’(F(S)- FO).......................................(7)

After substitution of Eq. (6) into Eq. (7) ,and some algebraic
manipulations one obtains the following system of two
ordinary differential equations describing
saturations distribution along the coordinate:

steady state

A steady sk~te three-phase flow is therefore governed by the
system of equations
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[

dn, _ UF: fi’ K—_ .— —–—+--gxAp12
dx K AZ i, 1

[dn, U F; F: K—= .— ——
‘;&A~32

& K ?L2 k3 1
........... ...(8)

Steady-state flow in homogeneous medium. As on can see

from 13q.(4) the viscous limit point S0 defined by the system

of equations F(S o ) = F 0 is the rest point of the system of

differential equations. We now analyze the behavior of the

solutions in the vicinity of the rest point assuming
homogeneous medium, ,and absence of gravity in the flow
direction. In this c,ase the capillary pressures are only
functions of saturations, ,and the linearized system can b
written as follows:

dS U
– —R(s”)(s –sO) ,......... ... ...... ......................(9)

z–d:

The bekivior of the system (9) depends on the eigenvalues of
the matrix R. It c,an be shown that the matrix R has 2 real
eigenvalues if the relative permeabilities of the 1-st and the 3-
rd phases only depend on their own saturations, ,and the
relative permeability of the 2-rid phase satisfies the condition

ilk,, akr, > ~,
——
as,!3s3

.........................................................(10)

According to the standard classification the rest point in this
case is always a node 2. The node is non-attractive if the total
velocity is positive. From this follows an important
conclusion: to have a unique (and stable solution the boundary
condi tions should k specified at the down- stre,am boundary.

Heterogeneous medium. In order to proceed, it is necessary
to concretize the form of the capillary pressures dependence
on their arguments. We therefore assume a Leverett-type
relationship for the two capillary pressure functions:

– b,(s, ),T& Y,=oijF ..........................(11)

reads

[1F’F’
J,’:=–E, ;–:~l ‘NgI+JI:~

r2 rl
/. /..

[1
.........(12)

#s3_E g @M+ N+Jldr——
‘~- 3 kr2 kr3 3 ‘3 ‘Ta

The system (12) describing steady-state, three-phase flow in
heterogeneous medium consists of 2 ordinary differential
equations with 6 dimensionless parameters: 2 capillary
numbers, 2 gravity numbers and 2 viscosity ratios. The
system is coupled even in the case when all the three relative
permeabilities are functions of they own saturations only. It
consists of two independent equations if:
● one of the phases is immobile, i.e. its individual phase

rate is zero,
● relative perrneabilities of the other two phases only

depend on their own saturation,
● capilkuy pressure between the mobile phases and the

immobile phase only depend on the mobile phase
saturation.

Three-phase flow with one phase immobile. Consider a case

when the first phase (water) is immobile, i.e. F,0 = O.
If the relative permeability to water is non-zero the equations
for the two saturations follow directly from the general ctase
Eq. (12).
If the relative permeability is zero,

k, = o ..d........<.......... ......................... ......... ......... ..(l3)

the capillarity matrix A degenerates so that the inversion of
the matrix may not be performed, For this special case the
system (4) becomes

In the Eq. (11) we neglect variations of the porosity because
of much more stronger v.arkions of the absolute permeability
normally encountered in oil reservoirs, e.g., 5090 compared to
tens of times. Then the dimensionless form of the system (8)
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u(F,(s)- F’,O)=o
L2L3 dn

U(F3(S) -F,”)= K(x)~~
., ..... ..............(14)

r

The first equation of the system (14) is automatically
smisfied if the condition (13) is fulfilled. The second equation
of the (14) is equivalent to the second equation in the system
(8) plus an additional condition requiring that the mobility of
the first phase is zero. To demonstrate this we subtract the
two equations:

[

O~° K

1
(z(s)-q”)*- :-r+ --g#p32 =

23 2 3 F&,*

Simihar to the above consideration can be performed for
all three ph,ases. This consideration shows that the special
case c,an be obmined as a limiting case of the general system
as the phase mobility tends to zero. This observation is
important from the point of view of numerical solution of the
system of equation, it makes special consideration of the
regions with zero phase nobilities umecessary.

Three-phase flow with one phase mobile. If only water is

mobile, i.e. fi” = 1, from the Equation (8) it follows

1dn, _U 1 K
—–— —–@@P12

& K ~1 J ........................

or in case of absence of gravity

dn, _u 1 dn,=o—_ —— — ...............................
dx Kkl’ d

...(15)

,....(16)

If the capillary pressure and the relative permeability to water
are only functions of water saturation, then the first equation
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of the system is exactly the same as in a two-phase case. This
means that for the same boundary condhions water saturation
does not change with the appearance of gas (e.g. in case of
depressurization or gas injection), i.e. some oil will be
displaced. The gas-oil capillary pressure will be constant
which implies constant gas saturation in a homogeneous
reservoir. The value of this constarrt is defined by the
boundaryconditions,

Examples.
The question of boundary condition is not trivial. To

illustrate the influence of boundary conditions consider
numerical examples where the saturation profiles are
generated by solving Eq, (12) numerically. Two types of
boundary conditions me considered: (1) capillwy pressures
set to zero at the outlet end which is relevant to laboratory
experiments (the so-called outlet end effect), and (2) periodic

boundary conditions $, i.e. S(0) = S(L), which represent

infhite porous medium and are relevant for three phase flow
in a reservoir away from the wells.

The considered cases correspond to injection of only one
phase, water or gas, so that the two others are immobile
(capillary trapped). To simplify numerical solution we
nevertheless assume all the phases flowing, the fractional
flows of the immobile phases are assigned a small value

~“ = 0.0001.
The reservoir and fluid parameters used are the following:

L=100cm, U=0.0001cm/see, ~, = ~2 = lCPS ,

P3 = 0.02cps , k,, = S; , 1=1,2,3.

The absolute permeability is presented in Fig, 1. Two
different types of oil-water capillary pressure curves is
considered, see Fig, 2, which are referred to as mixed-wet and
water wet cases. The relative permeabilities ,and gas-oil
capillary pressure (Fig. 3) were the same for atl cases. (The
capillary pressure curves presented in the figures correspond
to the average absolute permeability 1D. They are resealed to
obtain the dimensionless Leverett functions taking into
account the heterogeneityy, Eq. (1 l)).

The results of the calculations are shown in Fig. 4 through
Fig. 11. For the cases with lab boundary condition (Fig. 4,
Fig. 5, Fig. 8, Fig. 9) the saturation of the immobile phase
(water or gas) is a constant due to the fact that the zero
capilhary pressure which is fixed at the outlet boundary
remains zero throughout the reservoir. The strong influence
of the outlet boundary conditions is therefore observed in both
mixed-wet and water-wet lab cases.

This is in contrast with periodic boundary conditions (Fig.
6, Fig. 7, Fig. 10, Fig. 11) for which cases the saturation of
neither of the phases is constant, The explanation is
straightforward: though the value of the capillary pressure
value of the immobile phase is constant the capillary pressure
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function varies due to heterogeneity ‘and so does the
saturation.

The resulting capillary trapped oil saturation for different
cases shown in Tables 1 and 2 appears to be different for
laboratory and reservoir conditions. The biggest difference is
observed in the cases of gas injection and mixed wet rock.

A series of calculations was performed to simulate
laboratory experiments performed at high total rate. The total
rate was increased 100 times up to 0.01 cm/sec. The resulting
immobile oil saturation is shown in Table 3. Though at high
rate faboramry experiments the influence of the end effect is
minimized the capillary trapping phenomena occurring at
reservoir conditions ,are not correetly captured due to an
exaggerated viscous dominance.

Conclusions
The main contribution of this paper is the developed three-
phase steady-state model facilitating a rapid simulation of
multiphase flow in 1D. The presented numerical examples
show that the problem of accurate estimation of capillary
trapping from Iabomtory experiments with heterogeneous
cores is difficult to solve even if the cores are relatively long.
At low rates which are comparable to the reservoir ones the
results are very much influenced by the end effect. At high
rates which allow to minimize the end effect the capillary
trapping is also minimised due to the viscous dominance
which is not relevant at reservoir conditions. The only
reasonable way to overcome the difficulties seems to perform
the Iabomtory experiments on homogeneous cores. The
problem of heterogeneity should be addressed separately. If
the properties of rocks are specified the capillary trapping
may be easily calculated using the model described above.

Nomenclature
A = capillarity matrix
F = fractional flow vector function
FO = fractional flow, a constant vector defined in

Eq. (4)
g = acceleration of gravity
J = Levereu J-function
k,= relative permeability
L = characteristic length
M = viscosity ratio
N, = gravity number
,0 = pressure
.S = saturation
[ = time

u = individual phme velocity
U = total D,arcy velocity
~ = coordin~e

X = dimensionless coordinate
A = increment

A, = admissible saturation region defined in Eq. (5)

&= capillary number

Q = porosity

K = absolute permeability

k = mobility
~ = viscosity
n = capillary pressure
p = density
c = interracial tension
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[Table 1- Sor at lab boundary conditions

Water Wet rock Mixed wet rwk

Gas injecticn 0.01 0.37

Water iniection 0.02 0.14

Table 2- Sor at reservoir boundary conditions

Water Wet rock Mixed wet rock

Gas injection 0.21 0.05

Water injection 0.01 0.01

Table 3- Sor at lab boundary conditions, high total
Me

Water Wet rock Mixed wet rock

Gas injectiin 0.08 0.10

Water injection 0.02 0.01

2

0
0 204060 ao loo

Length, cm

Fig, 1. Absolute permeatdity

1

-0.5

Water saturation

Fig. 2. Oil water capillary pressures corresponding to the absolute
parrneatdity 1 D.

1.5

-0.5

Gaa saturation

Fig, 3, Gas - oil capillary pressure corresponding tD
parrneatility 1 D.

1

0.8

0.2

0

the absolute

020406060100

Length, cm

Fig, 4. Water injection at zero capillary pressure at the outlet end, mixad-
wet rmk

1

0,8

0.2

0
0 20406060100

Length, cm

Fig, 5, Gas injectionat zero capillarypressure at the outietend, mixed-wet
rock
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Fig

1
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6. Water injection at periodic boundary conditions, mixed-wet rock
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Fig. 7 Gas injection at periodic boundary conditions, mcxec-wet rock
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Fig. 8. Water injection at zero capillary pressure at the outlet end, water
wet rock
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Fig. 9. Gas Injection at zero capillary pressure at the outlet end, water wet
rock
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Fig. 10. Water injection at periodic boundary conditions, water wet rock
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Fig. 11. Gas injection at periodic boundary conditions, water wet rock
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