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Summary. Two methods are presented for predicting critical oil rate for bottomwater coning in anisotropic, homogeneous formations
with the well completed from the top of the formation. The first method is based on an analytical solution where Muskat’s assumption
of uniform flux at the wellbore has been replaced by that of an infinitely conductive wellbore. The potential distribution in the oil zone,
however, is assumed unperturbed by the water cone. The method is derived from a general solution of the time-dependent diffusivity
equation for compressible, single-phase flow in the steady-state limit. We show that very little difference exists between our solution
and Muskat’s. The deviation from simulation results is caused by the cone influence on potential distribution.

The second method is based on a large number of simulation runs with a general numerical reservoir model, with more than 50 critical
rates determined. The results are combined in an equation for the isotropic case and in a single diagram for the anisotropic case. The
correlation is valid for dimensionless radii between 0.5 and 50 and shows a rapid change in critical rate for values below five. Within
the accuracy of numerical modeling resuits, Wheatley’s theory is shown to predict the correct critical rates closely for all well penetra-

tions in the dimensionless radius range from 2 to 50.

Introduction

Qil production from a well that partly penetrates an oil zone over-
lying water may cause the oil/water interface to deform into a bell
shape. This deformation is usually called water coning and occurs
when the vertical component of the viscous force exceeds the net
gravity force. At a certain production rate, the water cone is stable
with its apex at a distance below the bottom of the well, but an
infinitesimal rate increase will cause cone instability and water
breakthrough. This limiting rate is called the critical rate for water
coning.

Muskat and Wyckoff! presented an approximate solution of the
water-coning problem. For an isotropic reservoir, the critical rate
may be estimated from a graph in their work. Their solution is based
on the following three assumptions: (1) the single-phase (oil) poten-
tial distribution around the well at steady-state conditions is given
by the solution of Laplace’s equation for incompressible fluid; (2)
a uniform-flux boundary condition exists at the well, giving a vary-
ing well potential with depth; and (3) the potential distribution in
the oil phase is not influenced by the cone shape.

Meyer and Garder? simplified the analytical derivation by as-
suming radial flow and that the critical rate is determined when
the water cone touches the bottom of the well. Chaney et al.3 in-
cluded completions at any depth in a homogeneous, isotropic reser-
voir. Their results are based on mathematical analysis and
potentiometric model techniques. Chierici et al.4 used a potentio-
metric model and included both gas and water coning. The results
are presented in dimensionless graphs that take into account reser-
voir anisotropy. Also, Muskat and Wyckoff’s Assumption 2 is elim-
inated because the well was represented by an electric conductor.
The graphs are developed for dimensionless radii down to five. For
thick reservoirs with low ratios between vertical and horizontal per-
meability, however, dimensionless radii below five are required.
Schols derived an empirical expression for the critical rate for
water coning from experiments on Hele-Shaw models.

_____Recently, WheatleyS presented an approximate theory for

oil/water coning of incompressible fluids in a stable cone situation.
Through physical arguments, he postulated a potential function con-
taining a linear combination of line and point sources with three
adjustable parameters. The function satisfies Laplace’s equation,
and by properly adjusting the parameters, Wheatley was able to
satisfy the boundary conditions closely, including that of constant
well potential. Most important, his theory is the first to take into
account the cone shape by requiring the cone surface—i.e., the
oil/water interface—to be a streamline. Included in his paper is a
fairly simple procedure for predicting critical rate as a function of
dimensionless radius and well penetration for general anisotropic
formations. Because of the scarcity of published data on correct
critical rates, the precision of his theory is insufficiently documented.

Although each practicat well problem may be treated individual-
1y by numerical simulation, there is a need for correlations in large-
Copyright 1969 Society of Petroleum Engineers
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gridblock simulators’ and for quick, reliable estimates of coning
behavior.® :

This paper presents (1) an analytical solution that removes As-
sumptions 1 and 2 in Muskat and Wyckoff’s! theory; (2) practical
correlations to predict critical rate for water coning based on a large
number of simulation runs with a general numerical reservoir model;
and (3) a verification of the predictability of Wheatley’s theory.
All results are limited to a well perforated from the top of the for-
mation.

Analytical Solution

The analytical solution presented in this paper is an extension of
Muskat and Wyckoff’s! theory and is based on the work of Papat-
zacos. 10 Papatzacos developed a general, time-dependent solu-
tion of the diffusivity equation for flow of a slightly compressible,
single-phase fluid toward an infinitely conductive well in an infinite
reservoir. In the steady-state limit, the solution takes a simple form
and is combined with the method of images to give the boundary
conditions, both vertically and laterally, as shown in Fig. 1 (see
the appendix for details). To predict the critical rate, we superim-
pose the same criteria as those of Muskat and Wyckoff! on the
single-phase solution and therefore neglect the influence of cone
shape on the potential distribution.

A computer program was developed to give the critical rate in
a constant-pressure square from Eqs. A-6 through A-13. The length
of the square was transformed to an equivalent radius for a constant-
pressure circle!! to conform with the geometry of Fig. 1 and the
simulation cases.

The results of the analytical solution are presented in Fig. 2, where
dimensionless critical rate, g.p, is plotted vs. dimensionless radius,
rp, for five fractional well penetrations, L,/h,, with the definitions

qcD =[40,667.254,B,/h, 2 (0 —Podk)ge v eeeennnn )
and rp=(r./h)Nkylky . ............... e eaneeans @
Numerical Simulation

The critical rate was determined for a wide range of reservoir and
well parameters by a numerical reservoir model. The purpose was
to check the validity of the analytical solutions and to develop
separate practical correlations valid to a low dimensionless radius.
A summary is presented here; Ref. 12 gives the details.

The numerical model used is a standard, three-phase, black-oil
model with finite-difference formulation developed at Rogaland Re-
search Inst. The validity of the model has been extensively tested.
It is fully implicit with simultaneous and direct solution and there-
fore suitable for coning studies.

The reservoir rock and fluid data are typical for a North Sea sand-
stone reservoir. All simulations were performed above the bub-
blepoint pressure. Imbibition relative permeability curves were used,
and capillary pressure was neglected. Table 1 gives the rock prop-
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Fig. 1—Partially penetrating well with boundary conditions
for analytical solution.

erties and fluid saturations. Tables 2 and 3 give the fluid proper-
ties and relative permeabilities, respectively.

Fig. 3 shows the reservoir geometry, boundary conditions, and
numerical grid. The water zone is represented by the bottom layer
with infinite porosity and permeability to simulate a constant-
pressure boundary at the original oil/water contact. The outer radial
column with infinite permeability and porosity is included to simulate
a constant-pressure outer boundary. To conform with the no-flow
boundary at the bottom of the formation in our analytical solution,

TABLE 1—ROCK PROPERTIES AND FLUID SATURATIONS
Rock Properties
Rock compressibility, psi ~* 0.000003
Horizontal permeability, md 1,500
Vertical permeability, md 1,500
Porosity, fraction 0.274 .
Fluid Saturations
Interstitial water saturation, fraction 0.170
Residual oil saturation, fraction -0.250

we could have given the water layer the oil-zone permeability and
porosity except for the last column. For a stable cone, however,
water pressure at the bottom of the formation is constant and in-
dependent of radius. We made our choice to save computer time
and obtained the same results for stable cone determination as when
the water had to move from the external bouridary to establish the
cone. Also, as Fig. 3 indicates, the first column of blocks was used
to simulate the wellbore to ensure infinite conductivity and correct
rate distribution between perforated grid layers.

Many computer runs were made to eliminate numerical grid ef-
fects, and we tried to achieve approximately constant potential drop,
both horizontally and vertically, between gridblocks at steady-state
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Fig. 2-Critical rate from analytical solution.
TABLE 2—RESERVOIR FLUID PROPERTIES @
Qil Properties
Solution
Pressure FVF GOR Dens
(psia) (RB/STB) (scf/STB) (lom/ft>) (cp)
1,863.7 1.366 546.0 427 0.730
2,873.7 1.449 733.0 415 0.680
3,282.7 1.432 733.0 420 0.698
4,056.7 1.413 733.0 4286 0.742
9,500.0 1.281 733.0 47.0 1.042
Water Properties
Viscosity, cp 0.42
Compressibility, psi -1 0.000003
FVF, RB/STB 1.03
Density, Ibm/t? 62.5
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conditions. Grid sensitivity rans were repeated whenever reservoir
geometry or well penetration were altered. 2

For a given reservoir geometry, set of parameters, and well
penetration, the critical rate was determined within 4% accuracy.
The procedure was to bracket the critical rate between a rate that
gave a stable cone and a higher rate that gave water breakthrough.
About five to six runs were usually necessary to fix each critical
rate. More than 500 stimulation runs to steady state were performed
in this study.

A base case was chosen, and the effect of each parameter was
investigated independently. Table 4 gives the numerical grid for
the base case, and Table 5 the reservoir parameters. Table 6 gives
a selected summary of the results. Parameters not denoted are at
their base values. Sensitivity runs are not listed for parameters with
no influence on the critical rate. .

In summary, the critical rate for water coning is independent of
water permeability, the shape of the water/oil relative permeabil-
ity curves between endpoints, water viscosity, and wellbore radius.
The critical rate is a linear function of oil permeability, density
difference, oil viscosity, oil FVF, and a nonlinear function of well
penetration, radial extent, total oil thickness, and permeability ratio.

Correlations Based on Simulation Resuilts
Isotropic Reservoir. For those parameters giving a nonlinear re-
lation, the critical rate was assumed to be a function of 1~(L,/h,)?,
h2, and In(r,). Using regression analysis in the same manner as
Glasg!? and including the parameters with a linear relationship,
we derived the following correlation:

ky(ow—p0) [ (LP )2] 1.325
= e | ] = —— h, 2238 . -1.990
=17 0.822B,5, h, < <lin(r,)) 3

Anisotropic Reservoir. Several attempts failed to correlate the
simulation results into an equation. Instead, the results are sum-

TABLE 3--RELATIVE PERMEABILITY
Water Oil
Water Relative Relative
Saturation Pérmeability Permeability

0.1700 0.0000 1.0000
0.1800 0.0002 0.9800 4
0.1900 0.0004 0.9500 ’
0.2000 0.0009 0.8500
0.2500 0.0070 0.6000
0.3000 0.0200 0.4100
0.4000 0.0720 0.1800
0.5000 0.1500 0.0675
0.6000 0.2400 0.0155
0.6500 0.2750 0.0050
0.7000 0.3250 0.0008
0.7500 0.3800 0.0000
0.8500 0.5400 0.0000
0.9000 0.8500 0.0000
1.0000 1.0000 0.0000

marized in graphical form in Fig. 4, where dimensionless critical

rate is plotted vs. dimensionless radius, with the same definitions
as in Eqs. 1 and 2, for five different fractional well penetrations.
About 40 data points have been used to draw the curves. We con-
sider Fig. 4 the major practical contribution of this paper.
Sample Calculation. Determine the critical rate for water con-
ing from the data in Table 7.
1. Calculate dimensionless radius:

r,<k,,)* 5oo< 640 )“‘_2
kR \ky/ 200 \1,000 ’
penetrations from Fig. 4 for a dimensionless radius of two.
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Fig. 3—Sketch of numerical grid. R

TABLE 4—-GRID SIZE FOR BASE CASE"

0.15, 0.45, 1.3, 3.6, 10.5,
29, 81, 229, 645, 10
25, 15.2, 63, 2.5, 1,
0.3, 0.5, 0.9, 1.5, 2.5,
43, 7.2, 123, 20, 20
. 20, 20, 20, 30.5, 1

“Grid sketched in Fig. 3.

Radial block lengths, ft
Vertical block lengths, ft
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TABLE 5—RESERVOIR PARAMETERS FOR BASE CASE
Fractional well penetration 0.238
Total oil thickness, ft 210
Exterior radius, ft 1,000
Wellbore radius, ft 0.25
Horizontal permeability, md 1,500
Vertical permeability, md 1,500
Oil density, Ibm/ft3 436
Oil viscosity, cp 0.826
Oil FVF, RB/STB 1.376
Water properties Table 2
Relative permeabilities Table 3
Numerical grid Table 4
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TABLE 6-—~SUMMARY OF SELECTED SIMULATION CASES
h, re ky G Deviation*
No. ) (t (md) Lplh, rp (STB/D) (%)
1 210 1,000 1,500 0.048 4.76 7,150 5.2
Base 210 1,000 1,500 0.238 4.76 6,600 4.8
2 210 1,000 1,500 0.476 4.78 5,000 4.8 -+
3 210 1,000 1,500 0.714 4.76 2,700 5.5
4 210 1,000 1,500 0.905 4.76 750 6.0
5 50 1,000 1,500 0.238 20.0 260 12.3
6 100 1,000 1,500 0.238 10.0 1,200 10.7
7 50 1,000 1,500 0.714 20.0 115 6.1
8 210 5,000 1,500 0.476 23.81 3,400 1.2
9 210 500 1,500 0.476 238 6,500 -1.9
10 210 5§00 1,500 0.714 2.38 3,400 0.0
1" 210 1,000 150 0.238 4.76 650 6.3
12° 210 1,000 1,000 0.238 4.76 4,400 4.8
13** 210 1,000 500 0.714 4.76 900 54
14 210 1,000 600 0.238 3.0t 7,800 0.8
15 210 1,000 150 0.238 1.51 11,000 -8.1
16 210 1,000 37.5 0.238 0.76 20,000 -18.0
17 210 1,000 15 0.238 0.48 42,000 :
18 210 1,000 600 0.476 3.01 5,900 0.6
19 210 1,000 60 0.476 0.95 11,100 -15.7
20 210 1,000 15 0.476 0.48 24,000 '
21 210 1,000 600 0.714 3.01 3,100 28
22 210 1,000 150 0.714 1.51 4,000 -24
23 210 1,000 60 0.714 0.95 5,200 -10.1
24 210 1,000 15 0.714 0.48 ‘8,400 13.2
25 210 500 600 0.476 1.51 8,100 -74
26 210 500 60 0.476 0.48 24,500
27 210 500 15 0.476 0.24 118,000
28 210 5,000 150 0.476 7.53 4,400 7.0
29 210 5,000 375 0.476 3.78 5,600 -05
30 210 5,000 225 0.476 292 6,200 -34
31 210 5,000 15 0.476 2.38 6,700 -48
32 100 1,000 600 0.238 6.32 1,376 6.6
33 100 1,000 60 0.238 2.00 2,100 -26
34 100 1,000 15 0.238 1.00 3,400 -16.7
35 50 1,000 600 0.238 12.65 290 9.3
36 50 1,000 60 0.238 4.00 410 0.2
a7 50 1,000 15 0.238 2.00 550 =71
38 210 500 66.15 0.905 0.5 1,650 -10.4
39 210 §00 105,840 0.908 20.0 600 5.8
40 210 500 661,500 0.476 50.0 2,900 16.0
4 210 500 86.15 0.048 0.5 44,000
42 210 500 105,840 0.048 20 4,800 16.9
*Percentage deviation of corresponding critical rate calculated by Wheatiey's method.
**ky mkyi for all other cases k), =1.500 md.

3. Plotdimensionlesscriticnlmeasafunctionofwell penetra-
tion, as shown in Fig. 5.

4. Calculate fractional well penetration: L,/h, =50/200=0.25.

S. Interpolate in the plot in Fig. 5 to ﬁnf 90p=0.375.

6. Use Eq. 1 and find the critical rate: :

4= hr (Pw"Po)kH a
" 40,667.25B,p,

=5,649 STB/D [898 stock-tank m3/d]

The cone influence, however, is taken into account by Wheat-
ley, and the results from his procedure (Fig. 6) are remarkably close
to the correlation from a general numerical model, which might
be considered the correct solution. In fact, for a dimensionless radius
of 2.5, Wheatley’s results are within the 4% uncertainty in the crit-

ical rates obtained from simulation.
’l‘ogeneratethecnnealnmsfmmwmtleysdwory.weused
his recommended with one . Instead of his Eq.

19, which follows from an expansion of his Eq. 18 for large rp
and creates problems when rp— 1, we used the ed form.

ample, the critical rate was found to be 5,600 STB/D [890 stock-
tank m3/d], determined within 100 STB/D [16 stock-tank m3/d].

Discussion

Isotropic Reservoir. Fig. 6 shows a comparison between the ana-
lytical solutlons of Muskat, 14 Papmos(pmentedmthxspaper),
and Wheatley® with the correlation of Eq. 3

'I'heanalyucalsolunmuofMuskatandPapmoosareveryclose,
with a small discrepancy at high well penetrations. They give a
higher critical rate (up to 30%) than the correlation. It is obvious
that Muskat’s solution is not noticeably improved by solving the
complete time-dependent diffusivity equation and substituting the
uniform-flux wellbore condition with that of infinite conductivity.
The shortcomings are caused by the neglect of the cone influence
on potential distribution.
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 With the reservoir simulator used mdependently for the same ex-

The procedure is easily programmed and numerically stable.
ﬂmresultsofsevenlmeﬂ:odstopredlctcnucalmemplmd

in Fig. 7 for comparison: the method based on

with results close to Muskat’s; the correlation from Eq. 3, which

is very close to Wheatley's theory; Schols”methodbasedonphys—

ical models; and Meyer and Garder’s? correlation.

General Case. Fig. 8 shows a comparison between
the correlation of Chierici ef al. ‘tbeanalyuealsolunonbasedon
Papatzacos’ theory, and the simulation results for a specific exam-
ple. The dimensionless critical rate is plotted as a fanction of dimen-
sionless radius for a fractional well penetration of 0.24. The fully
drawn line is based on Papatzacos’ theory. The critical rates of
Chierici et al. amveryclosem?apamos’soluuonbecausethey
rely on essentially the same assumptions. Papatzacos’ curve is about
25% above the values determined from numerical simulation. Again,

SPE Reservoir Engineering, November 1989
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Fig. 4—Critical-rate correlation chart from numerical simulation.

this has to be caused by neglect of cone influence on potential dis-
tribution.

Chierici er al. developed their diagrams down to a dimension-
less radius of five. Values below five are often necessary, how-
ever, for North Sea reservoirs. As can be seen from Fig. 8, the
critical rate increases dramatically for dimensionless radii below
five, and extrapolation of Chierici er al.’s diagrams below their
validity range may lead to considerable errors.

The critical rates determined from Wheatley’s® theory are plot-
ted in Fig. 9 on a reproduction of Fig. 4, which represents the cor-

P . B TU R
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TABLE 7—DATA FOR ANISOTROPIC RESERVOIR

SAMPLE CALCULATION :

Density difference (water/oil), Ibm/ft? 174
Oil FVF, RB/STB 1.376 !
Oil viscosity, cp 0.8257 w L . 4
Horizontal permeability, md 1,000 o2 o4 - i os
¥ertica| permeability, md 640

otal oil thickness, ft 200
Perforated thickness, ft 50 Fig. 6—~Critical-rate comparison, lsotropic formations.
External radius, ft 500
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Fig. 5—Critical-rate calculation for example problem.

Fig. 7—Critical-rate comparison, isotropic formations.
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rect values from simulation. Also, the last column of Table 6 lists
the percentage deviations for the actual cases. The blanks in the
column are for low dimensionless radii where Wheatley’s theory
gave negative critical rates. In these calculations, a fixed dimen-
‘sionless wellbore radius of 0.002 is used. Checks with actual dimen-
sionless wellbore radii gave nearly identical results.

The accuracy of the critical rates from the simulator is 4%, which
is conservative—i.e., the highest rate with a stable cone has been
selected. Within this accuracy, Wheatley’s theory gives nearly cor-
rect critical rates for all well penetrations in the rp interval from
2 to 50. There is a slight tendency toward high values at the upper
end of the interval and toward low values at the lower end.

Critical Cone Height. The critical cone defined by the reservoir
simulator was found to stabilize at a certain distance below the well,
in accordance with other authors.5:14 Incremental rate increase

500

caused the water to break abruptly into the well. Fig. 10 shows
the dimensionless critical cone height, h./h;,, as a function of frac-
tional well penetration for a dimensionless radius of 4.76. The crit-
ical cone heights from the analytical solution are fairly close to the
simulated results, but no precise coiclusion can be drawn because
of the coarse vertical resolution in the numerical model.

A straight line drawn in Fig. 10 from the lower right to upper
left comers would correspond to the erroneous assumption that the
critical cone touches the bottom of the well. As can be seen, the
distance between the bottom of the well and the top of the critical
cone increases with decreasing well penetration. :
Conclusions

1. A general correlation is derived to predict critical rate for water
coning in anisotropic reservoirs. The correlation is based on a large
number of simulation runs with a numerical model and is present-
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'
. ed in a,single graph, with dimensionless critical rate as a function
of dimensionless radius between 0.5 and 50, at five different well
penetrations.

2. For isotropic formations, the correlation is formulated as an
equation.

3. A new analytical solution, based on single-phase, compressi-
ble fluid and an infinitely conductive wellbore, gives no improve-
ment in critical-rate predictions compared with Muskat’s classic
solution. The deficiency is caused by neglect of cone influence on
the single-phase solution.

4. Within the accuracy of the numerical simulation results, Wheat-
ley’s theory closely predicts the correct critical rates for all well
penetrations in the dimensionless radius range from 2 to 50.

Nomenciature
B = FVF, RB/STB [res m?/stock-tank m?]
C = dimensionless coordinate, Eq. A-7
h, = critical cone height, distance above original water/oil
contact, ft {m]
h, = total thickness of oil zone, ft [m]
ij.k = integers, used in Eqs. A-8 through A-10
ky = horizontal permeability, md
k, = effective oil permeability, md
ky = vertical permeability, md
L = length of constant-pressure square, ft [m]
L, = length of perforated interval, ft {m]
p = pressure, psi [kPa]
g = surface flow rate, STB/D [stock-tank m3/d]
q.p = dimensionless critical rate, Eqs. 1 and A-13
qr = reservoir flow rate, RB/D [res m3/d]
r, = exterior radius, ft {m]
rp = dimensionless radius, Eq. 2
Arp = radial distance, Eq. A-5, dimensionless
Argp = radial summation coordinate, Eq. A-9, dimensionless
x,y,z = Cartesian coordinates, ft [m]
Xp: YD»
zp = Cartesian coordinates, Eq. A-1, dimensionless
Z.p = critical value of zp for top of cone, dimensionless
Zxp = vertical summation coordinate, Eq. A-10
a,8,§ = spheroidal coordinates, Eq. A-4, dimensionless
p = viscosity, cp [mPa-s)
p = density, Ibm/ft3 (kg/m3]
® = p—p,2/144, potential, psi [kPa}
$p = dimensionless potential drop, Eq. A-3
&) = derivative of &p with respect to zp
®4°) = steady-state potential drop, perforated interval in
reservoir with no boundaries, Eq. A-2,
dimensionless
&®; = initial reservoir potential, psi [kPa]

Subscripts
¢ = critical
D = dimensionless
i = initial
o = oil
w = water
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Appendix-Critical Rate Calculation

by Muskat’s Method

Muskat’s!* method is used to calculate the critical rate for stable
water coning. The method requires an expression for the steady-
state potential drop on the axis of the partially penetrating well in
terms of the vertical coordinate, with the assumption of constant
potential at the lateral boundaries and of no flow across the horizon-
tal boundaries, the lower horizontal boundary being at the original
oil/water contact. Such an expression will be obtained here by using
the method of images together with an expression for the potential
drop owing to an infinite-conductivity well in an infinite reservoir.®

Preliminary Equations. The coordinates are the Cartesian (x,y,2),
with the z axis pointing downward. The origin is taken at the inter-
section of the well axis with the upper reservoir boundary (Fig.
1). Dimensionless coordinates are defined as follows.

xp=(kplkg)*GlLp), ..o, veeeee (A-1a)
b 7S (37237 K 67/ 20 Y (A-1b)
and zp=2/Lp. ...oiiniiiii i (A-Ic)

To use the method of images, one starts by considering an infinite-
conductivity well in an infinite reservoir with no vertical or horizon-
tal boundaries. An interval is open to flow along the above-defined
2 axis, from —Lj, to L, and the total reservoir production rate is
denoted by 2g,. Symmetry implies that no flow takes place across

- the horizontal plane passing through the middle of the interval open

to flow, so that this plane will eventually become the upper reser-
voir boundary; hence the values of 2L, and 2g. It has been shown
by Papatzacos? that the potential drop in the steady-state limit for
such a well is

357=% Inf(ef+1)/(ef=1)], oooevrrrnrnnnnnnnnn. (A-2)
where &p=(1/141.2)0L, kx/2ugp)E;~8) ............. (A-3)
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Flgl. I.A-1 —Horizontal lattice of production (x) and injection (0)
welis.

and where £ is one of the three spheroidal coordinates (,a,8) de-
fined by

xpwsinh Esinacos B, -....oooviiiiiiiiintn, (A-4a)

yp=sinh £ sin @ SN B, ..cvevrriiernnennniennnn. (A-4b)
and Zp=cosh & SIN @ ...ovureeeernennnnnaereanns, (A4c)
In view of the cylindrical symmetry, it is useful to introduce

Arp=\xpZ+ypl =sin £ SID @, cvrrrrreniinannn.. (A-5)

which is the dimensionless distance from the z axis.
The steady-state potential drop (Eq. A-2) can now be expressed
in terms of the more familiar coordinates Arp and zp:

85 Arp,zp)=% WC+DIC-1)], «.ocuveeenen.. (A-6)
where C is the following function of Arp and zp:
C=(1N2){1+23+ArB+[(1 +z5+ArB)2 -4z} %} %.

Steady-State Potential Drop in a Finite Reservoir. With the
method of images, it is now possible to obtain the potential drop
in a finite reservoir. The geometry is shown in Figs. A-1 and A-2,
whaeﬂ\eimageweﬂsclosetoﬂlemlwellmdepiaed.mbwnd-
ary conditions are assumed to be constant potential at the lateral
boundaries and no flow through the horizontal boundaries. Con-
stant potential is produced at the lateral boundaries by a horizon-
tal, infinite grid of alternating production and injection wells with
the real well at its center (Fig. A-1). No flow at the horizontal bound-
aries is achieved by an infinite repetition of this grid in the vertical
direction (Fig. A-2). Note that advantage is taken of the fact that
Eqgs. A-2 and A-6 imply that no flow takes place across the horizon-
tal plane passing through the middle of the interval open to flow.
Theexpressionforthepotentialdropontheaxisofﬂwrealwellis

®p(zp)= )3 E E (-85 Bryp.2ip),

km—e jm—m im-w

.. (A7)

.................................... (A-8)

where 25 is given by Eqs. A-6 and A-7 and where
Argp=@2+2) Uyl ALY oeeeeeeenen. . (A9
ad Zpp=zp+@h/Lpdk. .....cooiiiiiiiiiiiiin, (A-10)

Although each image well has the infinite-conductivity charac-
ter, it contributes a potential drop that necessarily varies along the
wellbore of the real well so that the method of images does not
yield the exact infinite-conductivity solution. Eq. A-8, however,
will be a good approximation in most cases of practical interest be-
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cause Eq. A-6 contnbmesaeonstant potenualdropnlongthewell—
bore of the real well, whxlethevamuonmsedbymeoom-ibuuons
of the image wells is usually small. 10

Critical Rate by Muskat’s Method. Muskat assumed that the in-
fluence of the cone on the values of $p can be neglected. The static
equilibrium condition for a point with vertical coordinate z at the
intersection of the cone with the well axis is &;(z) —$(2)=(p,, —p,)
(h;—2)/144. This is an equation for z. Considerations of stability4
show that the only possible values of z are given by the following
equation (written in the dimensionless variables of this Appendix):

$p@cp) +Ep@DIB/Lp=2cD)=0, - ..oeoeeennnnn.. (A-11)

where @, is the derivative of ®p. This is an equation for z.p, the
critical coordinate of the top of the cone. The critical dimension-
lessmexstheng:venby

4D =~ Lp/)YHBD@ED)s - vvenrveenininnnnn, (A-12)
where gop=[2X144 X 141.20,/(py =PIt kplaRc - - - -(A-13)
Functions $5(zp) and $5(zp) are completely defined by Egs. A-6
through' A-10.

81 Metric Canversion Factors

bbl x 1.589873 E-01 = m?
cp x 1.0* E-03 = Pas
ft X 3.048* E~-0l = m
Ibm/ft> x 1.601 846 E+01 = kg/m3
md X 9.869233 E-04 = pm?
psi X 6.894 757 E+00 = kPa
psi-! x 1450377 E-01 = kPa~!
scf/bbl x 1.801 175 E-01 = std m3/m3
*Convarsion facor is exact, SPERE
received for review Sept. 18, 1088. Paper accepted for publica-

Original SPE manuacript
tion June 28, 1989. Revised manuscript received March 9, 1989. Pm(spemss)m
mam1mwesmmmmmm.oam

SPE Reservoir Engineering, November 1989



