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SUMMARY

This paeper examines applicability and limitations
on the wuse of rectangular hyperbolas to analyze
pressure buildup data, with emphasis on the
determination of average pressure and flow capacity.
It is shown that the method can be wused with
confidence only if it is applied to data that can also
be analyzed by conventional semilog methods, and that
it for such data is essentially equivalent to the
conventional methods in terms of information needed
and information obtained. If we use semilog data, then
we can determine the flow capacity from the slope of
the hyperbola, and we can determine the average
pressure indirectly from the asymptote, provided we
know the drainage area and the MBH function of the
reservoir. Following stabilized flow we only need the
shape factor in addition to the area. If we use the
direct approach, and assume that the asymptote 1is
equal to the average pressure, then we need the same
type of information to make a proper choice of
interval where the hyperbola should match the buildup

curve. for this direct approach we will normally get
an estimate of average pressure that is less than
m/1.151 psi (kPa) above the last wellbore pressure
being used in the analysis, where m 1is the
conventional semilog slope. Moreover, if we wuse only
semilog buildup data following pseudosteady-state
flaw, then we can only get an accurate estimate of

average pressure by this approach if the shape faclor
is close to 21, or higher.

If nothing is known about the reservoir, then the
hyperbola method can be used to get a rough estimate
of the average pressure, but with a high dagree of
uncertainty 1f we only have data from a short buildup
period. This claim follows from the many examples
included in this paper of asymptotes determined {from

hyperbolas matched to dimensionless synthetic buildup
data plotted vs. interval midpoints.
INTRODUCTION

The Mille «Dyes-Hutchinsun' (MDH} , Matthews-
frons-Hazehroek™ {(MBH], and Oietz” methods can be used
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and 1llustrations at end of paper.

average, or static, reservoir
pressure for closed reservoirs, and the method of
Kumar and Ramey can be used for constant-pressure
squares. These methods are based on an indirect use of
exact pressure solutions, and hence require knowledge
of the size and shape of the drainage area, and of the
outer boundary condition. For a given test, all or
part of this information might be missing, 1in which
case approximations must be wused to carry out the
analysis. This leads to uncertainties in estimates of
average pressure and other parameters that depend on
this information.

to determine the

A different approach_to pressure buildup analysis

was suggested by Mead. He observed that pressure
buildup curves closely resemble rectangular
hyperbolas, and therefore asserted that the average

reservoir pressure should be equal to the horizontal
asymptote of a hyperbola matched to a buildup curve.
Mead supported his assertion by examples.

KabirG

Hasan and explored Mead's empirical
results further, and presented a theoretical
justification for the hyperbola approach to buildup

analysis when both the drawdown and buildup transients

are in the infinite-acting period. Their work was
based on a truncated series expansion of the
logarithmic solution. Hasan and Kabir successfully

applied the method to examples with different boundary

and flow conditions, and concluded that the

rectangular hyperbola approach can generally be used

to determine the average, or static, reservoir

pressure directly from field data, and also that good

estimates can be obtained for flow capacity and skin.

This without prior knowledge of the size, shape, and

type of the reservoir being tested. An analysis of the
inherent limitations on the methad was not included in

Ref. 6.

The general conclusjons in Ref. 6 attragted
criticism from Humphreys ang Fﬁwles and White. In
their replies, Hasan an Kabir™ ' acknowledged the

superiority of Horner analysis of infinite-acting
reservoirs, but reaffirmed the validity of the method
for other cases, again supparted by examples.

The maln objective of this paper is to present a
general analysis of the validity of the rectangular
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hyperbola approach to pressure buildup analysis. For
semilog data this is accomplished by deriving
analytical expressions for the relationship between

and the slope of the hyperbola,
reservoir pressure and the
asymptote of the hyperbola. These expressions concern
point values, but are also applicable for short
intervals. For buildup data beyond the infinite-acting
period we only illustrate the 1limitations on the
method through the wuse of examples. Our main
conclusiaon is that the rectangular hyperbola method is
essentially equivalent to the conventional methods in
terms of information needed and information obtained,
but that it is more difficult to use. All our examples
are based on the use of synthetic dimensionless
buildupjgata generated by algorithms presented by
Larsen.

the semilag slope, m,
and between the average

THEORETICAL BACKGROUND

The basic assumption in Refs. 5 and 6 is that
buildup curves can be approximated by rectangular
hyperbolas. It follows that parameters a, b, and ¢
must exist such that the buildup pressure, p , can be
expressed in the form ws

[

Pus 880 = 2+ 5

where At is the buildup time.

If Eq. 1 is satisfied for 1large values of At,
then a must be equal to the average, or static,
reservoir pressure, p. If it is satisfied in the

infinite-acting period, where Horner or MDH analysis
can be used, then we can determine the average
pressure indirectly from a, and the conventional
semilog slope, m, directly from b and c¢. From m we can
then determine kh.

Considering first the semilog slope, note that if
Horner analysis and the hyperbola can be applied

neighborhood of At = a’', then we must have

both
in a

At [
W4 % = ———
mlogt At P At TR (21
where p* 1s the Horner false pressure. Setting the
derivatives, and hence slopes, equal at At = o, we
get
m 1 [
{— ) =z - , (3)
Inid ‘a t +a b + u')2
and hence
m (t + a'lca’
= - {4)
1n10 tib + u')z
Similarly, if MDH analysis applies in a neighborhood
of At = a', then we must have

mLoght * Pany T * T T oAt

where p " is the pressure at one hour on the MDH
semilog straight line. Setting the derivatives equal
at At = a', we then get
m ca'
= - Y |
1n10 §)

b+ a)?

Note that Eqs. & and § are equivalent if a' << t. It
follows from these equations that we can determine the

semilog slope, m, and hence the flow capacity, kh,
from any hyperbola matched to buildup data from the
infinite-acting period, either by Eq. 4, for short

producing times, or by €q. 6 for longer producing
times. But this assumes that we gnlv use data from the
infinite-acting period, and such data are easier to
identify and analyze by the Horner and MDH methods.

As for the relationship between the average
pressure, p, and the asymptote a in €q. 1, we show
below that this depends on a', i.e., on the position

of the interval. Hence, to get p from a we need to

know the difference p - a as a function of a'. This is
considered in detail below through the wuse of
dimensionless variables.

Theoretical justification for Eq. 1 were
presented by Hasan and Kabir for buildup data from
infinite-acting reservoirs, under the assumption that

pressure,

the asymptote equals the average but their
wark was otherwise based on verification through the

use of examples. A general analysis of the validity of

Eg. 1 was not included. Such an analysis is obviously
needed, and this is the main objective of the present
paper, both along analytical and along numerical
lines.

To determine the inherent limitations on the use
of Eqs. 1, &, and 6 in buildup analysis, it is natural

to work with dimensionless variables. Therefore, let
kh
wa(tDA) * 147, 2q8p [pi - pwf(t)]. Ce (7}

denote dimensionless drawdown pressure, where q is the
surface rate, p, the initial pressure, Pus the flowing
wellbore pressufre, and

¢ o 0.000264kt
DA - wuctA . . . « . > . . . . . . )

(8)

the dimensionless time based on the drainage area, A.

Moreover, let
(At ,) = —X0— [p - p (At)] (9
Pos %0’ * TiT.2q8p ‘Pi ™ Pus Coe e
denote dimensionless buildup pressure, where the

dimensionless buildup time, AtDA,

Our theoretical considerations are limited to the
analysis of bounded single-well homogenecus reservoirs
of regular shape and uniform thickness. The reservoirs

are assumed filled with a single fluid of small and
constant compressibility and produced by a fully
penetrating well with constant rate prior to shut-in.

Wellbore storage and skin effects are not considered.
In short, we assume that the standard pressure
solutions can be used. Since we get
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) A ) all or part of the outer boundary kept at constant
st(AtDA) = pwoltDA * AtDA B wa( tDA ! pressure must have

(10)

by superposition, it follows that we can set up simple

expressions for the buildup pressure within special
flow regimes. This applies to both closed reservoirs
and reservoirs with constant pressure, or mixed no-

flow/constant pressure outer boundary.

tet us now rewrite Eq. 1 in the dimensionles form

“p
p, (At .} = a  + ———————— {11)
Ds DA D bD + AtDA
where
kh
3% 7 7472988 Py 3N t12)
b = 0.000264kb ) (13)
D PpuUC_ A
t
and
e = kh 0.000264k{-c) (14)
0~ 141.,2q8y ouctA
Assuming €q. 11 to be valid on a chosen interval, our
objective 1is to determine restrictions on the

positioning of the interval, and also on the type of
reservolr being analyzed, in order for the parameters
a., b, and c_ to give sufficiently accurate estimates
$ enl ? i
ot the parameters being sought.

Considering the position of the interval, we have
chosen to use a to denote the logarithmic midpoint of
ithe interval being used 1o determine the hvperbola
parameters in terms of dimensionless data, and a’ in
the same meaning for real data. This only affects the
hyperbola parameters obtained by least-squares methods

applied to synthetic buildup data, since the
analytical derivations only refer to the interval
midpoint, and not to the end points. The o wused in

Ref, 6 has a similar meaning,
Horner time ratios.

but only in terms of

The main objective of the rectangular bhyperbola

approach to pressure buildup analysis is to determine
the average pressure of the reservoir. Let us
therefore introduce the notation

- kh -

Pps T41.2q8p (pi -~ p) {15)
for the dimensionless average, or static, reservoir
pressure. fFrom material balance we know that

Pps ° zntDA (16)
for closed reservoirs, while we for reservoirs with

p._ = O & &
Pos 0, (17)
since the static pressure is then equal to the initial
pressure. For both cases we get ’
- kh -
3, - Ppg ° 4T, 2aBp (p a) (18)
We can therefore determine the average ssure from

ge pre
the asymptote when kh and the left-hand side of Eq. 18

are known.

18 is a function of
the midpoint of the interval being used to determine
2., and that the main assumption in Refs. 5 and 6,
namely that the right-hand side equals 0, can only be

It should be obvious that Egq.

satisfied at very late buildup times, or at isolated
earlier buildup times. It will also be shown below

that 1if we have sufficient information to use Eq. 18
to determine the average pressure from infinite-acting
buildup data, then we can more easily use conventional
methods. Moreover, if we use infinite-acting data,
then we must use Eq. 18, either directly or
indirectly. If we use data beyond the infinite-acting
period, then the analytical expressions of this paper
cannot be used, but Egq. 18 still applies. For such
data we only consider the relationship between buildup

pressures used in the analysis and the average
reservoir pressure when the right-hand side of Eg. 18
equals 0.

from buildup data
it follows from

To get the flow capacity, kh,
following a short producing period,
Eq. & that we must have

tDA

v = e s s e s e s
tha * @

{19)

where p is defined by the equation

2ac
o s —— (20
lbD + a)
If o is small compared to t,,, then we just get
UA
e =1, 21y

and this is equivalent to Eq. 6. The symbol p has been
introduced to simplify labels on plots.

To derive expressions for the parameters of the
hyperbola, Hasan and Kabir used a truncated series
expansion of the Horner solution for infinite-acting

reservoirs. A more general approach is to require the
two sides of Eq. 11 to have the same value, slope, and
curvature at At = o, 1i.e., to require the
derivatives of order 0, 1, and 2 to be equal. We then

get a hyperbola that must match the buildup curve in a
neighborhood of a. In other words, we just need to set
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o
pWD(tDA + a) - DwD(u) = aD + E;—:—; , (22)
-¢g
p' It +a) - p' (o) = , (23)
wD DA wD b+ Q)Z
D
and
ZCD
wa(tDA + a) - wa(u) = 3 (24)
(b, + al
D
The solutions to these equations are
aD = wa(tDA + al - wa\al
200" (t., + a) - p’ (a1’
wD DA wD 125)
wa(tOA + a) - wa(u)
thwD(tDA + a) - wa(u)]
by = -« 1t s al - p . la) ... (28)
Pwb ' ‘oA wb
and
dlp’ (t +a) - p’ (u)]3
wh " "0A wh 4
Cp = - T {27}
[wa(tDA + a) - wa(q)]

By substituting Eqs. 26 and 27 into Eq. 20 we also get

e = - 2u[wa(tDA + o) - pwo(u)] (28}

Effects of o on a, and p are not immediately evident
from these expressions, but such effects do become
evident when we substitute solutions for special flow
regimes.

SUTLOUD DATA FOOM INFINITE-ACTI A

As was pointed out by Hasan and Kabir.10 the
Horner method should be used to analyze buildup data
from infinite-acting reservoirs. Still, since the
rectangular hyperbola approach was applied to this
case in Ref. 8, we have also chosen to include an
analysis of this case in the present paper.

A reservoir is infinite-acting if t + At 4

- . DA DA
tDAeia' in which case we get
LAAL
1 DA
: 11Ae——— {29}
Pup'Btpa! = 21" 2
er,

and

LA(L + At)DA

i
: : 30
wa(tDA + AtDA) 2ln ) {30)
er
w
when wellbore effects are not included, where ¥
denotes Euler's constant [(0.57721...) and r the

wellbore radius. This form of the logarithmic soYution
is used here for direct comparison with the solutions
for stabilized flow.

chosen an
order to

For this particular case we have
approach similar to that used in Ref, 6 in

get a comparison of results. Now, by combining Eqs.
10, 29, and 30, we get
t + At
DA DA
p, (Bt .} = -1ln {31)
Ds DA 2 AtDA
for the buildup period. From the results in Appendix

A, it follows that we can set

H
p. (At ) = lna, + 1 - ,
Ds DA 2 H . . tDA + AtDA
H AtDA
... (32)
with negligible error for Horner time ratios (t P
AtDA)/AtDA near a,, or equivalently, for buildup gimes
At near o, where a and o, are related by the
equyation
t +a
DA
a, = p (33)
Eq. 32 <can be used directly if the analysis is based

on a Horner plot in linear coordinates, preferably

rewritten in terms of an inverted Horner time ratio.
However, to base the analysis on a linear plot in
terms of AtDA' note that €qs, 11 and 32 are equivalent
if
t +a t
1 DA DA
3, - -1n p - 3 il (34)
DA
etDA
= {35)
bp = ¥ + 20 (
DA
and
Z(x(t.DA + u)toA
c. = : (36)
0 {t * 2u)2
DA
1f Eqs. 35 and 36 are substituted inte Eq. 20, then we

19 is satisfied. The same results
29 and 30 into Eqs.

also find that Eq.
are obtained if we substitute Eqs.
25 - 28.
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L
Since Eq.

it follows that Eq. &
can be used to determine kh if the reservaoir is
infinite-acting. But note that since a can be
computed directly from Eg. 34, we cannot use tEq. 18 to
determine p from a. To get the average pressure from
£q. 18 we need a more exact expression for a_. Such an
expression is presented in the section on buildup
analysis following non-stabilized flow. However, note

19 is satisfied,

that it is still possible that a value of « can be
found where a,_ = p g0 OF in terms of real data, that
an a' canh be foung where a = p. This possibility, and

the validity of Eqs. 19 and 34, are illustrated below.

Hasan and Kabira expressed their results in terms
of a,, and in addition assumed that 4t << t at some
step in their derivation. The results derived above

are therefore somewhat different from those in Ref. 6,

but note that Eqg. 32 is equivalent to Egq. 6 in Ref. 6.
It was also assumed in Ref. 6 that a_ = p__, which for
. . . . Ds

infinite-acting reservoirs normally means that we
should have a_ =~ 0. Actually, if we set aD H 0_§nd tDA
+ o=t in Eq. 34, then we get a = e 't =

0.135t,. . Hence, 1if the reservoir is truly infinite
acting, then we should not expect to get a = p if we
use buildup data with At << t to determine a.

The validity of €qs. 19 and 3¢ is illustrated in
Figs. 1 - 3. Buildup data for these examples, and for
the other examples wused 1in this paper, have been
generated by the algorithms in Ref. 12, and each
example represents a reservoir with area given by JA =
2000r For Figs. 1 - 3 we have used buildup data from
a closed square with the well at the center and a
producing time t = 0.01 prior to shut-in. For such
reservoirs we normally assume that t Aeiz © 0.08, but
this definition depends on what is consléered to be a
significant deviation.

Fig. 1 illustrates the effect of varying the
length of the interval wused to determine the
parameters o¢f the hyperbola. Two hyperbolas centered
at o = 0.0043 are included, one based on ©0.04 log
cycles of buildup data and one based ! log cycle of
data. The buildup curve is represented by the solid
line, the hyperbola based on the short interval by the
dashed line, and the hyperbola based on the longer
interval by the dotted line. If we use 2 log cycles of
data, then we get a hyperbola that almost coincides
with the buildup curve. Since the analytical results
of this paper concern point values, we get <the most
accurate results for short intervals. Note, for
instance, that a, = 0.0628 = 2wt for a = D.0043,
according to Eg. 34, and that we get a_ = 0.0625,
0.0487, and 0.0278 from the hyperbolas centered at a =
0.0043 and based on 0.04, 1, and 2 log cycles of
buildup data, respectively. The parameters of these
hyperbolas were all computed from the least-squares
method numbered 2 in Appendix B, and this is wused as
our standard least-squares method to match hyperbolas
to buildup data.

In Fig. 2 we have illustrated the validity of Eq.
34 by plotting values of a_ determined from hyperbolas

matched to the buildup data and computed by Eq. 34.
Both are plotted as functions of the interval
midpoint, a. The solid lines represent values
determined from asymptotes of hyperbolas based on
intervals of length 0.04 and 1 log cycles, and the
dashed 1line represents values computed by Eq. 34. We

have also included the buildup curve, represented by
the dotted 1line, for comparison. €q. 34 was derived
for short intervals, and for such intervals it is seen

ssentially exact in the infinite-acting period,
or the analysis here is seen to end around At
If intervals of length 1 log cycle are used,
then the asympotes of the hyperboulas deviate somewhat
from the values given by Eg. 34. Considering the
curves in Fig. 2, note that for intervals of a chosen
length, there 1is only one position in the infinite-
acting period that will, strictly speaking, give an
asymptote equal to the average pressure. But note that
we also get a, = BD from data influenced by the
boundary. Note also ghat the absolute error introduced
by setting a, = p,_ is small for @ 3 0.003, but that
the relative error can be significant in this range of
data. Moreover, both types of error increase sharply
for smaller buildup times.
The wvalidity of Eg. 19 is illustrated in Fig. 3
for the same data used in the Figs. 1 and 2. In this
figure we have plotted wvalues of p determined from
hyperbolas matched to the buildup data, and values of
¢ computed from Eq. 19, with both plotted as functions

of a. The solid lines represent values determined from
hyperbolas based on 0.04 and 1 log cycles of data, and
the dashed line values given by Eg. 19. Note that Eq.

19 can be considered to be exact for o € 8.02 for the
shorter intervals, and also to be fairly accurate for

a ¢ 0.03, both for the shorter and longer intervals.
It follows that €q. 4 can be applied to data from
infinite-actiny reserveirs, but such reservoirs can

also be analyzed by the Horner method.

[f we use a constant-pressure sgquare instead of a
closed square in Figs. 2 and 3, then we get exactly
the same results for data not influenced by the outer
boundary. For data influenced by the boundary, we get
values of a_ below those given by Eq. 34, and values
of p above ehose given by Eq. 19.

It should be noted that if Eqs. 11 and 19 are
both satisfied at AtoA = a, then we get

DA
a, = p,. {a) - . (371
0 Ds toA + 2a
and hence
. m t
LR R TR TS (38)

in terms of real data. It follows that if we get an
accurate estimate of the flow capacity from a chosen
hyperbola, then the asymptote cannot be equal to the
average pressure unless the wellbore pressures used
are less than m/1.151 psi (kPa) below p.

To complete this section, note that b is known in

the infinite-acting period if the producing time is
known. Therefore, to analyze buildup data from
infinite-acting reservoirs by the rectangular
hyperbola method, we can set
a't
b= t + 2a ! (39)
where a' is still the midpoint of the interval in real

data, and then make a linear plot of

1

p s(Atl vs. s

w
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near At = a’ should then form a straight
¢ and intercept = a (for At =
This 1s similar to one of the methods suggested in
Ref. 6. For data that are not influenced by any
boundaries, the approach just cutlined is eguivalent
to a direct use of least squares.

Data points
line with slope =

w) .

BUILOUP OATA FOLLOWING PSEUDOSTEADY-STATE FLOW

Consider a closed reservoir produced to

pseudosteady state prior to shut-in, i.e., with t 3
t . We then get oA
DApss
1 LA
wa(tDA + AtDA) = 2n(t + At)DA + Eln 3 >
e'C.r
A'w
(40)

for the drawdown transient when we have zero skin. If

the buildup transient is in the infinite-acting
pgrlod. i.e., if AtnA 4 tDAnia‘ then th1§ part is
given by Eq. 29. It follows ffom Eq. 10 that
(At .} = 2wt + 2ult - 1lnAt - IlnC
Pos ®toa DA pa " 2:M%pa T 27

(41}

for this range of buildup data,.

To replace the right-hand side of Eq. 41 by a
hyperbola, we can neglect the term 2wAt_ ., as is done
when MDH analysis is applied to such buigéup data, and

apply the results in Appendix A to 1lndt We then get
b, = a and ¢, = 2a. It is, however, more correct to
substitute Eqs. 29 and 40 into Eqs. 25 - 28. We then
get

a_ = 27t + 210 - 1lnuC - {1 - 6!&)2

0 DA o 2° A )

(42)
bD = a1l - 8wa), (43)
3

cD = 2a{l - &ma)”, (44)
and

e = 1 - &wa. (45)
From Eqs. 16 and ¢2 it follows that the left-hand side
of Eq. 18 takes the form

a_ - p._ = 2ma - i1naC, - (1 - swe)® 46

o~ Pos © 27" b (486}

From Eq. 45 it follows that Eqg. 2t is valid for
small values of a, and hence that we can use Eq. 6 to
determine the flow capacity from a hyperbola based on

early buildup data. If we
factor of the reservoir,
the average pressure

know the area and shape
then we can also determine
from the asymptote of the same

R HYPERBOLA APPROACH

hyperbola by using Eq. 4§ to compute the left-hand
side of Eq. 18. With this information we can, of
course, also use Dietz’ method to determine the
average pressure. If we do not know the area or the

shape factor of the reservoir, and just assume that aD

= p__ for some chosen interval, i.e., for some chosen
a, thn we can use Dietz' method with the same
uncertainty, as 1is explained below. Considering Eq.
45, note that if a € 0.004 for the midpoint of the
interval where the hyperbola has been matched to the
buildup data, then we should get less than 5I errer if
we use Eq. 6 to estimate the flow capacity.

Considering the assertions in Refs. 5 and 6, note
that if the asymptote of a hyperbola based on
infinite-acting data is equal to the average pressure,
and the reservoir has been produced to pseudosteady
state prior to shut-in, then the dimensionless

interval midpoint, o, must satisfy the equation

2wa - 1lnuCA - - Lnu)z = 0. (47}

2

For a closed square with the well at the center we get
the shape factor €, = 30.8828 from Table C.1 in Ref.
13. It follows that EQ. 47 has three solutions: a =
0.00651, 0.0581, and 0.0997. Only the first of these
is clearly in the infinite-acting period. Actually, 1if

C < 20.95, then Eq. 47 has only one solution, and
only beyond the infinite-acting period. For such
reserveoirs it follows that a hyperbola based on

infinite-acting data cannot have an asymptote equal to
the average pressure.

Note that we cannot use Eq. 47 to determine the
position where the asymptote should be equal to the
average pressure unless k, A, and C, are known, in
which case we can also use Dietz’ methoé to determine
the average pressure. In this case we can also compute
the right-hand side of Eq. 46, and hence use Eq. 18 to
determine p from any hyperbola matched to an interval
of infinite-acting data. Note also that Eq. 47 can be
used to determine, as we have done, restrictions on
the type of reservoir and data that can give p
directly from the asymptote, provided the hyperbola is
based on infinite-acting buildup data. For such data
following pseudosteady-state flow, we also get the
following: If Eq. 47 is satisfied for some a << 1/4rm,
izé.. if ap - ] , for such an then we must have
e al = 1. But this implies that we can get p2 by
extrapolating the MDH straight line to At = e a’,
since this At is seen to be the buildup time needed
for Dietz' method.

The wvalidity of the results of this section is
illustrated in Figs. 4 - 11, with the first three
cases representing a closed square produced to t A = 1
prior to shut-in, and with the well 1located ag the
center. This reservoir has the shape factor C, =
30.8828: and tDApss = 0.1. It follows from Eq. 46 tﬁat
ao = Py, for o = 0.0065. In Fig. 4 we have matched a
hyperbola to the buildup curve at this o by wusing

an interval of length 0.067 log cycles.

Method 2 on
From the hyperbola we got ao = 6.27, which 1is almost

equal t = = 6.28.
qu o ZntnA 6.28

st
Fig. §
hence of €q.
in Fig. 4.
values of a
length D.OB?

illustrates the validity of Eq. 42, and
46, for the same closed square considered
In this figure the solid lines represent
computed by Method 2 for intervals of
and 1 log cycles, the dashed 1line
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42, and the dotted line
Note that we only get ay

represents a, computed by Eqg.
represents tRe buildup curve.
2 §.28 for « = 0.0065 in the infinite-acting period,
as was pointed out above. However, any value of a

determined by Method 2 on a short interval with « 9
0.03 can be used to determine p from Eq. 46, since
we know that ¢, = 30.8828. From the curves in Fig. 5§
we see that the asymptotes are affected if we increase
the length of the intervals from 0.067 to ! log cycle,
but that the relative change is not large for this
example. Note also that the absolute change will be
the same for any producing time in the pseudosteady-
state period. Finally, if we assume that a = BDs‘
then we can get large errors for short builgup times.
Moreover, we can then also use Dietz’' method.

In Fig. 6 we have illustrated the validity of Eq.
45 for the closed square considered in Figs. 4 and 5.
In this figure the solid lines represent values of ¢p
computed by Method 2 for intervals of length 0.067 and
1 log cycles, and the dashed line p computed by Eq.

45. We again find an excellent agreement between
values determined from Method 2 applied to short
intervals of synthetic data, and values computed by

Eq. 45 for @ € D.0p3. It follows that we can use Eq. 6
to determine the flow capacity from early buildup
data, but such data can of course also be analyzed by
conventional methods.

Fig. T illustrates the validity of Eq. 42, and
hence of Eq. &6, for a closed 2:1 rectangle with the
well 1located 1/4 of the length and 1/2 of the height
of the drainage area, and produced to t = 2 prior to
shut-in. The solid 1line represents values of a
determined from asymptotes of hyperbolas based on
intervals of length 0.05 log cycles, the dashed line
represents a_ computed by £g. 42, and the dotted line
represents ghe buildup curve. We see that Eq. 42
applies in the infinite-acting period, therefore, if
we know k and A for this reservoir, then we can use
the shape factor C s 4.5141 (see Ref. 13) to
determine the average pressure from the asymptote of
any hyperbola matched to a short interval of buildup
data in the infinite-acting period. If we set a_ = P
for this example, then we must use data aroung a =
0.064 to get the correct average pressure, i.e., we
must use data well beyond the end of the infinite-
acting period. Fig. 8 shows how a hyperbola with
asymptote equal to 2mt = 12.57 matches the buildup
curve when an interval of 0.05 log cycles centered at
a = 0.064 is used. If we use a longer interval, then
we must use a larger value of o to get the same
asymptote. Fig. 9 shows that Eq. 45 also applies in
the infinite-acting period, hence, if we use early
buildup data, then we can use Eq. 6 to determine the
flow capacity, and hence k, from a rectangular
hyperbola.

In Figs. 10 and 11 we have 1illustrated the
validity of Egqs. 42 and 45 for a closed 4:1 rectangle
with the well located 1/4 of the length and 3/4 of the
height of the drainage area, and produced to tDA = 5
prior to shut-in. For this example it turns out that
we must center the hyperbola near a = 0.12 to get an
asymptote equal to 2wt = 31.42 when intervals 0.06
log cycles 1long are used. However, note that Egs. 42
and 45 do apply for early buildup data, hence, by
using such data we can determine both the flow
capacity and the average pressure from a hyperbola,
provided we know the area and the shape factor C, =
0.1155. Of course, we can then also use conventional
methods. Note the sharp deviations between values

determined from hyperbolas and from Eqs. &2 and 45
when boundary effects start to influence the data.

Finally, note that if €qs. 11, %3, and &4 are
satisfied at a, then we get

a = p fa) - 11 - smad?, (¢8)

D Ds

and hence

a:p (o) + =21 - 4ma)?, (49)

ws 1.151

in terms of 7real data. It follows that if we get an

accurate estimate of the flow capacity from a chosen
hyperbola, then the asymptote cannot be equal to the
average pressure unless the wellbore pressures used
are less than m/1.15% psi (kPa) below p.

BUILDUP DATA FOLLOWING STEADY-STATE FLOW

Consider a reservoir with constant pressure or
mixed no-flow/constant pressure outer boundary, and
assume that the reservoir has been produced to steady
state prior to shut-in, i.e., that tDA H tDAss' It
follows that

1 16A
=z —_— 50
wa(tDA + AtDA) 2ln - 7 (50)
. e'C,r
A'w
where the shape factor ¢, is defined relative to the

initial pressure, which is’ the same as the static
reservoir pressure for these resgrvoirs. This is the
convention used by Kumar and Ramey  for a well in t?f
center of a constant-pressure square and by Larsen
for other reservoir configurations.

1f Ato < tDAeia‘ then it follows from E£qs. 10,

29, and S50 éhat
(8t..) = ilnk - J1nC, - l1nat (51)

Pps'®tpa’ = 3 Panthd W Rl T
By direct application of results from Appendix A, or
by use of Eqs. 25 - 28, it follows that Eq. 11 1is
satisfied if

a, = 1ln2 - 1lme -1 (52)

D - 2 A ’ . . . - .

bD = a, {53)
and

Cp * £ O £ 13|
Moreover, for these values we also get Eq. 21
satisfled.

Since the dimensionless static pressure is equal
to =zero, it follows that the left-hand side of Eq. 18

is equal to Eq. 52. Hence, if we can determine kh from
Eq. 21, and in addition know the area and shape factor
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of the reservoir, then we can use £q. 18 to determine
the static pressure from the asymptote of any
hyperbola matched to data from the infinite-acting
period. With this information we can also determine
the static pressure by Dietz' method.

5 and 6 that a

If we use the assumption in Refs. 0

= st. then we must also assume that
lnk - lnuCA -2 =0, {55)
or
-2
he
a = -C—— . (56)
A
provided the hyperbola is matched to infinite-acting
data. But we are then indirectly assuming, through Eq.
56, that the static pressure can be obtained by

e;trapolating the MDH semilog straight line to At =

ea, i.e., that Dietz’' method can be used. Moreover,
note that this approach will not work wunless, C is
sufficiently large to give a value of a in the
infinite-acting period.

From Refs. & and 14 it follows that C, = 30.8828

and tD ss = D.25 for a square with constant-pressure
outer eoundary and the well at the center. A hyperbola
based on a short interval centered at a = 0.0175
should therefore yield the asumptote a_ = 08, according
to €q. 52. Fig. 12 illustrates this claim for such a
canstant-pressure square produced to tD = 1 prior to
shut-in., With ©0.067 1log <cycles of Guildup data
centered at a = 0.0175 wused to determine the
parameters of the hyperbola by Method 2, we get a_ = -
0.0013. 0

Figs. 13 and 14 illustrate the validity of Egs.
21 and 52 for the same square considered in Fig. 12.
In Fig. 13 we have plotted values of a, determined

from hyperbolas based on intervals of lenggh 0.067 and

t log cycles, and values of a_  computed from Eq. 52.
The solid lines represent values from the hyperbolas,
the dashed 1line values from Eq. 52, and the dotted
line the buildup curve. Note that we only get a = 0
for short intervals near o = 0.0175, in the infinite-
acting period, as was asserted above. We can, however,
use any value of a, determined from a short interval

with o ¢ 0.03 to determine p s from Eqs. 18 and 52,
since we know that C, = 3078828. Note also that the
asymptotes are affected if we increase the 1length of
the intervals from 0.067 to 1 log cycle, but that the
relative change is not large. Moreover, the absolute
change will be the same for any producing time in the
steady-state period. Finally, if we assume that a =
EDs' then we can get large errors for short buigdup
times. Of course the type of data considered here can
also be analyzed by the MOH and Dietz methods.

In Fig. 14
Eq. 21 by plotting

we have illustrated the validity of
values of ¢ determined from
hyperbolas based on intervals of length 0.067 and 1
log cycles vs. interval midpoints. Note that we do get
e = 1 from short intervals of infinite-acting data, as
asserted in Eq. 21, and that the error for the
intervals of length 1 log cycle is less than 77 in the
infinite-acting period. It follows that we can use Eq.
§ to determine the flow capacity from early buildup
data, but such data can of course also be analyzed by

conventional methods.

Fig. 15 illustrates the validity of Eq. 52 for a
square with one side at constant pressure and the well
located 3/4 of the length of the reservoir from this
side, and at 1/2 of the height. The buildup data were
generated with a flow period of tDA = 5 prior to shut-
in. In Ref. 14 it is shown that CA = 0.02602 and tnA .
= 2.46 for such reservoirs. In Fig. 15 we have plotted
values of a_. determined from asymptotes of hyperbolas
based on ingervals 0.06 log cycles long, and values of
a. computed from Eq. 52, both as functions of «. The
s0lid line represents the asymptotes, the dashed line
Eq. 52, and the dotted line the buildup curve. We see
that Eq. 52 applies in the infinite-acting period, and
if we know k and A for this reservoir, then
we can use the shape factor C, = 0.02602 to determine
the static pressure from the asymptote of any
hyperbola matched to a short interval of buildup data
in the infinite-acting period. With this information
we can also use conventional methods. If we set a_ =
D for this reservoir, then we must use data aroung [\3
=Dsn.085 to get the correct static pressure if we use
short intervals. If we use longer intervals, then we
must use a larger value of o to get the same
asymptote. Note also that large errors are introduced
if we set a for hyperbolas matched to early
buildup data.

>
therefore,

b Pos

Fig. 16 shows that Eq. 21 is satisfied for early
buildup data from the reservoir considered in Fig. 15,
and hence that we can determine the flow capacity from
such reservoirs by using Eq. 6. But this analysis is
easier on an MDH plot.

Finally, note that if Eqs. 11 and 21 are both
satisfied at a, then we get

a, = st(u) -1, (57)
and hence

a = pws(u') + ‘.Ts‘ (58}
in terms of real data. It follows that if we get an

accurate estimate of the flow capacity from a chosen
hyperbola, then the asymptote cannot be equal to the
average pressure unless the wellbore pressures used

are less than m/1.151 psi (kPa) below p.

BUILDUP DATA FOLLOWING NON-STABILIZED FLOW

This section is restricted to closed reservoirs,
due to the lack of general results for reservoirs with
constant pressure on all or part of the outer
boundary.

I1f we do not have stabilized flow in the
reservoir prior to shut-in, then we cannot use fgs. 25
- 27 to get the parameters of the hyperbola in Eg. 11

unless we have expressions for the derivatives of the

first and second order of p Note, however, that if
£q. 11 is satisfied at «a, tﬁen we must
p

a = pwb(tDA +a) - pwo(u) - B;—:—; . . 159)
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Now, if « is in the semilog period,
can also be expressed in the form

then this equation

1 1, toa * ¢
a, = ZntDA + 2vq - ipDMBH(tDA + al o+ Eln .
¢
4}
-q-:—a..............(ﬁﬂl
This follows from the identity
hAt
1 DA 1
Pwp'toa! ~ 217 2 27to, - 3Pomek!toa’”
PSS £ 2 D
where pD H denotes the MBH function of the reservoir.
The le?g-hand side of Eq. 18 can therefore be
expressed in the form
t ‘o
- 1 1 DA
3 " Ppg T 2T - aPpupyitpa * @)t 3in T
Y .
D
- bo R {62)

for closed reservoirs.

Now, to use Eq. 62 in a given analysis, note that
if we determine the flow capacity from @, then we can
convert b, ¢, and «', determined from a hyperbola

based on real data, to the last term in Eq. 62 by
setting
c
. khi-c) (63)
bo +a 141.2qBpib + &'} ~ 7 0
Hence, once we have matched a hyperbola to infinite-

acting buildup data, we actually assume everything
known on the right-hand side of Eq. 62, except 2wa and
the value of the M8H function. From Eq. 18 it follows
that we can determine p from a if we know A and the
MBH function. We assume then that the flow capacity
can be obtained from the slope of the hyperbola. If we
just set p = a, then we are faced with the problem of
choosing the proper interval. This is the same for
buildups following stabilized and non-stabilized flow.
The possible errors are also similar. Note also that
if we set p = a, then we are assuming the right-hand
of Eq. 62 to be 0. With the flow capacity known, we
can then determine the quantity 2ma minus the MBH
function, and this information is sufficient to get
the average pressure directly from an MDH plot.

Fig. 17 ilustrates the validity of Eq. 60 for a
closed 2:1 rectangle with the well located 1/4 of the
length and 1/2 of the height of the drainage area,
i.e., for the same reservoir considered in Figs. 7 -
9. For the present example the reservoir was produced
to tDA = 0.1 prior to shut-in. From Ref. 13 we know
that 't = 1.5, and hence that stabilized flow was
not reagﬁgasprior to shut-in., In Fig. 17 we have
plotted values of a, determined from asymptotes by the

solid line, values of a computed from Eg. 580 by the

dashed line, and the bulldup curve by the dotted line.
The hyperbolas were matched over intervals of 0.06 log
cycles, and for such intervals we see that the
asymptotes are given by Eq. 60 for o ¢ 0.03, i.e., in
the infinite-acting period. It follows that we can
determine the average pressure from the asymptote of
any hyperbola matched in the infinite-acting period by

using Egqs. 18, 62, and 63, provided we know k, A, and
the MBH function for the reservoir. But with this
information we can also use conventional methods. If
we just set p = a, and hence indirectly assume the

information needed for conventional methods, based on
infinite-acting data, to be known, then we need to use

late data to get a correct estimate of p. Fig. 18
shows that Egqs. 34, 42, and B0 can give quite
different results if used to estimate the possible

response of the hyperbola approach to pressure buildup
analysis.

Finally, Fig. 19 illustrates the validity of Egs.
19 and &5 for the same 2:1 rectangle considered in
Figs. 17 and 18. In this figure we have plotted ¢
determined from hyperbolas by the solid line, ¢
computed by Eq. 19 by the dashed line, and ¢ computed
by Eq. %5 by the dotted line. Note that Eq. 45 best

approximates the values obtained from the hyperbolas
for this example, but this depends on the flow period
prior to shut-in, Moreover, if we wuse early buildup
data, then we can get a sufficiently accurate estimate
of the flow capacity from Eq. 6. For shorter producing

times, Eq. & should be chosen. But again, such data
are easier to identify and analyze by the Horner
method.

CONCLUSIONS

1. Rectangular hyperbolas can be used to determine the
flow capacity and average pressure from infinite-
acting buildup data, but only if the data can also
be analyzed by conventional methods. The point is
that the methods are essentially equivalent in
terms of information needed and information gained.

2. The flow capacity can be determined from the slope
of a hyperbola matched to a short interval of
infinite-acting buildup data, but it is easier to
identify and analyze such data by the Horner and
MDH methods.

3. The average reservoir pressure can be determined
from the asymptote of a hyperbola matched to a
short interval of infinite-acting buildup data if
we know the drainage area and shape factor
following stabilized flow, or area and MBH function
otherwise. But we can then also use conventional
methods.

4. 1f the hyperbaola method is based on the assumption
that the average pressure is equal to the asymptote
of the hyperbola, then, for a chosen length of
interval, there 1is at most one position in the
infinite-acting period where the asymptote can be
equal to the average pressure. Moreover, except for
highly symmetric reservoirs, there will normally be
naone, in which case we must include data beyond the
infinite-acting period to get an asymptote equal to
the average pressure. If this approach does apply
in the infinite-acting period, then the information
we need to choose the correct position can also be
used to carry out a conventional analysis,
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5. If the average pressure can be obtained

directly

from the asymptote of a hyperbola, then the average
pressure cannot be more m/1.151 psi (kPa) above the
last wellbore pressure used in the analysis, where

m is the conventional semilog slope.

HOMENCLATURE

A = drainage area, sq ft (m2 )

= hyperbola asymptote, psi (kPa)

= formation volume factor, RB/STB (res m3

a
8
b = hyperbola parameter, hours
[+

= shape factor, dimensionless

/std m3)

c = hyperbola parameter, psi hours (kPa hours}

c = total system compressibility, psi-l. {kPa ')

1

et = 2.71828..., base patural logarithm

h = thickness, ft (m)

k = permeability, md

ln = natural logarithm

m = semilog slope, psi/log cycle (kPa/log cycle)
p = pressure, psi [(kPa)

q = flow rate, STB/D (stock-tank mald)

ry °© wellbore radius, ft (m)

t = time, hours

o = logarithmic interval midpoint, dimensionless
Y = Euler’'s constant (0.5772...)

L = porosity

1] = viscosity

Q = slope parameter, dimensionless (Eq. 20)

Subscripts

A = area

0 = dimensionless

eia = end infinite acting
f = flowing

H =  Horner

i = initial

k, n = indices

pss = pseudosteady state
ss = steady state

w = wellbore
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: . .
bbl x 1.589 873 E-01 =m

cp x 1.0% E - 03 = Pa.s
£t x 3.048% E-01 =m

psi x 6.894 757 E+ 00 = kPa

* Conversion factor is exact.

APPENOIX A

TRUNCATED SERIES APPROACH

For any positive con
shown that

1px = lna - 2L !

n=z1
The point is that
' - -
o+ X
X = Q ,
o ~ X
1 «+
[ St
and hence that
inx = lna + lnf{1 - ==X
a +

Eq. A-1 can now be obtained
the 1last two logarithmic
then adding these.

Considering Eq. A-1, no

- X
1Inx = lpa - 2 -

o+ X -

s lng + 2 - —%

a o+ X

2n - 1

stants x and a, it can be

x - x.2n - 1

(——=) N Y TR
a + X

(A-2)
Xy - 1ng1 » 22X
X a + X

{a-3)

from Eq. A-3 by expanding
terms as power series, and

te that we must have

[A~4)

if x is sufficiently close to «a.

APPENDIX B

DETERMINING HYPERBOLA PARAMETERS

Several methods can
parameters a, b, and <c

be used to determine
such that the rectangular

hyperbola in Eq. t closely matches the real buildup

curve on a chosen interv
introduced independent

justifications of the rect
to pressure buildup analysis
to both real and dime
objectives of the present
consider two such methods.

al. These methods can be
of any theoretical
angular hyperbola approach
, and they can be applied
nsionless data. For the
paper, it suffices to

To describe the methods we have used to determine
a, b, and ¢ in Eq. 1, let x,. X,, ..., X_denote the n
buildup times being used 1n tﬁe analysis, and let y
be the corresponding buildup pressures. The mos
direct method to determine a, b, and c¢c is to minimize

the following sum of quadratic deviations,

n
C 2
Fla,b,c) =T [y, -a~—)" . . . . . (B-1}
1 K= 1 k b + xk
This amounts to solving the equations
aF oF oF
B R T- RS

Unfortunately, this approach does not lead to simple
expressions for a, b, and c. Instead, an equation for
b that must be solved by some numerical method is
obtained. The remaining two parameters can then be
determined by direct substitution. In the present
paper, this method will be called Method 1.

An alternative method, which is also based on
minimizing a sum of quadratic deviations, can be
obtained by only considering the numerators in Eq. 8-
1. We then get

- ax, + byk - ab - c)2

n
lea,b.c) = i (xkyk K

=1
(B-3)

The corresponding version of Eq. B-~2 then leads to the
equations

n
L (xkyk -oax, o+ byk - ab - c)(xk + b) =0,
k=1
(B-4)
n
[ (xkyk -oax, + byk - ab - c)(yk - a) =0,
k=1
{B-5)
and
n
§-1(xkyk - ax, ¢ byk - ab -¢)y=0. . . . . (B-6)

To express the solutions in closed form we have found
it convenient to use the following special notation:

e 224
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{<x>2} = <x>2 - <x2>, e e e e e e e . . B-B)
{<y)2} = <y>2 - <y2>. T 2% D
{OOY>E = OOLy> - <xy>, . (B-10)
2
{O0xy>) = QOdxy> = <xy>, L0 L 0L . (B-11)
and
2 .
{<y><xy>) = <yd><xy> - <xy >, . . . . . . . (B-12)

The parameters a, b, and ¢ can then be expressed

_ Leyrexyr{cxr<yr}t - {(x)(xy)}{<y>2}

] .2 . vr. 2
{ooey>} - t<x>211<y> }
(8-13)
b {<y><§y>}(<x>2) - fexd¢xy> HKx><ys )
(<x><y>)2 - (<x>2)(<y>2)
(B-14%)
and
€ = (xy> - alx> + beyy ~a2b. . . . . ., . (B-15)

This wparticular method, which will be called
Method 2 in the present pf?er, is similar to a method
suggested by Meyer et al. Since Methods ' and 2 give
essentially identical results in the range where the
hyperbola approach can be used with any accuracy, and
Method 2 is much simpler to use, we have chosen Method
2 as our standard method of least squares.

Fig. 20 illustrates the wvalidity of the claim
that Methods 1 and 2 are equivalent in the range of
data where the rectangular hyperbola method can be of
interest. In Fig. 20 we have used the same 2:1

rectangle considered in Figs. 17, 18, and 19, but now
produced to t = 1 prior to shut-in. In this figure
the solid 1line represents asymptotes determined by
Method, t and the dashed line asymptotes determined by
Method 2. In these computations we have used intervals
of length 0.2 log cycles. A similar comparison of the
methods is obtained if we consider values of p. Note
that the methods only start to diverge around a =
0.06, which 1is beyond the infinite-acting period for
this reservoir.
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Fig. 4—Hyperbola matched to buildup curve of a closed square produced to pseudosteady state prior to shut-in.
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Fig. §- y from and Eq. 42 comp: with buildup curve following pseudosteady-state flow for a
closed square.
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\D closed 2:1 rectangle.
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Flg. 6—Slope parameter p from hyperbolas and Eq. 45 for a closed square produced to pseudosteady state prior to
ut-in.
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Fig. 8—Hyperbola with asymptote given by average pressure matched to buildup curve following pseudosteady-state llow
for a closed 2:1 rectangle.
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DIMENSIONLESS BUILDUP PRESSURE

LY FROM HYPERBOLAS

ap FROM EQ. 60

BUILDUP CURVE

-
tpy = 01 ]
Po. = 0.628 —

0
0.00 0.02 0.04 0.06 0.08 0.10
DIMENSIONLESS INTERVAL MIDPGINT, a
Fig. 17- y! from hypr and Eq. 60 d with buikdup curve following nonstabilized flow for a closed
2:1 rectangle.
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Fig. 19—Slope parameter p from hyperbolas and Egs. 19 and 45 following nonstabilized flow for a closed 2:1 rectangle.
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Fig. 18—Asymptotes from nyperbolas and Egs. 34, 42, and 60 following nonstabilized flow for a closed 2:1 rectangle.
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