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SUMMARY to determine the average, or static, reservoir

pressure for closfcl reservoirs, and the method of

This p.eper examines applicability and limitations Kurear and Ramey can be used for constant-pressure’

on the use Crf rectangular hyperbolas to analyze squares . These methods are based on an indirect use of

prf!ssure buildup data, with emphasis on the exact pressure solutions,

determination of

and hence require knowledge

average pressure and flow capacity.

It is

of the size and shape of the drainage area, and of the

shown that the method can be used with outer boundary condition. For a given test, all or

confidence only if it is applied to data that can also part of this information might be missing, in which

be a!)alyzed by conventional semilog methods, and that. case approximations must be used to carry out the

it for such data 1s essent~ally equivalent to the analysis. This leads to uncertainties in estimates of

conventional methods in terms of information needed average pressure and other parameters that depend on

anll informatirrn obtained. If WP use semilog data, then this information.

we can determine the flow capacity from the slope of

the hyperbola, and we can determine the average A different approach5to pressure buildup analysis

pressure indirectly from the asymptote, provided we was suggested by Mead. He

know

observed that pressure

the drainage area and the MBH function of the build~p curves closely resemble rectangular

reservoir. Following stabilized flow we only need the hyperbolas, and therefore

shape

asserted that the average
factor in addition to the area. If we use the reservoir pressure should be equal to the horizontal

direct approach, and assume that the asymptclte is asymptote of a hyperbola matched to a buildup curve.

equal. to the average pressure, then we neecl the same Mead supported his assertion by examples.

type of information to make a proper choice of

interval where the hyperbola should match the buildup ttasan and Kabir6 explored Mead’s empirical

curve. For this direct appraach we will normally get. results further, and presented a theoretical

an estimate of average pressure that is less than justification for the hyperbola approach to buildup

m/1.151 psi (kPa) above the last wellbore pressur~

being

analysis when both the drawdown and buildup transients
used in the analysis, where m is the are in the infinite-acting period. Their work was

conventional. semilog slope. Moreover, if we use only based on a truncated series expansion of the

semllog buildup data following pseudosteady-state l~9arithmic solution. Hasan and Kabir successfully

flow, then W( can only get an accurate estimate c1f applied the method to examples with different boundary
averaye pressure by this approach if thI? shape facLur and flow conditions, and concluded that the

is close to 21 , or higher. rectangular hyperbola approach can generally be used
to determine the average, or static, reservoir

If nothing is known about the reservoir, then the pressure directly from field data, and also that good

hypcrl)c,].a !nk, thc>d can b~ used to get a rough estimate estimates can be obtained for flow capacity and skin.

of tho .~ver,lg~ prr?ssure, but with a high CJqgr(;F: of This without prior knowledge of the size, shape, and

ur}certdiuty lf we only have data from a short buildup type of the reservoir being tested. An analysis of the
period. This claim follows from the many examples inherent limitations on the methcrd was not included in

included 1 n this paper of asymptc,tes determined from Ref. 6.

hyperbolas matched to rflmens~onless synthetic buildup

data plotted vs. interval midpoints, The general conclu:.”ens in
+

Ref. 6 attra teci

criticism from Humphreys
&ln

their replies, Hasan an

J~JROOUCTION
Hclrner~l Kab::~ ‘P~wl~~k~~~l~~j~j” the

superiority of analysis of infinite. acting
reservoirs, but reaffirmed the validity of the method

The tlill.e;- Oyes-Hutchlnson’ ~ (MDH}, Matthews- for other ca$es, again supported by examples.

C?rons-Hazebroek- [MBHI, and Oletz methods can be used

The main objective of this paper is to present a

general analysis of the validity of the rectangular

ReferQnCF5 and illustrations at encl of paper.
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hyperbola approach to pressure buildup analysis. For

semilog data this is accomplished by deriving

analytical expressions for the relationship between

the semilog slope, m, and the slope of the hyperbola,

and between the average reservoir pressure and the

asymptote of the hyperbola. These expressions concern

point vaIues, but are also applicable for short

intervals. For buildup data beyond the infinite-acting

period we only illustrate the limitations on the

method through the use of examples. Our main

conclusion is that the rectangular hyperbola method is

essentially equivalent to the conventional methods in

terms of information needed and information obtained,

but that it is more difficult to use. All our examples

are based on the use of synthetic dimensionless

~::J~:P1 ~ata generated by algorithms presented by

THEORETICAL 8ACKGROUND

The basic assumption in Refs. 5 and 6 is that

buildup curves can be approximated by rectangular

hyperbolas. It follows that parameters a, b, and c
must exist such that the buildup pressure, p can be

Ws “
expressed in the form

P wsiAtj = a . ~
b+At’ “ “ “ ““ ‘ ‘ “ “ “ ‘

(1)

where At is the buildup time.

If Eq. 1 is satisfied for large values of At,

then a must be equal to the average, or static,

reservoir pressure, ~. If It is satisfied in the
infinite-acting period , where Horner or MDH analysis

can be used, then we can determine the average
pressure indirectly from a, and the conventional
semilog slope, m, directly from b and c. From m we can

then determine kh.

Considering first the semilog slope, note that if

both Horner analysis and the hyperbola can be applied

in a neighborhood of At = u“, then we must have

mlog—
t:tAt+p’ =a+~’” ’”o””” ‘2}

where P* is the Horner false pressure. Setting the

derivatives, and hence slopes, equal at At = a“, we

c=- (3)

(b+ ao)2 ‘ “ o . . .

m (t + a’)ca’—,-
ln10 2“”””’””””’”””

(4)

t(b + a’)

Similarly, ~f flDN analysis applles in a neighborhood

>fAt= a’, then we must have

c
mlogAt + pltlr = a + — (5I

b+At’ ‘ “ ‘ “ “ ‘ “ “

where Plhr is the pressure at one hour on the MDH

semilog straight line. Setting the derivatives equal

at At=a’, we then get

m ca’—= -
ln10

. . . . . . . . (6)

(b+a”)2” $...

Note that Eqs. 4 and 6 are equivalent if a’ <c t. It

follows from these equations that we can determine the

semilog slope, m, and hence the flow capacity, kh,

from any hyperbola matched to buildup data from the

infinite-acting period, either by Eq. 4, for short

producing times , or by Eq. 6 for longer producing

times. But this assumes that we s@& use data from the

infinite-acting period, and such data are easier to

identify and analyze by the Horner and MDH methods.

As for the relationship between the average

pressure, z’ and the asymptote a in Eq. 1, we show

below that this depends on a’, i.e., on the position

of the interval. Hence, to get 5 from a we need to

know the difference ~ - a as a function of a’. This is

considered in detail below through the use of

dimensionless variables.

Theoretical justiflcation~ f~~rbui~~~p d~ta !’~~~

presented by Hasan and Kabir

infinite-acting reservoirs, under the assumption that

the asymptote equais the average pressure, but their

work was otherwise based on verification through the

use of examples. A general analysis of the validity of

Eq . 1 was not included. Such an analysis is obviously

needed, and this is the main objective of the present

paper, both along analytical and along numerical

lines.

To determine the inherent limitations on the use

0? Eqs. 1, 4, and 6 in buildup analysis, it is natural

to work with dimensionless variables. Therefore, let

kh
PwDltDA) =—— [pi - Pwf(t)l, . . , . . (7I

141.2qep

denote dimensionless drawdown pressure, where q is the

surface rate, p. the initial pressure, pwf the flowing

wellbore pressu;e, and

0.000264kt

‘DA z
. . . . . . . . . . . . ,.

VUCtA
(8)

the dimensionless time based on the drainage area, A.

Moreoverj let

f’os
kh

‘*tDA) = 141.2qBp
[Pi - pws[At)l . . . . , (9)

denote dimensionless buildup pressure, where the

dimensionless buildup time, AtDA, is tjassxi Gn ~q. g.

Our theoretical considerations are limited to the

analysis of bounded single-well homogeneous reservoirs

of regular shape and uniform thickness. The reservoirs

are assumed filled with a single fluid of small and
constant compressibility and produced by a fully

penetrating well with constant rate prior to shut-in.
Wellbore storage and skin effects are not eofisidered.

[n short, we assume that the standard pressure

solutions can be used. Since we get
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Pos ‘AtDA)
= pwDltoA + AtoA) - pwo(AtDA),

. . . . . . . . . . . . . . . . . . . . . . (lo)

by superposition, it follows that we can set up simple

expressions for the buildup pressure within special

flow regimes. This applies to both closed reservoirs

and reservoirs with constant pressure, or mixed no-

flow/constant pressure outer boundary.

Let us now rewrite Eq. 1 in the dimensionless form

‘Ds
(AtDAl = aD

where

kh
aD = 141,2qBU

+ CD
bD + AtoA (11)

pi-a), . . . . . . . . , . (12)

0.000264kb

b. = WICtA ‘ - “ “ “ “ “ ‘ “ “
. . . . (13)

and

kh 0.000264kl-c)

co ‘ 141.2qBp
. . . . . . . .

@PCtA
(141

Assuming Eq. 11 to be valid on a chosen interval, our

objective is to determine restrictions on the
positioning of the interval, and also on the type of

reservoir being analyzed, in order for the parameters
a , b , andc to give sufficiently accurate estimates
o? th~ parameters being sought.

Considering the position of the interval, we have

chosen to use a to denote ~ Joaarit~ ~ ~
~.

terv auw u LLIQIKE@QIA
~ in terms of dimensionless data, and a’ in

the same meaning for real data. This only affects the

hyperbola parameters obtained by least-squares methods

applied to synthetic buildup data, since the
analytical derivations only refer to the interval

midpoint, and not to the end points. The a used in
Ref. 6 has a similar meaning, but only in terms of

Horner time ratios.

The main objective of the rectangular hyperbola

approach to pressure buildup analysis is to determine

the average pressure

therefore introduce the

for the dimensionless

pressure. From material

PDS = 2HtOA ‘ ‘ ‘

of the reservoir. Let us
notation

-;) . . . . . . . . . . [15)

average, or static, reservoir

balance we know that

. . . . . . . . . . . . . 116)

for closed reservoirs, while we for reservoirs with

all or part of the outer boundary kept at constant

pressure must have

Pos
=0, . . . . . . . . . . . . . . . . . (17)

since the static pressure is then equal to the initial
pressure. For both cases we get

kh

a.
- pDs .

1$1.2qBp
(~-a) . . . . . . . .

We can therefore determine the average pressure

the asymptote when kh and the left-hand side of Eq

are known.

18)

r om

18

It should be obvious that Eq. lB is a function of

the midpoint of the interval being used to determine

?nd that the main assumption in Refs. 5 and 6,
ao’
namely that the right-hand side equals 0, can oniy be

satisfied at very late 5uiLdup times: or at isolated

earlier buildup times. It will also be shown below

I that if we have sufficient information to use Eq. 18

to determin~ the average pressure from infinite-actina

buildup data, then we can more easily use conventional

methods. Moreover, if we use infinite-acting data.

then we &nJ.@ use Eq. 18, either directly or

indirectly. If we use data beyond the infinite-acting

period, then the analytical expressions of this paper

cannot he used, but Eq. 18 still applies. For such

data we only consider the relationship between buildup

pressures used in the analysis and the average

reservoir pressure when the right-hand side of Eq. lB

equals O.

To get the flow capacity, kh, from builduP data

following a short producing period, it follows

Eq. 4 that we must have

t
DA

i?’~ . .
DA ‘a ‘

.,,.. . . . . . .

rom

191

where Q is defined by the equation

2acn
“

p, . . . . . . . . . . . . . . . (20)
[bD + a)z

If g is small compared to t.., then we just 9et
Un

Q=l, . . . . . . . . . . . . . . . . . . . (21)

and this is equivalent to Eq. 6. The symbol Q has been

introduced to simplify labels on plots.

To derive expressions fo

hyperbola, Hasan and
,abiri the Parameters of the

used a truncated series

expansion of the Horner solution for infinite-acting

reservoirs. A more general approach is to require the

two sides of Eq. 11 to have the same value, slope, and

curvature at At = a, i.e., to require the

derivatives of orde!AO, 1, and 2 to be equal. We then
get a hyperbola that must match the buildup curve in a

neighborhood of a. In other words, we just need to set
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PWI)(%A + a) - ‘wD(a) = ‘D + ~ “ “ “ “ ’22

-c

+ a) - pwo(a) =
D

PwDltoA 2’””””
(23

(bD + a)

and

‘c..

+ a) - p;o(a) =
v

P;. ~ ‘DA . . . . (24
(bD + a]3

The solutions to these

‘Cl
= pwD(tDA + al

equations are

- pwo{a;

2[pwD(tDA + a) - f2wD(a112

p;D(toA + a) - P;D(a) - ‘ “ ‘ “ “ “ “
(25

2[pwD(tDA + a) - Pwola.)l

bD
=-a- —.

;D(a) ‘ “ “ ‘
(26

PwD(tDA *a)-p

and

4[pWo(tDA + a) - pwO(a)13

c.. = - “- - (~?-......u
[P;D[tDA +

By substituting Eqs. 26

Q=. 2a[pwD(tDA +

L
al - p;D(a}l

and 27 into Eq. 20 we also ge

a) - pwD(a)] . . . . . . (’8

Effects of a on a. and Q are not immediately eviden

from these expressions, but such effects do becom

evident when we substitute solutions for special flo

regimes.

As was pointed out by Hasan and Kabir, 10 th
HG.Tner method should be used to analyze buildup dat
from infinite-acting reservoirs. Still. since tis

rectangular hyperbola apprcach ~~ ~ ap~~ied to thi
case in Ref. 8, we have also chosen to include a

analysis of this case in the present

A reservoir is infinite-acting

t
DAeia’

in which case we get

4AlJtDA

pwOIAtDA) = ~ln— . . . .
eyr’

w

and

paper.

f toA + AtDA

. . . . . . (29
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4A(t + At)

: ~ln
DA

‘wD(tDA + ‘tDA)
. . . . . (30)

eyr’

w

when wellbore effects are not included, where y

denotes Euler’s constant (0.57?21 ...) and r the

wellbore radius. This form of the logarithmic so’f’ution

is used here for direct comparison with the solutions

for stabilized flow.

For this particular case we have chosen an

approach similar to that used in Ref. 6 in order to

get a comparison of results. Now, by combining Eqs.

10, 29, and 30, we get

t + At

(AtDA) = ~ln ‘AAt
DA

‘0s
. . . . . .

DA

. . . (31)

for the buildup period. From the results in Appendix

A, it follows that we can set

1
*aH

f’os ‘AtDA) = ilnaH + ‘ -
‘DA

+At’
DA

aH + AtDA

.,.. . . . . . . . . . . . . . . . . . . (32)

with negligible error for Horner time

or equivalently, fo;a;~;;du~t!!me~
~~OA)’AtOA ‘ea~h~%; a

D$t:::r a’
and

aH
are related by the

. .

‘DA + a. ——
aH

(33)
a“’””””””” ““”’”””

Eq . 32 can be used directly if the analysis is based
on a Horner plot in linear coordinates, preferably

rewritten in terms of an inverted Horner time ratio.

However, to base the analysis on a linear plot in
terms of AtDA, note that Eqs, 11 and 32 are equivalent

if

‘DA + a ‘DA

aD
= ~ln~ - —-

‘DA
+2a’”

atDA
bo=— tDA+2a’ ‘ o “ “ “ “ “

and

‘a ( “DA + a)tDA

CD = (t 2“”””””

DA
+ 2a)

. . . . .

.,.. .

. . . .

. . (34)

[35)

(36)

If EQS. 35 and 36 are substituted into Eq. 2D, then we

also find that Eq. 19 ia satisfied. The same results

are obtained if we substitute Eqs. 29 and 30 into Eqs.

25 - 28.
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..———.

c:.,ea 17m
JAI,..- -y. 19 IS satisfied, it follows that Eq. 4

can be used to determine kh If the reservoir
is

infinite-acting. aut note that since
au

can be

computed directly from Eq. 34, we cannot use Eq. 19 to

determine E from a. To get the average pressure from

Eq . 18 we need a more exact expression for aD. Such an

expression is presented in the section on buildup

analysis following non-stabilized flow. However, note

that it is still possible that a value of a can be

found where a , or in terms of real

can beDf;u~8swhere a = ~.

data, that

an a’ This possibility, and

the validity of Eqs. 19 and 34, are illustrated below.

6
Hasan anti Kabir eXPre.SSQi their results in terms

of
akl ‘

and in addition assumed that At << t at some

step In their derivation. The results derived above

are therefore somewhat different from those in Ref. 6,

but. note that Eq. 3Z is equivalent to Eq. 6 in Ref. 6.

It was also assumed in Ref. 6 that a ‘E
me:;:

which for

inflniteactlng reservoirs normall~ that we

should have a
D

= D. Actually, if we set a. = O-.jnd tDA
+(f.,

‘DA l:en::” ::’
then we get a =

o.135tDA.

e tOA, =

the reservoir is truly lnflnlte

acting, then we should not expect to get a = ~ if we

use buildup data with At << t to determine a.

The validlty of Eqs. 19 and 34 is illustrated in

Figs. 1 - 3. Buildup data for these examples, and for
the other examples used in this paper, have been

generated by the algorithms in Ref. 12, and each
example represents a reservoir with area given by /A =

2000r . For Figs. 1 - 3 we have used buildup data from

a cl.~sed square with the well at the center and a

:;:::;::;stime ‘ISA
= 0.01 prior to shut-in. For such

we normally assume that tOAe a = 0.08, but

this definition depends on what is consl~ered to be a

significant deviation.

Fig. 1 illustrates the effect of varying the
length of the interval used to determine the

p3TFtia~t~iS Of t!’!~huoerbola..r--– Two hyperbolas centered

at a = 0.0043 are included, one based on 0.04 log
cycles of buildup data and one based 1 log cycle of

data. The buildup curve is represented by the solid

line, the hyperbola based on the short interval by the

dashed line, and the hyperbola based on the longer
interval by the dotted line. If we use 2 log cycles of

data, then we get a hyperbola that almost coincides
with the buildup curve. Since the analytical results

of this paper concern point values, we get the most
accurate results for short intervals. Note, for

instance, that a
= :;062:n; 2HtOA ‘or a = 0“0043’

according to E~. , that we get a. = 0.0625,

0.0487, and 0.0278 from the hyperbolas centered at a =

0.0043 and based on 0.04, 1, and 2 log cycles of

buildup data, respectively. The parameters of these
hyperbolas were all computed from the least-squares

method numbered 2 in Appendix B, and this is used as
our standard least-squares method to match hyperbolas

to buildup data.

In Fig. 2 we have .AAU= . . ..-_:~l,t.+m,+,ad the validity of Eq.

34 by plotting values of aD determined from hyperbolas
matched to the buildup data and computed by Eq. 34.

Both are plotted as functions of the interval
midpoint, a. The solid lines represent values
determined from asymptotes of hyperbolas based on
intervals of length 0.04 and 1 log cycles , and the
dashed line represents values computed by Eq. 3t. We

have also included the buildup curve, represented by
the dotted line, for comparison. Eq. 3$ was derived
for short intervals, and for such intervals it is seen

to be essentially exact in the infinite-acting period,
~hicb for the ~na~y~is here lS seen to end around At

0.02. If intervals of length 1 lo~ cycle are use:!

then the asympotes of the hyperbolas deviate somewhat

from the values given by Eq. 34. Considering the

curves in Fig, 2, note that for intervals of a chosen

length , there is only one position in the inflnite-

~cting period that will, strictly speaking, give an

~symptote equal to the average pressure. But note that

tie also get aD = FD from data influenced by the

>oundary. Note alscl ?hat the absolute error introduced

?y setting an =. 605 is small for a > 0.003, but that
the relative error can be $igniflcant in this range of

Iata. Moreover, both types of error increase sharply

for smaiier buiidiip times.

The validity of Eq. 19 IS illustrated in Fig. 3
for the same data used in the Figs. 1 and 2. In this
figure we have plotted values of Q determined from

hyperbolas matched to the buildup data, and values of
z computed from Eq. 19, with both plotted as functions

>f a. The solid lines represent values determined from

hyperbolas based on 0.04 and 1 log cycles of data, and
the dashed line values given by Eq. 19. Note that Eq.

19 can be considered to be exact for a < 0.02 for the

;horter intervals, and also to be fairly accurate for

I.
~

0.03, both for the shorter and longer intervals.

[t follows that Eq. 4 can be applied to data from

Lnflnite-acting reservoirs , but such reservoirs can
]lSO be analyzed by the Horner method.

If we use a constant-pressure square instead of a

closed square in Figs. 2 and 3, then we get exactly

the same results for data not influenced by the outer

boundary. For data influenced by the boundary, we get

values of a w those 9iven by Eq. 34, and value$
of Q w ?hose given by Eq. 19.

It should be noted that if Eqs. 11 and 19 are

both ‘atlsfied at ‘tOA = a’ ‘hen ‘e ‘et

t
(al -

DA

a. ‘ Pos +2a’ “- “ ““ “ “ “ “ “
(371

‘OA

and hence

pws(a’) + L
t

a=
1.151 t+2a’ “ “ “ “ “ “ “ “

in terms of real data- It follows that if we ge’

38)

an

accurate estimate of the flow capacity from a chosen

hyperbola, then the asymptote cannot be equal to the

average pressure unless the wellbore pressures used

are less than m/1.151 psi (kPal below ~.

To complete this section, note that b is known in

the Infinite-acting period if the. producing time is
known. Therefore, to analyze buildup data from

infinite-acting reservoirs by the rectangular
hyperboia method, we cafi set

b=-
t+2a ‘ “ “ “ “ “ “ - “ “ “ “ “ “ “ “ (39)

where a’ is still the midpoint of the interval in real

data , and then make a linear plot of

1
pwS[At) VS. —b+At
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Data points near At = a’ should then form a straight

line with slope = c and intercept = a (for At = -).

This is similar to one of the methods suggested in

Ref. 6. For data that are not influenced by any

boundaries, the approach just outlined is equivalent

to a direct use of least squares.

BUILDUP DATA FOLLOWING PSEUDOSTEADY-STATE FLOW

Consider a closed reservoir produced to

pseudosteady state prior to shut-in, i.e., with t~. >

t
DAPSS

We then get
UA

pwo(t”A +
.4A

AtDA) = 2n(t + At)DA + ~ln—
2

eyC r
Aw

. . . . . . . . . . . . ,.., . . . . ,. (40)

for the drawdown transient when we have zero skin. If

the buildup t~~~Si~fit iS ~~ ~~~ infinite-acting

period, i.e., if AtnA 6 tn~~i~, then this part is

Eq. 29. It %llowt’?itim Eq. 10 thatgiven by

Pos

for this

‘tOA) = 2TtOA + 2“AtOA
- ~lnAtOA - ~lnCA

. . . . . . . . . . . . . . . . . . . . (41)

range of buildup data,

To replace the right-hand side of Eq. 41 by a

hyperbola, we can neglect the term 2srAt , as is done
when MDH analysis is applied to such bui !~up data, and

aPPIY the results in Appendix A to lnAt... We then get

b. = : and Cpq:,2a. Jt is, however, M;~:,
substitute 29 and 40 Into Eqs.

get

~ , ~rr~ + ~u~ -
0 DA

!lnaCA -~- (1 - 4UU

. . . . . . . . . . . . . . . . . .

bcJ= a(l - 8va)

co = 2a(l - 4wa

and

correct ‘to

28. We then

2

. . . . . . . . ,.

. . . . (42)

. . . . (43)

3
. . . . . . . . . . . . . . (44)

Q =1-4ua. . . . . . . . . . . . .

From Eq!

of Eq.

a.

. . . . (45)

16 and 42 it follows that the left-hand

8 takes the form

- Po~ = 2sra - ~lnaCA - (1
2

- 4sra) . . . .

From Eq. 45 it follows that Eq. 21 is valid

ide

46)

for
small values of a, and hence that we can use Eq. 6 to
~etermine the flow capacity from a hyperbola based on

early buildup data, If we know the area and shape

factor of the reservoir, then we can also determine

the average pressure from the asymptote of the same

hyperbola by using Eq. 46 to compute the left-ban

side of Eq. 18. With this information we can, o

course, also use Oietz’ method to determine th

average pressure. If we do not know the area or th

shape factor of the reservoir, and just assume that a

G for some chosen interval, i.e. , for some chuse

a, tlin we can use Dietz’ method with the sam

uncertainty, as is explained below. Considering Eq

45. note that if a < 0.004 for the midpoint of th

interval where the hyperbola has been matched to th

buildup data, then we should get less than 5Z error i

we use Eq. 6 to estimate the flow capacity.

Considering the assertions in Refs. 5 and 6, not

that if t,fi~ .J”...tm+a Qf ~asy,l,p.v.= hyperbola based o

infinite-acting data is equal to the average pressure

and the reservoir has been produced to pseudostead

state orior to shut-in. then the dimensionless

interval midpoint, a, must satisfy the equatiorl

2rra - .!jlnaCA - [1 - 4na)2 = O. . . . . . .

For a closed square with the well at the center

{47

we ge

the = 30.8828 from Table C.1 in Ref

13. I;h;~;lo;~c;;~tc!q. 47 has three solutions: a

0.00651, 0.0581, and 0.0997. Only the first of thes

is clearly in the infinite-acting period. Actually, i

c< 20.95, then Eq. 47 has only one solution, an

o~ly beyond the infinite-acting period. For Suc

reservoirs it follows that a hyperbola based o

I inflnlte-aCting data cannot have an asymptote equal t
the average pressure.

Note that we cannot use Eq. 47 to determine th

position where the asymptote should be equal to th

average pressure unless k, A, and C are known, i

which case we can also use Dietz’ metho~ to determin

the average pressure. In this case we can also comput

the right-hand side of Eq. 46, and hence use Eq. 18 t

determine ~ from any hyperbola matched to an interva

of infinite-acting data. Note also that Eq. 47 can b

used to determine, as we have done, restricti~ns e

the type of reservoir and data that can give

directly from the asymptote, provided the hyperbola i

based on infinite-acting buildup data. For such dat

following pseudosteady-state flow, we also get th

following: If Eq. 47 is satisfied for some a << l14sr

ie.,if ; for SUCh an Q, then we must hav
a. ‘

e2aC = 1. But thisD$mplies that we can get 6 b

extrapolating the MDH straight line to At = e2a’

since this At is seen to be the buildup time neede

for Dietz’ method.

The validity of the results of this section i

illustrated in Figs. 4 - 11, with the first thre

cases representing a closed square produced to t

prior to shut-in, and with the well located a?A ;h

center. This reservoir has the shape factor C

30,8828, and t
forD&P~so=Oj6~”

It follows from Eq. 46 tka

aD = ios . . In Fig, 4 we have matched
hyperbola to the buildup curve at this a by usin
Method 2 on an interval of length 0.067 log cycles

From the hyperbola we got afi = 6.27, which is almos

equal to ~
0s

= 2ntoA = 6.2B~

Fig. 5 illustrates the validity of Eq. 42, an
hence of Eq. 46, for the same closed square considere

in Fig. 4. In this figure the solid lines represen
values of a computed by Method 2 for intervals o
length 0.017 and 1 log cycles, the dashed lin
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represents a

B

computed by Eq. 42, and the dotted line

represents t e buildup curve. Note that we only get aD

: 6.28 for a = 0.0065 in the infinite-actin9 period,

as was pointed out above. However, any value of a

determined by Method 2 on a short interval with a ?

0.03 can be used to determine 6

we know that CA = 30,8828. from t~~ ;;~e~q;n46;i~~nc~

we see that the asymptotes are affected if we increase

the length of the intervals from 0.067 to 1 log cycle,

but that the relative change is not large for this

example. Note also that the absolute change will be

the same for any producing time in the pseudosteady-

state period. Finally, if we assume that a =

8
FD5!

then we can get large errors for short buil up times.

Moreover, we can then alao use Dietz’ method.

In Fig. 6 we have illustrated the validity of Eq.

45 for the closed square cc,nsidered in Figs. 4 and 5.

In this figure the solid lines represent values of Q

computed by Method 2 for intervals of length 0.067 and

1 log cycles, and the dashed line Q computed by Eq.

45. We again find an excellent agreement between

values determined from Method 2 applied to short

intervals of synthetic data, and values computed by

Eq. 45 for a < 0.O3. It follows that we can use Eq. 6
to determine the flow capacity from early buildup

data, but such data can of course also be analyzed by

conventional methods.

Fig. 7 illustrates the validity of Eq. 42, and
hence of Eq. C6, for a closed 2:1 rectangle with the

well located 114 of the length and 1/2 of the height
of the drainage area, and produced to tDA = 2 prior to

shut-in. The solid line represents values of

determined from
%J

asymptotes of hyperbolas based

intervals of length 0.05 log cycles, the dashed line
represents a computed by Eq. 42, and the dotted line

represents ~he buildup curve. We see that Eq. 42
appiie~ in the infinite-acting period,-...-. therefore, if

~e know k and A for this reservoir, then we can use

the shape factor CA = 4.5141 (see Ref. 13) to
determine the average pressure from the asymptote of

any hyperbola matched to a short interval of buildup
data in the infinite-acting period. If we set a

for this example, then we must use data aroun~ ‘a~DS

0.064 to get the correct average pressure, i.e., we
nust use data well beyond the end of the infinite-
acting period. Fig. 8 shows how a hyperbola with

asymptote equal to 2Ht = 12.57 matches the buildup
curve when an interva~Aof 0.05 log cycles centered at

x = 0.064 is used. If we use a longer interval, then
we must use a larger value of a to get the same
asymptote. Fig. 9 shows that Eq. 45 also applies in

the infinite-acting period, hence, if we use early
auildup data, then we can use Eq. 6 to determine the
flow capacity, and hence k, from a rectangular
$yperbola.

In Figs. 10 and 11 we have illustrated the
aalidity of Eqs. 42 and 45 for a closed 4:1 rectangle

with the well located 1/4 of the length and 314 of the

Ieight of the drainage area, and produced to t

}rior to siiut-iis. Fcr t~is e%ample it turns outOAt;a;

ue must center the hyperbola near a = 0.12 to get an
asymptote equal to 2utDA = 31.42 when intervals 0.06
Log cycles long are used. However, note that Eqa. 42
and 45 do apply for early buildup data, hence, by

tising such data we can ti~t~itii~i? both the flow
:apacity and the average pressure from a hyperbola,
~rovidec! we know the area and the ahape factor CA =
1.1155. Of course, we can then also use conventional

nethods. Note the sharp deviations between values

determined from hyperbolas and from Eqs. 42 and 4!

when boundary effects start to influence the data.

Finally, note that if Eqs. 11, 43t and 44 art

satisfied at a, then we 9et

a. = Pos
(a) - (I -4ucs)2, . . . . . . . . . (48

and hence

a = pws(a’) +
%(1 -4Ta)2’’’”””(4g4g

in terms of real data. It follows that if we get a{

accurate estimate of the flow capacity from a chosel

hyperbola, then the asymptote cannot be equal to th

average pressure unless the wellbore pressures usel

are less than m/1.151 psi lkPa) below ~.

8UILOUP OATA FOLLOWING STEAOY-STATE FLOW

Consider a reservoir with constant pressure o

mixed no-flow/constant pressure outer boundary, an

assume that the reservoir has been produced to stead

state prior to shut-in, i.e., that t
OA ) ‘OASS’

1

follows that

16A

‘wO(tDA + ‘tOA)
. ~ln —

2’ “ “ ‘ “ “ ““
[50

eyC r
Aw

where the shape factor CA is defined relative to th~

initial pressure, which is the same as the stati(

reservoir pressure for these res rvoirs. This is th~
f

convention used by Kumar and Ramey for a well in
W

center of a constant-pressure square afid by Larsen

for other reservoir configurations.

29 a~~ ~’O$h~ttOAeia’
then it follows from Eqs. 10

f’os ‘AtOA’
= ~ln4 - ~lnCA - ~lnAtoA, . . . . [51

By direct application of results from Appendix A, o
by use of Eqs. 25 - 28, it follows that Eq. 11 i

satisfied if

aD
= ln2-~lnaCA- 1, . . . . . . . . . . . (52

b. =a, . . . . . . . . . . . . . . . . . . (53

and

co
=2a. . . . . . . . . . . . . . . . . ..{54

lioreover, for these values we also get Eq. 2

satisfied.

Since the dimensionless static p~~~$tii~ is Squa

to zero, it follows thst the left-hand side of Eq. 1

is equal to Eq. 52. Hence, if we can determine kh fro

Eq. 21, and in addition know the area and shape facto
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of the reservo~r, then we can use Eq. 18 to determine

the static pressure from the asymptote of any

hyperbola matched to data from the infinite-acting
period. With this information we can also determine

the static pressure by Dietz’ method.

If we use the assumption in Refs. 5 and 6 that aD

‘ 5DS* then we must also assume that

ln4 -lnaCA- 2=0, , . . . . . . . . (551

or

~,~e
-2

q’ “ ‘ ‘ ““” ‘ ‘ “ ““ ‘ ““ “
(56)

provided the ‘ L ‘nypercm~a IS matched to l~fl!lit~-a~tin~
data . But we are then indirectly assuming, through Eq.

56, that the static pressure can be obtained by
e trapolating the MDH semilog straight line

Y
to At =

ea, i.e., that Dietz’ method can be used. Moreover,
note that this approach will not work unless,
sufficiently large to give a

CA 1s
value of a In the

infinite-acting period.

From Refs. 4 and 14 it follows that CA = 3D.8828

= 0.25 for a square with constant-pressure
~U~e~D$~~ndary and the well at the center. A hyperbola

based on a short interval centered at a = 0.0175

should therefore yield the asumptote aD,= O, according

to Ea. 52. Fig. 12 illustrates this clalm for such a

constant-pressure square produced to t = 1 prior to

shut-in. With 0.067 log ‘#uildupcycles of data

centered at a = D.0175 used to determine the

parameters of the hyperbola by Method 2, we get aD = -

0.0013.

Figs. 13 and 14 illustrate the validity of Eqs.

21 and 52 for the same square considered in Fig. 12.

In Fig. 13 we have plotted values of a determined

?from hyperbolas based on intervals of leng h 0.067 and

t log cycles, and values of aD computed from Eq. 52.
The solid lines represent values from the hyperbolas,
the dashed line values from Eq. 52, and the dotted

line the buildup curve.

for ‘ote ‘hat ‘e Only ‘et af’ = 0short intervals near a = 0.0175, In the In lnlte-

acting period, as was asserted above. We can, however,

use any value of a determined from a short interval
uith a < 0.03 to det~rmine ~ from Eqs. 18 and 52,
since we

‘now ‘hat CA.=
31!8828. Note also that the

~symptotes are affected If we increase the length of
the ;n*nvw=lc from 0.067 to 1 log cycle, but that theA,..-. ----

relative change is not large. Moreover, the absolute

:hange will be the same for any producing time in the

steady-state period. Finally, if we assume that a =

5 then we “!
~:;; s

can get large errors for short bul dup

Of course the type of data considered here can
]lSO be analyzed by the MOH and Oietz methods.

In Fig. 14 we have illustrated the validity of

:~ . 21 by plotting values of Q determined from
hyperbolas based on intervals of length 0.067 and 1
log cycles vs. interval midpoints. Note that we do get

? = 1 from short intervals of infinite-acting data, as
]sserted in Eq. 21, and that the error for the

intervals of length 1 log cycle is less than 77 in the

Lnfinite-acting period. It follows that we can use Eq.
j to determine the flow capacity from early buildup

fata , but such data can of course also be analyzed by

COnVentlOnal methods,

Fig. 15 illustrates the validity of Eq. 52 for a

square with one side at constant pressure and the well

located 3/4 of the length of the reservoir from this

side, and at 1/2 of the height. The builduP data were

generated with a flow period of tDA = 5 Prior to shut-

lC. !~ Ref. IL it is shown that C. = 0.02602 and tn~g~

= 2.46 for such reservoirs. In Fi~. 15 we have plotted

values of a determined from asymptotes of hyperbolas

?based on in ervals 0.06 log cycles long, and values of

%l::mp’’!ed ‘rem ‘q’
52, both as functions of a. The

llne represents the asymptotes, the dashed line

Eq . 52, and the dotted line the buildup curve. We see

that Eq. 52 applies in the Infinite-acting period, and
&k... J?n..m~ll=,e,v.v, if ww know k and A for this reservoir, then

we can use the shape factor C = 0.02602 to determine

the static pressure from tt?e asymptote of any

hyperbola matched to a short interval of buildup data

in the infinite-acting period. With this information

we can also use cCtnventiOfi~l ms!t.hcc!s. If we set a =

ii 9for this reservoir, then we must use data aroun a
:0s

0.085 to get the correct static pressure if we use

short intervals. If we use longer intervals, then we

must use a larger value of a to get the same

asymptote. Note also that large errors are introduced

if we set a. ‘ 6.s for hyperbolas matched to early

buildup data.

Fig. 16 shows that Eq. 21 is satisfied for early

buildup data from the reservoir considered in Fig. 15,

and hence that we can determine the flow capacity from

such reservoirs by using Eq. 6. But this analysis is

easier on an MDH plot.

Finally, note that if Eqs. 11 and 21 are both

satisfied at a, then we get

aD = Pos (a)-!, . . . . . . . . . . . . . . (57)

and hence

a = pws(a”) + m
i-%-i .“ “ “ “ “ “ “ “ “ .“

in terms of real data. It follows that if we get an

accurate estimate of the flow capacity from a chosen

hyperbola, then the aaymptote cannot be equal to the

average pressure unless the wellbore pressures used

are less than m/1.151 psi (kPa) below ~.

BU~~DUP DATA FOLLOWING NON-STA81LIZE0 FLOW

This section is restricted to closed reservoirs,

jue to the lack of general results for reservoirs with

constant pressure on all or part of the outer

boundary.

If we do not have stabilized flow in the
reservoir prior to shut-in, then we cannot use Eqs. 25

- 27 to get the parameters of the hyperbola in Eq. 11

unless we have expressions for the derivativea of the

first and second order of p . Note, however, that if

Eq. 11 is satisfied at a, tl!~n we must

CD

aD
(toA + a) - pwD(a) - — . . . . (59)

= ‘wD bo+a
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~ow, if a is in the semilog period, then this equatio

:an aiso be expressed in the form

‘DA + a

al) ‘ 2wtDA
+ 2va -

;pDMBH(tDA
● a)+ ~ln~

co
-~” “ “ ““ “ “ “

. . . . . . (60

This follows from the identity

4AtDA
PwD(tDA) - ~ln— .

eyr2 2utOA - ;PDMBH(tDA)J

w

. . . . . . . . . . . . . . . . . . . . . . [61

;;:re‘D Ii
denotes the MBH function of the reservoix

le~~-hand side of Eq. lB can therefore b
expressed in the form

CD
-~” “ ““ “ “ ““” “ . . . . (62

for closed reservoirs.

Now, to use Eq. 62 in a given analysis, note tha

if we determine the flow capacity from Q, then we ca

convert b, c, and a’, determined from a hyperbol
based on real data, to the last term in Eq. 62 b
setting

CD - kh(-c)
bD+a- 141.2qBp[b+a”j “ “ “ “ “ “ ‘ “ “

(63

Ience, once we have matched a hyperbola to infinite
~cting buildup data, we actually assume everythin
(nOwn on the right-hand side of Eq. 62, except 2WIJ an

the value of the M8H function. From Eq. 18 it follow

that we can determine ~ from a if we know A and th
iBH function. We assume then that the flow capacit

:an be obtained from the slope of the hyperbola. If w

just set ~ = a, then we are faced with the problem o

:hooaing the proper interval. This is the same fo
>uildups following stabilized and non-stabilized flow

rhe possible errors are also similar. Note alao thal
Lfwe set ~ = a, then we are assuming the right-ban{
]f Eq. 62 to be O. With the flow capacity known, w{

:an then determine the quantity 2ma minus the FIBI
unction, and this information is sufficient to gel
he average pressure directly from an MDH plot.

Fig. 17 illustrates the validity of Eq. 60 fOr

:loaed 2:1 rectangle with the well located 114 of th

length and 1/2 of the height of the drainage area

i.e., for the same reservoir considered in Figs. 7

). For the present example the reservoir was produce

‘0 ‘OA
= 0.1 prior to shut-in. From Ref. 13 we kno

= 1.5, and hence that stabilized flow wa
~~~tre~~~g~spriar to shut-in. In Fig. 17 we hav

>Iotted values of an determined from asymptotes by th

;olid line, values 5f a ~ computed from Eq. 60 by th

dashed line. and the buildup curve by the dotted line.

The hyperbolas were matched over intervals of 0.06 log

cycles, and for such intervals we see that the

asymptotes are given by Eq. 60 fOr a < 0.03, i.e., in

the infinite-acting period. It follows that we can

determine the average pressure from the asymptote of

sny hyperbola matched in the infinite-acting period by

using Eqs. lB, 62, and 63, provided we know k, A, and

the MBH function for the reservoir. But with this

information ‘we can alsc use c~nventional methods. If

we just set ; = a, and hence indirectly assume the

information needed for conventional methods, based on

infinite-acting data, to be known, then we need to use

late data to get a correct estimate of ~. Fig. lB

shows that Eqs. 34, 42, and 60 can give quite

different results if used to estimate the possible

response of the hyperbola approach to pressure buildup

analysis.

Finally, Fig. 19 illustrates the vaiitiity 0$ Esis.

19 and 45 for the same 2:t rectangle considered in

Figs. 17 and lB. In this figure we have plotted Q

determined from hyperbolas by the solid line. Q

computed by Eq. 19 by the dashed line, and Q computed

by Eq. 45 by the dotted line. Note that Eq. 45 best

approximates the values obtained from the hyperbolas

for this example, but this dependa on the flow period

prior to shut-in. Moreover, if we use early buildup

data, then we can get a sufficiently accurate estimate

of the flow capacity from Eq. 6. For shorter producing

times, Eq. 4 should be chosen. But again, such data

are easier to identify and analyze by the Horner

method.

1.

2.

3

b

Rectangular hyperbolas can be used to determine the

flow capacity and average pressure from infinite-
.,-++”-...-.. s bYiIdup data, but only if the data can also
be analyzed by conventional methods. The point is

that the methods are essentially equivalent in
terms of information needed and information gained.

The flow capacity can be determined from the slope

of a hyperbola matched to a short interval of

infinite-acting buildup data, but it is easier to

identify and analyze such data by the Horner and

MDH methods.

The average reservoir pressure can be determined

from the asymptote of a hyperbola matched to a

short interval of infinite-acting buildup data if

we know the drainage area and shape factor

following stabilized flow, or area and MBH function

otherwise. But we can then also use conventional

methods.

If the hyperbola method is based on the assumption

that the average pressure is equal to the asymptote

of the hyperbola, then, for a chosen length of

interval, there is at most one position in the

infinite-acting period where the asymptote can be

equal to the average pressure. Moreover, except for

highly symmetric reservoirs, there will normally be

none, in which case we must include data beyond the

infinite-acting period to get an asymptote equal to

the average pressure. If this approach does apply

in the infinite-acting period, then the information
we need to choose the correct position can also be

used to carry out a conventional analysis.
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5. If the average pressure can be obtained directly

from the asymptote of a hyperbola, then the average

pressure cannot be more m/1.151 psi (kPa) above the

laat wellbore rmessure used in the analysis, where

m is the conventional semilog

NOMEWUIUR.E

A = drainage area, sq ft (m*

slope.

a: hyperbola aaymptote, psi (kPa)

B = formation volume factor, RE/STB

b= hyperbola parameter, hours

CA = shape factor, dimensionless

c= hyperbola parameter, psi hours

[res m3/std m3)

kPa hours)

total system compressibility, psi
-1

Ct =
, (kPa”l)

e = 2.71828. ... base natural logarithm

h=

k=

in =

m.

r=
w

t=

thickness, ft (m)

permeability, md

natural logarithm

semilog slope, psi/log cycle (kPa/.

pressure, psi (kPa)

flow rate, STB/O (stock-tank m3/d

wellbore radius, ft (m)

time. hours

og cycle)

a = logarithmic interval midpoint, dimensionless

Y = Euler’s constant (0.5772. ..)

9 = porosity

v: viscosity

Q= sloPe Parameter, dimensionless (Eq. 20)

~ubscriots

A = “---area

0= dimensionless

eia = end infinite acting

f= flowing

H= Horner

i= initial

k,n. indices

pss = pseudosteady state

as = steady state

w= wellbore
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S1 Metric Conversion Factors

bbl X 1.569 873 E-01 = m3

Cp x 1.0* E-03 = Pas

ft x 3.046* E-01 =m

psi x 6.694 757 E + 00 = kPa

* Conversion factor is exact.

APPENOIX A

TRUNCATEO SERIES APPROACH

For any positive constants x and a, it can be
shown that

.
lnx = lna - 21

1 a - x)2n - 1
— (—

n=l 2n - 1
. . . (A-1)a+x

The point is that

a-x
l-—

a+x
x =a (A-21

a-x’ “ “ “ “ “ “ ‘ “ “ “ “ “ “
l+—

a+x

and hence that

lnx = lna + ln(l -~) - ln[l + ~)

. . . . . . . . . . . . . . . . . . . . . (A-3)

Lq. A-1 can now be obtained from Eq. A-3 by expanding

;he last two logarithmic terms as power series, and

:hen adding these.

Considering Eq. A-1, note that we must have

lnxzlnCi-2~

. Ina + 2 -
4CS

—0 . .

. . . . . . . .

U+)(
[A-4)

.f x is sufficiently close to a.

Several methods can be used to determine
parameters a, b, and c such that the rectangular
Iyperbola in Eq. t closely matches the real buildup
:urve on a chasen interval. These methods can be
ntroduced independent of any theoretical
justifications of the rectangular hyperbola approach
o pressure buildup analysis, and they can be applied
.0 both real and dimensionless data. For the
Objectives of the present paper, it suffices to

:onsider two such methods.

To describe the methods we have used to determine

a, b, andcin Eq. 1, letxl, x , . . . . xn denote then

buildup ktimes being used In t e analysls, and let y

be the corresponding buildup pressures. The mos k
direct method to determine a, b, and c is to minimize

the following sum of quadratic deviations,

n
c )2

Fl(a,b,c) = [ (yk - a - — . . . . .
b+xk (B-l)

k=l

This amounts to solving the equations

~F1 i)F1 ?)Fl
—=— ,—=
aa ab ac 0’ “ “ “ “ “ “ “ “ “ “ “ ‘B-2)

Unfortunately, this approach does not lead to simple
expressions for a, b, and c. Instead, an equation for

b that must be solved by some numerical method is
obtained. The remaining two parameters can then be
determined by direct substitution. In the present
paper, this method will be called Method 1.

An alternative method, which is also based on
minimizing a s urn of quadratic deviations, can be
obtained by only considering the numerators in Eq. E-

1. We then get

n

F2(a,b,c) = 1 Ixkyk - axk + byk - ab - c)
2

k=l

. . . . . . . . . . . . . . . . . . . . . (B-3)

~he corresponding version of Eq. B-2 then leads to the

>quations

: [Xkyk - ax
k

+ by
k

-ab-c)(xk+b) =0,
k=l

. . . . . . . . . . . . . . . . . . . . . [B-41

n

[ (X.Y -ax,. +byb-ab-c)lyk - a) =0,~.~ n m ..

. . . . . . . . . . . . . . . . . . . .

k= 1

Ind

n

r

k=l
xkYk - ax

k
+ by

k
-ah- c1 = O. . . . .

B-5

B-6

‘o express the solutions in closed form we have found

t convenient to use the following special notation:

n n

(x> = ; I Xk, <Xy> = ; 1 Xkyk, etc.,

k=l k=l

. . . . . . . . . . . . . . . . . . . . . [B-7)
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{<X>*}
2

= (x> -{%2), . . . . . . . . . [B-B)

{<y>*} = <y?
2

-cy2), . . . . . . . . . {0-9)

{<x><Y>} = <x><y> - <xY>, . . . . . . . . (B-1O)

{<x><xy>) = <X><xy> - <x*y>, . . . . . . . (B-II)

and

{<y><xy>) = <y><xy> - <xy2>. . , . . . . . (9-12)

The parameters a, b, and c can then be expressed

{<y><xy>}{<x><y>} - (<X><XY>}{<Y>2)
a=

{<x><y>12 - {<xj21{fy>2}

(8-13). . . . . . . . . . . . . .... . . .

b=
{<y><xy>}{<x>2) - {<X><XY>}{<X><Y>I

{<X><Y>12 - {<x>*){<y>*}

. . . . . . . . . . . . . . . . . . . . (B-14)

and

c= <Xy) - 2:X> + b<y? - ab. . , , : , . . (B-15)

This particular method, which will be called

~ 2 ‘n ‘he ‘resent pf?er’ ‘s ‘imilar ‘0 a ‘ethod
suggested by Meyer et al. Since Methods 1 and 2 give

. . . . . - . . . . ● - :essentially laentica~ resu*ba Ln t!se range ~h~~~ the

hyperbola approach can be used with any accuracy, and

Method 2 is much simpler to use, we have chosen Method

2 as aur standard method of least squares.

Fig. 20 illustrates the validity of the claim

that Methods 1 and 2 are equivalent in the range of
data where the rectangular hyperbola method can be of

interest. In Fig. 20 we have used the same 2:1

rectangle considered in Figs. 17, 18, and 19, but now

produced to t
‘Olid ~g~e

= 1 prior to shut-in. In this figure

the represents asymptotes determined by

Method, I and the dashed line asymptotes determined by

Method 2. In these computations we have used intervals

of length 0.2 log cycles. A similar comparison of the

methods is obtained if we consider values of Q. Note

that the methods only start to

0.06, which ia beyond the inf,

this reservoir.

diverge around a =

nite-acting period for
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