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ABSTRACT

During water injection in a horizontal

formation, gravity underride of water may
‘occur even close to the wellbore, if the
mobility ratio is adverse. A water tongue

will develop and effect the interpretation[
of pressure falloff tests and also the total
reservoir sweep efficiency. In this paper a
simpel analytical expression is developed‘
for prediction of frontal advance of water
from an injection well as a function of
time, when gravity effects are important.
Isothermal flow is assumed, and the
development follows closely that of Dietz;
for a linear system. The assumptions made in:
establishing the differential equation are'
itested by the use of a numerical simulator.’
.:and the approximations made in deriving the
{first and second order analytical solutions
iare tested by a direct numerical solution of
the differential equation. Through a field
‘example from a falloff test, possible
lapplications of the theory are demonstrated.
\The theory should also be applicable for
=predicting frontal advance of gas from
injection wells, if gas dissolution in the
oil and compressiblity effects are
neglected. The present paper, however,
concentrates on water injection. |
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RESUME i

|

Lorsque 1'on injecte de 1'eau dans une

formation horizontale, une instabilité

gravitaire de 1'eau peut survenir m@me prés

du puits si le rapport des mobilités asti

défavorable. Une langue d'eau se développera!
et aura une influence sur les inter-

To be continued 2nd column, 1st lign
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pretations des tests de chute de pression
(fall-off), et aussi sur 1'efficacitéd de
Ibalayage . du gisement tout entier. Cet’
article déeveloppe une expression analytique|
!simple pour predire l'avance du front d'eau’
§ partir d'un puits d'injection en fonction'

du temps, quand les forces de gravit® spntf
importantes. L'&coulement est supposé.
isotherme et le dEveloppement suit

gtroitement celui de Dietz pour un systdme
lineaire. Les hypoth&ses faites pour Etablir
1'Bquation differentielle sont testées au
moyen d'un simulateur numérique et les
approximations faites en dérivant au premier
et second ordre les solutions analytiques
sont test@es par une solution numérique
‘directe de 1'Bquation differentielle. Dans
un exemple de champ, % partir d'un test de
chute de pression, des applications
possibles de 1la théorie sont demontrées.
Cette théorie devrait €tre aussi applicable
pour prédire 1'avance frontale du gaz 3
partir des puits d'injection, si 1la
dissolution du gaz dans 1'huile et les
effets de compressibilité sont négligeables.'
Cependant, cet article s'intéresse plus
particulidrement 3 1'injection d'eau.

NTRODUCTION

Full field waterflooding is planned fori
'several of the oil fields on the Norwegian,
continental shelf. Exploratory wells are
therefore tested for injectivity, and injec-'
ltors will be tested during field operation.'
The amount of pressure falloff test data
will increase. If methods +for detailed
interpretation had been available, these
tests could give information about frontal
advance, residual oil saturation and verify
the flow characteristics of the virgin for-
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mation. Even if a rather simplistic model of
the reservoir is assumed, it is, however,
fairly difficult to interpret a falloff
thSt. i
; Merrill et al [1] assumed a composite
'system with piston-like displacement and
claimed that proper analysis of falloff
‘tests in waterflood systems that form two
contrasting fluid zones can give information
as to (a) mobilities on both sides of the'
front, (b) saturations on both sides of the
(front, and (c) distance to the front. Sosa
jet al [2] demonstrated that, except for a:
lvery low mobility ratio, the fallcff|
'pressure curve will reflect a saturation
distribution behind the front, i.e. the!
iassumption of piston-like diplacement is
‘invalid. Several authors, e.g. Benson and
Bodvarsson  [3], Brown et al [4], have
pointed out that nonisothermal effects also'
have to be considered when interpreting a
ifalloff test following cold water injection
;into a hot reservoir. If the early and late
Ifalloff pressure data can be interpreted to'
jgive the mobilities of the water zone close
to the wellbore and that of the virgin
iformation, respectively, with a transition
iperiod in between, the inclusion of
ltemperature and  saturation distribution
:effects will expand the transition period.

i
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In the studies mentioned, gravity
effects have been neglected. If these are
important, interpretation of falloff tests
will be even more complicated since a pro-
nounced wunderriding water tongue also will
extend the transition period between the]
responses from the two zones. |

The objective of this study is to eva—;
luate the isolated effect of the gravity
‘term on fluid distribution during
isothermal, piston-like displacement from a
water injector. A simple analytical
lexpression is derived to monitor the water
/[front as a function of time. The possible
importance of the effect is demonstrated in
|connection with an actual field test. No
leffort has been made to interpret the test
‘with all the complicating factors included.
The result can be wused to quantify the
importance of gravity effects in a falloff
test, and also the near-well, vertical sweep

‘efficiency.

THEQRY

The theoretical development follows
closely that of Dietz [5], who presented the
classiqg} _gheory for gravity-influenced
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water displacement in a linear system. The
initial steps also resemble those of van
Lookeren [6], who, based on Dietz's theory,
develeped an expression for steam-zone deve-
lopment around an injection well.

241 Assumptions

The basic assumptions are as follows:

1) The woil reservoir is horizontal with

constant thickness, uniform porosity,
iconstant permeability and has infinite
radial extent and

irreducible water
saturation.

i2) The well is vertical and perforated over
‘the reservoir height.

3) Water is injected at a constant reservoir
rate q and compressibility effects of water,
.01l and formation can be neglected.

]

ék) The microscopic water displacement is
{piston-like with a saturation step change in
ithat part of the cross-section which has °
‘been contacted by water. ‘

i
i3) Thermal effects are neglected.

6) Capillary effects are neglected.

7) Vertical gravity equilibrium exists
within both the oil and water column. This
assumption implies that all flow takes place

in the horizontal direction only.

8) The mobility ratio M > 1,

2.2 Derivation of differential equation

Figure 1 is a sketch of the water-oil
dinterface, yl(r,t), after the gravity forces
‘have destabilized the initially vertical
ifront and 2 viscous finger in the form of a
;gravity tongue has developed at the bottom
of the reservoir. i
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FIGURE 1 Sketch of the water-oil dinterface
after a gravity tongue has developed.
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. By using the vertical equilibrium
condition on the infinitesimal rectangle
'ABCD we get the following relation between

the radial pressure gradients at the

interface:
dr, P 3y : ;
B CE ¢ AQQE; 3 (1]=
From Darcy's law: !
3P ,
q0 H -Zﬂ(h‘y)r;\o 'aT (2){

an

Q.. = —2wyrAw ol (3)‘i
i I
:since, by assumption of vertical equilibrium

within each phase, the pressure gradients in
radial direction are constant, for a given
radius r, over the heights y and h-y for
water and oil respectively. f

| Total continuity of the liquids and con-
gtinuity of the water phase give:
|

H = . 4
i 9 *Aq; =4 ( ”
]
! I
i d3q .

wo_o oy

3T - 2nr¢s 3¢ f5]!
|
where S denotes the step <change in water

;saturation. The last equation expresses the
‘radial change of the water rate in terms of
‘the change of the interface with time. ;
|

From Egs.1-3, eliminating the pressure

igradients. we get i

9 1 a ‘
ZWrAQng 5% ey A {? + h-y i

Ewhere a = 1/M. Differentiation of this equa-,
ltion with respect to r gives

2
0y 1 q a 1 i
2mlogh, —5 7 - S [ - (S ——) g ] +
‘ o arz r2 h-y ¥ h-y W
9 q dy a 1 dy
ot 5 - ——— ) q 2 -
r (h—y]2 ar yz (h-y)z w or j
.0q i
a 1 w
( G + iy ) 37 1. (TJI
Into this equation is now substituted the

expression for the rate qw from Eg. 6 and
its derivative from Eq. 5. We also sub-
stitute the identity
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‘and after rearranging the terms, we get the
following equation

2
I b N VI Ve
1 ar2 T ar 3 dr -
dy or

- oarae (8)
lwith
' Fy = 2rdegh_(h-y)y

F:-——_qﬂ._
; 2 alh-yl+y
2 2

! « alth-y)~ -y
i F3 znﬁgng alh-y) + vy
!
[ Fo = 21¢S [a(h-y) + y], (9)
|
1

iand  with the boundary condition that the
ifront starts out vertically at t=0, r=0 (or
frzrw).

;2.3 First order solution

! We try to solve Eq.B by a perturbative
'lapproach. To the first order we neglect the
gravity terms and then introduce them in the
'second order solution as a perturbation. By
setting Ap=0, we retain only the
coefficients F_ and F. . The procedure ig
reasonable i he second order terms 3" y/dr

and (8y/8r)° Hhave the same type of r-
singularity, 1/r{dy/dr), as that of the
retained term, This will be

demonstrated
‘below. We are then left with 2
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= = F (10)
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‘Eliminating 3y/3r and defining Clz—szF‘ we
‘have

or _
r 5t ° Cl(y). (11}

with the solution

r2 = 2C

1 (12}

t + cly),

where cly) is an integration constant. Using
the boundary condition that r=r for all y
when t=0, we have the first order solution
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rz = 2C. t + r2 & (13)
1 w

' h
T S
[alh-y)+yl
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2.4 Second order solution

We now use the first order solution, Eq.
13, to evaluate the first and second
derivative+ of y with respect to r in order
to introduce these terms into the complete
equation, Eqg.8. For simplicity we set rw=0.
‘Differentiation of Eq.13 with respect to r

‘gives

ac1
2r=2t5-y—

orfar
H

! i
After differentiation, substitution for t
from Eq. 13 and rearrangement, we get i

8y 1 athoydsy (14)
! ar T a-1 : :

‘A second differentiation gives
2 l
.2 vy !
Nl ~ T B¢ t15)\
dr

Inserting Egs.14 and 15 into Eq.8, we arrive
at the same type of equation as given in
Eq.11 with the second order solution

2 2
r’ o= Z(C1 + C2 + Czl t o+ Ty (TE[
where
h
S ¢ 5o : Z ¢ ‘
[alh-y)+y] i
I
i
¢ . 89% _yiny) |
5 2 7 4S alh-y)+y
i . Agng a(h-y)z -y2
1 37 ¢S [alh-y)+yl(1-a)
2.5 Discussion

During water injection, the dimension-
less injection rate qD. defined by

q. = __Ji--—z . (17)
2whApgA _h
5]
has to exceed a critical rate qc if the
water 1is to enter the formation over the

total thickness h. The critical rate can be

To be continasd S coba

estimated %}ah"fd;1élﬁy‘requiring that the
front at the taop of the formation, y=h,
‘Temains at r=rw for all t. This gives

2
c _ 1 _M
9% ° a(1-ay " N7 - i

If g, < qc. the water will enter only over a
frac%ion of the height h. The height of
highest entry can be estimated from Eq.16 by
finding the value of y which renders the sum
of the C's equal zero.

The rationale for the perturbative
approach can be checked by comparing the
magnitudes of the first and second order
terms. The requirement is that C.> C +C3.
directly from Eq.16, or, equivalently, “from
Eq.8 after insertion of first and second
order derivatives. In Appendix A is shown
that the first order solution is wvalid for
q.>> and the second order solution for
qD>q , with the largest deviation occurring
i at Zhe top of the formation.

From Eq.18 it is seen that the second
order solution breaks down when a is close
to 1. Then, from Eq.14, the front stays
vertical.

The validity of the analytical,
approximate solution is demonstrated below,
where a direct numerical solution is
performed based on the complete Eg.8. '

-The solution is, of course, hampered by
the assumptions made in Sec. 2.1. We will
here comment on a few of them.

- The addition of capillary pressure
will cause a diffuse water-oil interface,
probably retarding the advance of the water
gravity tongue increasingly with radius,
‘since the horizontal, viscous force
decreases with 1/r, while the capillary-gra-
vity forces are constant. The effect will
depend on the ratio between the static
gravity-capillary transition zone and the
formation height, as discussed by Croes et
al [7].

- According to the theory of Buckley and
Leverett [8], the microscopic displacement
is not in general of the complete step-
saturation change but leaves a saturation
distribution behind the front. This will
Cause some gravity segregation to take place
in the water-invaded area, and also
reduction in the water mobility behind the
front. The last effect can be corrected for
by using the water mobility at the average
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;saturationFBéHfHB_EBéf?fﬁﬁE}"Eé"Ehggested by
Craig [9]. !
- There are some arguments to sub-.
'stantiate assumption (7) of horizontal flow
only. Neglecting friction losses in the well
‘'over the formation height, the water column;
iin  the well is  always in gravity
‘equilibrium, causing gravity equilibrium
within the water tongue close to the well.'
The initial, vertical, gravity-unstable
front at the sandface will cause the water
to enter at the bottom of the formation, and
with M>1, the viscous finger of the water
will continue to grow below the o0il zone. At
‘distances far from the well, gravity'
equilibrium  exists since the gravityI
‘gradient is constant, while the horizontalk
ipressure gradient is proportional to 1lr.
'‘Below, we have given support to these
:arguments by simulating waterfloods with a'

‘numerical reservoir model for dlfferentl
ratios of vertical to horizontal
‘permeability. l

5 Although the

theory 1is derived for a

lwater-oil system, it should also be'
fapplicable to gas injection in an oil zone,
as shown by Hawthorne [10] for a linear
isystem.

i |
i i NUMERTCAL SOLUTION OF DIFFERENTIAL
EQUATION |
i |
| I
! In this section is presented numerical
solutiaons to the differential equation,

Eq.8, in order to check the validity of the
analytzcal solution procedure.

3.9 Numerical method

The partial differential equation, Eq.8,
'is reformulated to

|
T
i

2
3y
or _ Trarf 1Py ey
t~  F, 3y r F F_ or
‘3 4 4 \
d i
The velocity of the front for a given ¥ is’
dr/dt. A fixed grid is wused in the y-

direction. For each grid value of y, the F's
are evaluated, being functions of y only.
The first and second order derivatives on
the left hand side of Eq.19 are approximated
by a standard finite difference scheme. The
scheme is explicit in the sense that deriva-
tives at the old frontal positions are wused
to evaluate the new positions, except for

To L2 cortvued 2o colimie, 1st ]

<, st e
the 1/r term. Thé value of r is approximated
by the arithmetic average of old and new
ivalue., For a given timestep At, the change
‘Ar i frontal position for a given y can then
be calculated from the discrete version of

Eq.19.

vertical and
first small
first order
Eq.138 for all

Initially -the front is
Oy/dr is wundefined. For the
timestep we therefore use the
solution, Eqg.13, and then
consecutive timesteps.

A FORTRAN IV program was written to
solve the problem. The program was
.extensively tested and discretization errors
icontrolled by having a fine grid in the y-
'd:rectlon and wusing small timesteps. Also,
‘the program makes a simple triangular inte-
gration on the front to calculate the valume

of water behind the front. When compared
with volume water injected, this gives a
imaterial balance check which was excellent

Ifor all cases investigated.

i
3.2 Examples

Example 1 is the base case from Appendix
B. Figure 2 shows the frontal advance as a
function of injection time. Plotted in the
figure are the numerical and the first and
!second order analytical solutions.

~—— FIRST ORDER
== SECOND ORDER
=— MNUMERICAL

HEIGHT M

|
|

|

i

H T T T T T

: o s0 100 150 200 250
I

I

RADBIAL DISTANCE M

FIGURE 2 Development of front for base case.
‘Numerical, 1 and 2 order analytical
solutions, Fronts depicted at 46, 250 and
1000 hrs.

The front enters the total formation
thickness, as could be expected since
q >>q§. and gradually develops a gravity
tongue. The second order solution is closest
to the numerical solution with the largest

difference at the top of the formation.
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In example 2, Figure 3 we have:
increased the mobility ratio to Q=10 by
‘reducing the water viscosity. Then qD=11.1.

a factor 2 below qD.

HEIGHT M

=~— FIRST DADER
== SECOMND ORDER
= MUMERICAL

300 400

RADIAL DISTANCE W

FIGURE 3 Development of front for base case
with mobility ratio increased to M=10.
Numerical, 1 and 2 order analytical
'solutions. Fronts depicted at 46, 250 and
1000 hrs.

‘As could be expected, the front barely
‘enters the top of the formation and

water gravity tongue is seen.

4, SOLUTION BY NUMERICAL SIMULATOR

a severe

In this section we have compared the 2.

order analytical solution with
of a numerical reservoir
cases have been treated to
influence of the k /k,_ ratio. In ca
base case from ppendix B is
permeability ratios of 1. and 0.1.
the same runs are repeated with M=z1
example 2, Sec. 3.

the
simula
investi

Due to numerical dispersion, th
Eposition is not well defined
‘numerical model. We have chosen to
saturation at the front, as calcul
the Buckley-lLeverett theory, to

results:
tor. Two
gate the
se 1, the
run with
In case 2
0, as in
e frontal
from the
use the
ated from
plot thel

frontal advance from the simulator results.

The relative
Appendix
The microscopic displacement

permeability cur

1
ves from

8 have been used in all the runs.
efficiency 1is

therefore not piston-like, as assumed in the
theory, especially not at high values of the

mobility ratio
therefore occur behind the
enhancing
as compared with the theory.

front,

M. Gravity segregation will

probably

the growth of the viscous finger,

4.2

To 22 contauad, 2ng colurra

4.1  MNumerical model

The numerical model is a three-phase,
two-dimensional, implicit, finite difference
model with simultaneous and direct solution
of pressure and saturation changes, ref.
[11]. The model was run in radial mode with
a numerical grid as sketched in Figure &.

b ——
d 2 4 5 8 29 30
1
2
3
4
5 h
]
7
-]
gy
™ %
——

;FIGURE 4 Sketch of the numerical grid

iIn case 1, the numerical grid is as sketched
iin Figure &4 with numerical layers of equal
‘height., In case 2, the heights of the layers
are smaller at the bottom in order to better
define the thin gravity tongue. The first
vertical column is part of the wellbore and
is given a vertical and horizontal
permeability of 10 Darcies to ensure an
infinite conductivity well and correct
distribution of water between the layers.
The sum of r and the first blocklength
equals the actull wellbore radius of 0.107m.
The 1last wvertical column is given a high
porosity in order to artificially simulate
an infinite reservoir. The timestep size was
automatically controlled by a maximum
prescribed saturation change of 0.05 or
pressure change of 1034 kPa. Sensitivity to
timestep and block sizes was not
systematically investigated. Capillary
pressure was set to zero in all runs.

Example runs, case 1

all with data from
the

Two runs were made,
the base case in Appendix B, except for
following changes:

Run 1: kvlkh=1.ﬂ {as in base case).
Run 2: kvlkh=U.1
The fronts, at a water saturation of 0.46,

are depicted in Figure 5 at various stages
together with the frontal position from the
second order analytical solution,
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!FIGURE § Frontal development for the two |
3runs %n case ? together w1th.second order‘ FIGURE 6§ Frontal position for the two runs
!:g;lgﬁscgéos:igtlon. Fronts depicted at ‘E'i in case 2 together with the second order
i ) ' ;analytical solution. Fronts depicted at 46
! hrs.
! On an average, the analytical solution’
is to the right of the two simulator
jresults, for all three stages of frontal . From a Buckley-Leverett calculation, the
development. This is probably caused by front saturation is 0.32 and the average
inumerical dispersion. The simulator fronts' water saturation behind the front is 0.34,
are depicted at the -Buckley;Leverettf ‘which has been used to calculate Mz10. The
jbreakthrough saturation of 0.46, but the ‘two fronts from the simulation runs have
water has penetrated farther into the' therefore been drawn at a water saturation
reservoir in the simulation runs. If of 0.32. They are terminated at a height of
‘numerical dispersion had been suppressed, 1 m due to the limitations on the number of
ithe simulator fronts would have moved to the grid blocks available. To properly define
jright, by volume balance. ; the two fronts below 1 m, a finer grid in
. ; the r-direction would be required, in
i addition to the finer vertical grid used at
The slope of the front for the low the bottom of the formation.
permeability-ratio run is initially steeper
‘than that of the high permeability-ratio
run. The slope from the analytical solution Reduction of numerical dispersion would
lies in between at 46 and 100 hrs., and is also in this case have shifted the two
‘closest to the low permeability-ratio run at fronts from the simulation runs to the right
250 hrs. i in the figure.
i |
The slope of the high permeability-ratio The front for the high permeability-
run is lower than that of the analytical ratio run is farthest to the left in the
;solution for all three stages, and the figure because a higher degree of gravity
|difference increases with time. The reason segregation takes place behind the front.
lfor this is probably gravity segregation !
[behind the front in the simulator run.' 5, DISCUSSION
Movable water behind the front will
‘segregate to the bottom of the formation and : With all the assumptions included in
jenhance the growth of the viscous finger. establishing the differential equation,
The average water saturation behind the Eq.8, we have demonstrated the validity of
{front, at the bottom of the formation, will the analytical solution, Eq.16, for 9,29, -
thus be higher than that calculated from the The numerical simulation results indlcage
;Buckley-Leverett theory, which is used in that the theory may also be useful in
‘the analytical solution to determine the predicting  frontal advance if the
mobility ratio M. assumptions of piston-like displacement and
vertical equilibrium are removed. The
‘ simulation results in Figures 5 and 6 show
4.3 Example runs, case 2 reasonable good agreement with the theory.
However, a more exhaustive numerical
simulation study is required to delineate
: The same two simulation runs as in case the general range of validity for the
1 were repeated, but with a mobility ratio theory. The inclusion of capillary pressure
M=10, achieved by artificially reducing the would probably retard the growth of the
water viscosity. The fronts are shown in gravity tongue, Also, the shape of the
Figure 6 after 46 hours of injection. i relative permeability curves will influence
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the approximation of piston-like
displacement.

‘ '
‘ In design and interpretation of a
falloff test, the rather simple, analytical
'solution can be wused to estimate the
'transition zone between the water-invaded
part of the reservoir clese to the wellbore
‘and the wuninvaded, virgin part of the
‘formation. If the theory proves to have a

fairly general wvalidity, an estimation of
.the mobility ratio from the test could be
possible.

! i
6. CONCLUSIONS |

|

I 1
! Based on several assumptions, a simple
janalytical  expression is derived for
‘monotoring the frontal advance of water from
:an injection well. ‘
F

A crital injection rate is suggested,
below which the water will enter only over
|part of the formation height. !
| l
I o
| Simulation runs based on limited
‘variations in input data indicate that all
;assumptions are not strictly necessary. Thg
theory could be wvalid over a range of
reservoir and injection conditions, but
further investigations need to be done to
‘'verify this possibility. !

The theory can also be applied to
frontal advance from gas injectors if gas
‘dissolution in o0il is neglected. i

i

The theory can be used to evaluate the:
near-well vertical sweep efficiency and to
estimate  the transition zone caused by
gravity effects between waterflooded and
wvirgin formation in a falloff test. . \

1 LIST OF SYMBOLS

i

All equations are written in SI-units as

given below, not the preferred API Standard
SI-units.

Symbol Heaning Units

a inverse mobility ratio

[« coefficients, Eqs. 13 and 16

F coefficients, Eg. 9

g 9.80665, gravity constant ms~2

h formation height m

T x *x x* x

I S . . D R .

H < -
Q

2]
£

=]

© v ©
£

o £ o
[ d

=]
s ]

=]

+« > O D T T
mE O £ ©0 £ o 3

To e ool

horizontal permeability m2
vertical permeability m2

0il relative permeability

water relative permeability

mobility ratio

oil pressure Pa

water pressure Pa
Polynomial in Appendix A ;_
injection rate, res. cond. mals
oil rate, res, cond. mals

water rate, res. cond. m3/s

dimgnsionless rate

dimensionless critical rate

radius to front m

dimensionless radius to front

wellbore radius m
Soi'sor' step saturation change

0il saturation

water saturation

initial oil saturation

residual oil saturation

time s
dimensionless time

height to front m
dimensionless height to front

local minimum position of P(Y)
khkruluo. horiz. o0il mobility m:IPa s
khkrwlpw. horiz. wat. mobility m"/Pa s
oil viscosity Pa s
water viscosity Pa s
0il density kg m-3
water density kg rn-3
o, - © kg m >
w o

porosity
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;AP?ENDIX A - DISCUSSION OF SECOND ORDER

ICORRECTION TERM

i i
i We rewrite Eq.16 in dimensionless form
with Y=y/h, and rw=0 for simplicity: i

2 2 (A1)

b O rat1-y)sv]

[qD- PiY}]
where

LY(1-Y)(1-a)eat1-¥)2-¥2ILa(1-Y)+¥]
a{1-a)

PLY)=-

[Y{1-a)+ a]2(2Y-1)
a{t-a)

Tn ha cantimies 2o ~alomn 1s0 Do

The first order solution is valid if q.>>"
APLY)|" en  the interval Ye[D,1]. DBy
inspection o©of the third order polynomial
P(Y} and its first and second order deriva-
tives, we find that it may have at most a
local minimum at Y =(1-2a)/(3-3a) on the
interval. When a>U.5T the minimum is outside
the interval and P(Y) is monotonously
increasing with Y. By comparing the absolute
values of P(0), P(Y ) and P{1) we find that
max|P(Y)| = P(1) T 1/[alt-a)] = q° for all
a<1 and Yel[0,1t]. Therefore, the first order
solution is valid for gq,.>>q. and the second
order solution is valid for g >q,. i.e: If
the water enters over the total formation
thickness h. The deviation from the correct
solution will be more pronounced at the top
of the formation where |P(Y)| has its
maximum. The solutions are equal at Y=0.5.

APPENDIX B - BASE CASE
; The base case is taken  from an
iinjectivity test in a highly permeable

%sandstone reservoir. All data are presented
‘and used at reservoir temperature and
‘pressure. Prior to injection, a drillstem
‘test was performed to determine properties
'of the virgin formation.

DATA

Initial pressure: 31590 kPa

Saturation pressure: 21100 kPa
3

0il viscosity: 1.2 10~ Pa s
0il density: 665.8 kg i 2
Water viscosity: 0.4 10°° Pa s

Water density: 1018.8 kg m-3

Water injection rate: 0.0127 m3 5-1
Porosity: 0.307
Initial water saturation: 0.28
Irreducible water saturation: 0.28

. o -12 2
Horizontal permeability: 4.561 10 m

Vertical permeability assumed equal
to horizontal permeability in base case.

Formation height: 4.0 m

Wellbore radius: 0.107 m
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_Injection time for test: &6 hrs. In some of
the examples 1000 hrs have been used for
demonstration purposes. |
|
1

~ Relative permeabilities:

s K k
i w w ro
i 0.06 0.00 1.00 .
1 0.10 0.00 ©0.88
1 0.20 0.00 0.50

0.28 0.0016 0.408 f
. 0.30 0.002 0.36 ‘
; 0.40 0.07 0.20
i 0.50 0.14 0.11
{ 0.60 0.22 0.0%
! 0.66 0.27 0.00

. Capillary pressure is set to zero.

! Gravity constant g=9.80665 m s 2

DERIVED QUANTITIES

|
| The following quantities are derived
from the dataset.

|

|
|

Mobility ratio M and saturation at the front

: From a Buckley-lLeverett calculation the
saturation at the front is 0.48, which is
used to determine the position of the front
from the reservoir simulator results. Also,
the average saturation behind the front is
0.573 which, accerding to the recommendation
of Craig [9), gives a mobility ratio M=1.46,
and a=1/M=0.69.

|
E a . ] e :
From Eq.17: qD=23.5
From Eq.186: q;=$.5

Step saturation change

E The step saturation change S for piston-,
jlike displacement wused in the analytical
isolution is given by:

! S=soi-sur
? = 0.66-0.28=0.38
i

Dimensionless variables

Based on Eg.16 the following
dimensionless variables are defined, all in
SI-units: {

Dimensionless radius Ty

r0=rlh

To be contnuec. 2nd coiuma, 1st lgn

Y = y/h

Dimensionless heiéﬁt to front Y

Dimensionless rate qD

- 2
qD-QIIZNh AQng)

Dimensionless time tD

tD=tAQQA°I(¢Sh)




