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Abstract. The diffuse-interface (DI) model for the two-phase flow of a one-component
fluid in a porous medium has been presented by Papatzacos [2002, Transport Porous
Media 49, 139–174] and by Papatzacos and Skjæveland [2004, SPE J. (March 2004), 47–
56]. Its main characteristics are: (i) a unified treatment of two phases as manifestations
of one fluid with a van der Waals type equation of state, (ii) the inclusion of wetting,
and (iii) the absence of relative permeabilities. The present paper completes the presenta-
tion by including the implementation of wetting in the general case of a mixed-wet rock.
As a result of this implementation, some statements are made about capillary pressure,
confirming similar statements by Hassanizadeh and Gray [1993, Water Resour. Res. 29,
3389–3405]. As an application of the model, we show that relative permeabilities depend
on the spatial derivatives of the saturation.
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1. Introduction

A new model for two-phase flow in porous media has recently been pre-
sented in two papers, referred to below as P1 (Papatzacos, 2002) and
P2 (Papatzacos and Skjæveland, 2004). It is based, at the pore level, on
the diffuse-interface (DI) model of a one-chemical-component fluid (see
Anderson et al., 1998; Papatzacos, 2000) characterized by (i) the two
phases are manifestations of one and the same fluid, (ii) the transition
from one phase to the other is taken care of by an additional term in the
Navier–Stokes equation and by an equation of state of the van der Waals
type, and (iii) the wetting properties are described by a boundary condition
involving the normal gradient of the fluid density (the Cahn theory).

The upscaling from the pore level to the Darcy level is performed in P1,
where the assumption of a constant and uniform temperature is also intro-
duced. (We point out that that the assumption of constant temperature was
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introduced as a simplification – the energy-balance equation drops out –
and is not a limitation inherent to the DI model.) A general method for
the inclusion of wetting at the Darcy level is given in P1, but it is relatively
complicated and its explicit implementation is not attempted in that paper.
It is then shown in P2 that a considerable simplification can be obtained,
for the implementation of wetting at the Darcy level, if one assumes that
the wetting angles at the pore level are neither 0 nor 180◦, but anywhere in
between. The expression incomplete wetting approximation is used in P2 for
this simplification. The explicit implementation of wetting is illustrated in
P2, in the restricted case of a vapor wet rock. It is one of the purposes of
this paper to generalize the implementation to a mixed wet rock. One then
obtains a model which we shall call the DI-model in the sequel.

This model is presented in detail in Section 2 below. Its main charac-
teristics are as follows. It concerns a one-chemical-component fluid capable
of existing in two phases, which are conveniently referred to as the liquid
and vapor phases. It has just one flow equation, in contradistinction to the
traditional model of two-phase flow where each phase has its flow equa-
tion. This flow equation is a partial differential equation of the Cahn–Hil-
liard type. The traditional constants of permeability and porosity are input
parameters, in addition to a constant � which is directly related to the
thickness of the transition region. It is to be noted that the model does
not use relative permeabilities. An equation of state of the van der Waals
type is needed, and the wetting properties are deduced from the informa-
tion contained in the traditional capillary pressure function.

The DI-model is thus ideally suited to the description of steam-water
systems or similar, if the temperature gradients are negligible. But it can
also be applied to oil–gas flows in situations where oil and gas can be
described, thermodynamically and to an acceptable approximation, as the
two phases of one and the same fluid.

Since the DI-model does not use relative permeabilities it should be pos-
sible to use it as a tool to test various hypotheses about these quantities. It
must be pointed out, however, that such a use of the model is not straight-
forward, because its dependent variables (density, velocity, . . . ) character-
ize the fluid and there is no obvious method for finding phase quantities
such as, say, vapor and liquid velocities. We give one possible method in
P2, which satisfies some obvious physical criteria (conservation of momen-
tum is one example); we then proceed to calculate relative permeabilities
through their definitions in terms of phase velocities and pressure gradients,
after having carried out numerical experiments. The calculations in P2 are
restricted to a stabilized flow type (i.e., a flow type that can be described
as a constant velocity traveling wave) and it is found there that the formu-
las defining relative permeabilities can be turned into analytic expressions.
These give the relative permeabilities in terms of the equation of state, the
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capillary pressure, and some parameters. See Section 3 below, where the
expressions are generalized to the case of a mixed wet rock. (A two-phase
saturated reservoir rock is often classified as having mixed wettability if
each fluid wets part of the internal rock surface.)

Section 2 below presents the DI-model. Analytic expressions for the rel-
ative permeabilities of stabilized flows in a mixed wet porous medium are
given in Section 3.

We return to the relative permeability concept in Section 4. Even if the
concept is absent from the DI-model, it is certainly of interest to tradi-
tional two-phase flow, and therefore an important subject. We see it here as
an interesting numerical application of the DI-model. In Section 4 we con-
sider a one-dimensional mixed-wet porous medium, and use the DI-model
to perform numerical experiments describing non-stabilized flow types, thus
generalizing the investigation carried out in P2. We calculate “experimen-
tal” relative permeabilities and draw some conclusions.

2. Description of the DI-model

The DI-model is a Darcy level model of flow in a porous medium,
of a fluid consisting of one chemical component. The rock matrix is
assumed to be rigid, and the temperature is assumed uniform, constant,
and subcritical.

The upscaling from the pore level to the Darcy level, is done in P1
by using the averaging technique of Marle (1982). It is shown in P2 that
the assumption of incomplete wetting at the pore level results in just one
flow equation at the Darcy level, the mass balance equation, involving one
dependent variable, the upscaled fluid density. This we denote by R instead
of the more traditional ρ, according to the notation introduced in P1 (and
later used in P2), and following Marle’s recipe of using capital letters for
upscaled quantities.

The flow equation and the boundary conditions involving R are described
in Section 2.1. The thermodynamics of the fluid, comprising the equation of
state and the interaction energy due to wetting, is described in Section 2.3

2.1. flow equation, initial and boundary conditions

The central equation of the DI-model is the Darcy level flow equation,

∂R

∂t
=∇ ·

(
KR2

φη
∇
(

d�

dR
−�∇2R +G

))
, (1)

where K is the absolute permeability, φ the porosity, and � a constant
related to the thickness of the transition region between the vapor and
liquid phases (see P1); η is the fluid viscosity, � is total Helmholtz free
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energy per unit volume of bulk fluid (bulk being defined at the beginning
of Section 2.3), and G is the gravitational potential causing an acceleration
equal to −∇G. Functions � and η depend on R alone, and the ways to
determine them are given in Sections 2.3 and 2.2.

Note that Equation (1) is a mass balance equation, with a fluid velocity
defined as

V =−KR

φη
∇
(

d�

dR
−�∇2R +G

)
, (2)

(It is shown in P1 that Equation (2) is the Darcy level momentum balance
equation of the fluid, and that the traditional velocity results from setting
�=0.) Note also that Equation (1) is (when G is identically zero) a Cahn–
Hilliard equation (see, for example, Novick–Cohen and Segel, 1984).

The boundary conditions of the model are usually written in terms of
two quantities, u1 and u2, defined as follows:

u1 =R, (3a)

u2 = d�

dR
−�∇2R +G. (3b)

A well-posed problem for Equation (1) is obtained by supplying an initial
condition R(x,0)=F(x) (a given function of x), and a boundary condition
having one of the forms (a) to (e) below.

(a) H =0, (b)

{
u1 =α1

u2 =α2
, (c)

{
n ·∇u2 =G2

u2 =α2
, (4a)

(d)

{
u1 =α1

n ·∇u1 =G1
, (e)

{
n ·∇u1 =G1

n ·∇u2 =G2
. (4b)

In these equations, n is the unit normal to the boundary, pointing out; H

is a function of u1 and u2;α1 and α2 are two constants; and G1 and G2

are functions of x, and of u1 and u2 and their derivatives.
A boundary condition on u1 in the present model is equivalent, because

of the equation of state, to a condition on the pressure in the traditional
model. A boundary condition on n ·∇u2 is a condition on the velocity. The
boundary conditions involving n ·∇u1 are new to this model and have been
discussed in P1: they specify the angle between the isodensity lines and the
reservoir surface. The boundary conditions which are relevant to reservoir
studies are thus the ones labeled (d) and (e) above. For the special case of
one-dimensional studies, as the ones presented in the present paper, it is
natural to use G1 =0 (see P1).
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2.2. the fluid viscosity

Fluid viscosity must be known as a function of R in order to solve the flow
equation (1). The formula for η(R) that has been used in P1 and P2 is a
modified form of a formula proposed by Arrhenius,

η=η
Sl
l ηSv

v , (5)

where ηl and ηv are the viscosities of the pure liquid and vapor phases, and
Sl and Sv are the liquid and vapor saturations. In the present model, these
are interpreted as follows:

Sl = R −Rv

Rl −Rv
, Sv = Rl −R

Rl −Rv
. (6)

2.3. thermodynamics

We now define the thermodynamics of the Darcy level fluid, and thereby
determine the function �(R).

We remind the general assumptions. The temperature is uniform and
constant. The fluid consists of one chemical component, and is capable of
undergoing a phase transition so that two coexisting phases are possible.
The phases are called liquid and vapor. There is a transition region of defi-
nite thickness between the phases, where the density gradients are large. We
define bulk fluid to be the fluid which is far enough from the transition
region that the density gradients are negligible and thus do not contribute
to its free energy.

The bulk fluid has an equation of state of the van der Waals type.
It is shown in P2 that the total Helmholtz free energy per unit volume

of bulk fluid consists of two parts and is written

�(R)=�b(R)+ I (R). (7)

The first part, �b, is the free energy per unit volume of bulk fluid. The
equation of state can be expressed through it as follows:

P b(R)=R2 d

dR

(
�b

R

)
, (8)

where P b is the pressure of bulk fluid. The determination of �b is given in
Section 2.3.1.

The second part, I , is introduced in P1 for the description of wetting. An
example of how I can be determined is given in P2. The general method is
given in Section 2.3.2 below.
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2.3.1. The Equation of State and �b

Let us consider a fluid of one chemical component, capable of existing in
two phases with densities Rv and Rl, and where the chemical potential and
the pressure at equilibrium are two constants denoted M̄ and P̄ respec-
tively. Then it can be shown (see Appendix A in P1, and references given
there) that the intrinsic Helmholtz free energy per unit volume of bulk fluid
has the form

�b(R)=W(R)+ M̄R − P̄ , (9)

where W(R) has the shape of a fourth order polynomial, with two minima
of value zero occurring at two distinct values. (We shall in the sequel refer
to such functions as being “W -like”.) The minima of W(R) are at R =Rv

and R =Rl.
It is shown in P1 that, when assuming uniform temperature as we do

here, the value of M̄ is irrelevant and one can set

M̄ =0. (10)

If quantitative results are expected from solving the well-posed problem
outlined in Section 2.1, then it is important to obtain Rv,Rl and W(R), at
the specified temperature, from the relevant equation of state. Densities Rv

and Rl are usually found by the Maxwell equal area rule. With an equation
of state where bulk pressure P b is given as a function of density R, this is∫ Rl

Rv

P b(R′)
dR′

R
′2 =P b(Rv)

(
1
Rv

− 1
Rl

)
. (11)

The W(R)-function is found by integrating Equation (8). As shown in P2,
this leads to

W(R)=P b(Rv)

(
1− R

Rv

)
+R

∫ R

Rv

P b(R′)
dR′

R
′2 . (12)

Using the van der Waals equation of state as an example, i.e.,

P b
vdW (R)= NkT R

1−BR
−AR2 (13)

(N is the number of molecules, k is Boltzmann’s constant, T is the temper-
ature, and A and B are two positive constants) we obtain for the van der
Waals W -function,

WvdW =P b
vdW (Rv)

(
1− R

Rv

)
+AR(Rv −R)+NkT R ln

R(1−BRv)

Rv(1−BR)
.

It can be checked that WvdW is W -like; its two minima of value zero are at
R =Rv and R =Rl. There are no analytical expressions for Rv and Rl and
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their actual calculation by the use of Equation (11) is somewhat tedious
and is not given here. More realistic equations of state have of course the
same problem.

If one aims at qualitative results, as we do in this paper, then the numer-
ical awkwardness just pointed out can easily be avoided by postulating a
W -function, and naturally choosing the simplest possible form, i.e.,

W(R)= (Pc/R
4
c )(R −Rv)

2(R −Rl)
2 (14)

(see P1 and P2 where the fluid having such a W -function is called
“pseudo-van-der-Waals”). Here Pc and Rc are the pressure and density at
the critical point. For this simple model,

Rc = (Rv +Rl)/2, (15)

while Pc is arbitrary positive. Numerical values for Pc and Rc are not
needed because all the equations of the model can be written in dimension-
less form and Pc and Rc are absorbed in dimensionless groups. Dimension-
less variables are indicated with a tilde overstrike:

R̃ =R/Rc, R̃v =Rv/Rc, R̃l =Rl/Rc, W̃ =W/Pc. (16)

Equation (14) becomes

W̃ (R̃)= (R̃ − R̃v)
2(R̃ − R̃l)

2. (17)

The constants R̃v < 1 and R̃l > 1 are now parameters that are given as
input, instead of being the result of a numerical calculation.

Using this simple W -function in Equation (9), then using (8) we obtain
an equation of state. The constant M̄ is given by Equation (10) and P̄ can
be obtained by the condition that the pressure must vanish at zero density.
The dimensionless �b is then

�̃b(R)=�b/Pc = (R̃ − R̃v)
2(R̃ − R̃l)

2 − R̃2
vR̃

2
l . (18)

We add for completeness that this free energy function is valid for just one
isotherm. It is possible to generalize to arbitrary dimensionless tempera-
tures T̃ (temperature divided by critical temperature) by using

R̃v =1−
√

1− T̃ , R̃l =1+
√

1− T̃ (19)

(see Equations (90) and (91) in P1; here we have put β = 1). Substitution
of these expressions in Equation (18) leads, after some obvious algebra, to
an expression that is valid for all temperatures, even those larger than the
critical. There results an equation of state with temperature as a parame-
ter, which has all the characteristics of the van der Waals equation of state
(see Appendix A in P1).
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We set down here for future reference the expression of fluid viscosity
in terms of density that results from using the pseudo van der Waals fluid.
Firstly, we easily find the viscosity ηc at critical density by using Equation
(15) in Equations (5) and (6):

ηc =√
ηvηl. (20)

The expression for the dimensionless viscosity, is then

η̃= η

ηc
=
(

ηv

ηl

)r

, r = Rl +Rv −2R

2(Rl −Rv)
. (21)

To summarize: Equation (18) is a simple formula for the Helmholtz free
energy per unit volume for bulk fluid, well adapted to qualitative calcula-
tions at constant subcritical temperatures. We shall use this formula in this
paper, together with formula (21) for viscosity. For quantitative results, the
�b must be obtained through the equation of state, using Equations (9),
(10), (11), and (12).

2.3.2. Wetting and the I -function

The I -function is a Helmholtz free energy per unit volume introduced in
P1 for the description of wetting. It is in general a function of two vari-
ables and its determination is not given in P1. However, it is shown in P2
that, if wetting is incomplete at the pore level (i.e., the wetting angle is
between 0 and 180◦), then I is, to a good approximation, a function of
R alone that can be determined in its essential characteristics by the tra-
ditional capillary pressure function.

It is easy to show, using Equation (2), that a pressure that can be iden-
tified with a capillary pressure exists in the DI-model, and that it is related
to the I -function. This can be done by using Equation (7) to write

R∇(d�/dR)=R∇(d�b/dR)+R∇(dI/dR). (22)

The first term on the right-hand side can be transformed as follows:

R∇d�b

dR
=R

d2�b

dR2
∇R = dP b

dR
∇R =∇P b,

where the second equality comes from taking the derivative of Equation
(8), obtaining:

dP b

dR
=R

d2�b

dR2
. (23)

The second term on the right-hand side of Equation (22) can be trans-
formed in the same way, i.e.,

R∇ dI

dR
=∇P c,
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by defining a pressure P c due to wetting by an equation analogous to
Equation (23), i.e.,

dP c

dR
=R

d2I

dR2
. (24)

The velocity, Equation (2) can then be written

V =− K

φη

(∇(P b +P c)+R∇G−�R∇∇2R
)
. (25)

Note that it is essential for the definition of P c by the thermodynamical
relation (24) that I be a function of R alone. We shall call P c the capil-
lary pressure function.

We shall now use Equation (24) backwards: we assume that P c is empir-
ically known and we use the equation to calculate I (R). We assume that
P c(R) is identical with the traditional capillary pressure function pc(S),
provided a conversion from saturation S to density R is used in pc(S). As
we shall see, the identification can only be valid for a limited interval of
the density R, implying that I can be constructed from empirical data only
inside such a limited interval. Some sort of extrapolation must be done to
extend the construction outside the interval.

We show below that I must obey the requirement that W + I must be
W -like. See Figure 1a. It follows that its calculation from pc is the first
experimental challenge met by the DI-model.

The argument leading to the requirement on I is as follows. Assume a
very long, one-dimensional porous medium in dynamical equilibrium: its
velocity is zero everywhere and the variation of density with the space
coordinate x is found by solving the differential equation obtained by
equating to zero the expression inside the parentheses in Equation (2). Let
us assume that I = 0 (neutral wetting). The first effect of gravitation, rep-
resented by G, is to separate the fluid in a liquid phase (downwards) and

W

W+I
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Figure 1. In (a) The W -like functions W(R) and W(R) + I (R). In (b) Func-
tions Jl(R) and Jv(R) defined by Equations (32b) and (33b). In (c) Functions
W(R),−CvJv(R),−ClJl(R), and W(R) + I (R) where I = CvJv + ClJl. In (d) The
smoothing of I (R) producing I s(R) = Cs

l J
s
l (R) + Cs

vJ
s
v (R). In (b) and (c), it is

assumed that al, av <1.
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a vapor phase (upwards). Gravitation has also the effect of distorting the
density profile due to a compression effect downwards. We assume that G

is so small that this distortion can be neglected: the density profile at equi-
librium is then determined by W and by the boundary conditions speci-
fying that we have liquid at the lower boundary and vapor at the upper
boundary. It is then easy to see (the calculation can be done by hand if
the simple W of Equation (14) is used) that R(x) is a smooth curve, with
one plateau where R is equal to Rv, another where R is equal to Rl, and
a sigmoid-like curve in between. The smoothness of the curve agrees with
observations. Let us now assume mixed wetting so that I �=0. The equilib-
rium is now determined by W + I and the only difference with the I = 0
case, should be a shift of the two plateaus: the one at Rv is raised at a
value R∗

v , the one at Rl is lowered at R∗
l . (We have Rv <R∗

v because of the
presence of residual liquid in the pores. Similarly, Rl > R∗

l because of the
presence of residual vapor.) The sigmoid must fit smoothly to the plateaus
to agree with observations; it can have a different shape from the neutral-
wetting sigmoid, but that is of secondary importance. Thus W + I must be
W -like.

The traditional pc(S) is an experimentally measured function. We shall
use an analytical expression, which depends on four parameters and which
covers a large range of measurements (Skjæveland et al., 2000). It is given
here with our notation, i.e., with liquid and vapor as the names of the two
phases:

pc(Sl)=Cl

(
1−Slr

Sl −Slr

)al

+Cv

(
1−Svr

1−Svr −Sl

)av

. (26)

Sl is the liquid saturation. The residual liquid saturation Slr, and the resid-
ual vapor saturation Svr are considered as input parameters. The constants
Cl and Cv are usually referred to as entry pressures and 1/al and 1/av

as pore size distribution indices. They are here adjustable parameters. The
translation from saturation to density is done through Equations (6). We
begin by defining R∗

v and R∗
l in terms of input parameters:

Slr = R∗
v −Rv

Rl −Rv
⇐⇒ R∗

v =Rv + (Rl −Rv)Slr, (27a)

Svr = Rl −R∗
l

Rl −Rv
⇐⇒ R∗

l =Rl − (Rl −Rv)Svr. (27b)

We now identify P c(R) with pc(Sl), where Sl is given by Equation (6) (left).
For later convenience, we write

P c =P c
l +P c

v , (28)
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where

P c
l =Cl

(
Rl −R∗

v

R −R∗
v

)al

, P c
v =Cv

(
R∗

l −Rv

R∗
l −R

)av

(R∗
v <R <R∗

l ). (29)

Note that P c is only known in the open interval (R∗
v ,R

∗
l ). The boundaries

are excluded because the DI-model does not accept infinite pressures.
The integration of Equation (24), using Equation (28), gives

I (R)= Il(R)+ Iv(R), (30)

with

Ia(R)=R

∫
P c

a

R2
dR −αa +βaR (a = l,v), (31)

where αa and βa are integration constants. We now refer to the second par-
agraph after the paragraph containing Equation (25): the bounds and con-
stants of integration in Equation (31) must be determined, together with
constants Cl and Cv, in such a way that W + I is a W -like function of R,
with two minima at R =R∗

v , and R =R∗
l , of value zero. It is shown below

that this is possible, implying that the model is in agreement with exper-
imental results on capillary pressure. There is a certain reservation to the
last statement, as we shall see, relating to the possible infinities in pc(Sl).

We first obtain Il and Iv for R∗
v < R < R∗

l .
Il is that part of the I - function which is due to the “liquid-wet part” of

the capillary pressure function. We impose the condition that W +Il should
be “as much as possible equal to W” for R in the neighborhood of R∗

l :

Il(R
∗
l )=0, I ′

l (R
∗
l )=0

(where the prime denotes differentiation). Similarly, W + Iv should be “as
much as possible equal to W” for R in the neighborhood of R∗

v :

Iv(R
∗
v)=0, I ′

v(R
∗
v)=0.

Using these four conditions to determine the constants in Equation (31)
with a = l and with a =v, one easily gets

Il(R)=ClJl(R), (32a)

Jl(R)=
(

Rl −R∗
v

R∗
l −R∗

v

)al
(

1− R

R∗
l

)
−R

∫ R∗
l

R

(
Rl −R∗

v

R′ −R∗
v

)al dR′

R′2 , (32b)

and

Iv(R)=CvJv(R), (33a)

Jv(R)=
(

R∗
l −Rv

R∗
l −R∗

v

)av
(

1− R

R∗
v

)
+R

∫ R

R∗
v

(
R∗

l −Rv

R∗
l −R′

)av dR′

R′2 . (33b)



224 P. PAPATZACOS AND S. M. SKJÆVELAND

It turns out that Jl and Jv are monotonically increasing functions for R∗
v <

R <R∗
l (see Figure 1b). There are difficulties connected to the infinity of Jl

as R →R∗
v with al ≥1, and to the infinity of Jv as R →R∗

l with av ≥1. We
shall temporarily, and for the sake of illustration, assume that the a’s are
less than 1.

Figure 1b shows Jv and Jl for av =al =0.5. It is now easy to determine
the constants Cl and Cv in such a way that W + I =0 at R∗

v and R∗
l : it suf-

fices to put

Cl =−W(R∗
v)

Jl(R∗
v)

, Cv =−W(R∗
l )

Jv(R
∗
l )

. (34)

(It is clear, incidentally, that Cl > 0 and that Cv < 0.) The resulting W + I -
function is shown in Figure 1c, together with W,−CvJv, and −ClJl. To
obtain I (R) outside of the interval [R∗

v ,R
∗
l ] we must now resort to extrap-

olations. However, W + I must reach the horizontal axis with a horizontal
tangent for the extrapolated W + I to be W -like, and it is easy to see from
expressions (32b) and (33b) that I , and thus necessarily W + I , have ver-
tical tangents at R =R∗

v and R =R∗
l . This is due to the infinities of pc at

Sl = Slr and Sl = 1 − Svr. The situation is worse when al or av or both are
larger than 1, because then we can not even satisfy W + I = 0 at R∗

v and
R∗

l .
We make W +I a W -like function by using the fact that the behavior of

pc(Sl), when Sl approaches Slr from above or 1−Svr from below, is not well
established (Hassanizadeh and Gray, 1993). Without contradicting experi-
mental evidence we then smooth out the I -function, or rather its two com-
ponents Il and Iv, as described below.

There are probably many ways to perform the smoothing. We have cho-
sen to start at the level of the Jl and Jv functions, and to shift their possi-
ble infinities away from R∗

v and R∗
l : choosing a small number ε, we shift the

singularities at R∗
v + ε and R∗

l − ε, as shown on Figure 1d. We then define
a function J s

l as follows:

J s
l =

{
jl(R), R∗

v ≤R <R∗
v +2ε,

Jl|R∗
v+ε R∗

v +2ε ≤R ≤R∗
l ,

(35)

where Jl|R∗
v+ε is Jl with R∗

v replaced by R∗
v + ε. A typical value for ε, or

rather for its dimensionless counterpart ε̃ = ε/Rc is 0.01. (For the sake of
readability, the value of ε in Figure 1d is greatly exaggerated.) We choose
a second degree polynomial for jl(R) such that J s

l and its derivative are
continuous at R =R∗

v +2ε: it can then be seen that jl has just one remain-
ing degree of freedom. A function J s

v is defined in a similar manner, with
a polynomial jv(R). We now define a smoothed I -function by

I s(R)=Cs
l J

s
l (R)+Cs

vJ
s
v(R), (36)
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and determine the constants Cs
l ,C

s
v, and the two degrees of freedom in jl

and jv, with the four conditions

W(R∗
a)+ I s(R∗

a)=0
W ′(R∗

a)+ I s′(R∗
a)=0 (a = l,v)

(the primes denote differentiation). The calculations are elementary but
somewhat long and are not given here. It is to be noted that the C’s
appearing in the capillary pressure correlation are not free parameters,
according to the DI-model.

We now look at the problem of extending the I s-function, to the left of
R∗

v and to the right of R∗
l . We denote this function by I se. The extension is

done as follows. To the left of R∗
v we take W +I se to be equal to W , trans-

lated by the amount R∗
v −Rv: this is the vapor phase region and we expect

it to behave approximately as a pure vapor. To the right of R∗
l we want the

liquid to behave as a nearly incompressible fluid and we impose therefore
that

W(R)+ I se(R)= Pc

R2
c

(R −R∗
l )

2

4ε̃
,

where ε̃ is the small parameter used previously. The function W(R)+I se(R)

is shown in Figure 1 as the curve labeled W + I .
To summarize: Function I se(R) is calculated from the empirical capillary

pressure function and the equation of state on an interval [R∗
v + 2ε,R∗

l −
2ε] which excludes the possible infinities of the capillary pressure function.
Outside this interval it is extrapolated as simply as possible, keeping in
mind that W + I must be W -like.

2.4. the model in summary

The model consists of: (i) the flow equation (1), (ii) an initial condition on
the fluid density R, and (iii) boundary conditions of type (d) or (e) (see
Equations (4b)). There are two input functions: the fluid viscosity η(R) (see
Section 2.2) and the total Helmholtz free energy per unit volume of bulk
fluid �(R) (see Section 2.3).

The input parameters are as follows. Firstly the permeability K, the
porosity φ, a constant characterizing gravity (usually the acceleration g),
and �. The last mentioned is related to the thickness of the transition
region as shown in P1 and P2. Secondly, the constants inherent to the
functions η and �. The former has a minimum of two parameters, namely
the viscosities ηv and ηl of the pure phases. The latter has a minimum of
six parameters: the densities Rv and Rl of the pure phases, the residual sat-
urations Svr and Slr, and the two a’s of the capillary pressure correlation
(Equation (26)).
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3. Analytical Relative Permeabilities for Stabilized Flows

The formulas defining relative permeabilities can be turned into analytic
expressions if the flow can be characterized as a constant velocity traveling
wave. See P2 where these formulas were restricted to the case of a vapor
wet rock. We shall here generalize them to the case of a mixed wet rock.

We need the derivative of the capillary pressure with respect to R. The
smoothing and continuation of the I -function performed in Section 2.3.2
implies that we must use the derivative of a function P cs (a smoothed and
continued P c). Using the earlier splitting up into a liquid and a vapor
wetting part (Equation (28)), we introduce

dP cs

dR
= dP cs

l

dR
+ dP cs

v

dR
, (37)

with

dP cs
l

dR
=R

d2

dR2
Cs

l J
s
l (R),

dP cs
v

dR
=R

d2

dR2
Cs

vJ
s
v(R) (38)

(see Equations (24) and (36)).
The relative permeabilities (krl and krv for the liquid and vapor phases)

can now be given the same form as in P2, namely

krl =
S∗

l

1+ (R∗
v/R

∗
l )γ (S∗

l )
, (39a)

krv = 1−S∗
l

1+γ (1−S∗
l )

, (39b)

where

S∗
l = R̃ − R̃∗

v

R̃∗
l − R̃∗

v

. (40)

The generalization to the mixed wet case proceeds from the following
straightforward generalization of the function γ given by Equation (61) of
P2:

γ (S∗
l )=−

⎡
⎣ 1

g̃R̃∗
v

dP̃ cs
v

dR̃

√
2

�̃
[W̃ (R̃)+ Ĩ s(R̃)]

⎤
⎦

R̃=R̃∗
l −(R̃∗

l R̃∗
v )S∗

l

−

−
⎡
⎣ 1

g̃R̃∗
v

dP̃ cs
l

dR̃

√
2

�̃
[W̃ (R̃)+ Ĩ s(R̃)]

⎤
⎦

R̃=R̃∗
v+(R̃∗

l −R̃∗
v )S∗

l

, (41)
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where the quantities with tildes are dimensionless. Densities (R̃, R̃∗
v) are

referred to Rc, pressures (P̃ cs
v , P̃ cs

l ) and potentials (W̃ , Ĩ s) are referred to Pc,
and

g̃ = (RcL/Pc)g, �̃= (R2
c /(PcL

2))�, (42)

where L is the length of the porous medium along which the wave is trav-
eling.

It can be shown that, if av and al in Equation (26) are both less that 1,
then the smoothing of the I -function is not necessary for the calculation
of the relative permeabilities. The superscript s can be dropped in Equa-
tion (41): Equation (29) can be used to calculate the derivatives of P̃ c

l and
P̃ c

v , and one can use the I -function defined by Equations (30), (32a), (33a),
and (34).

Thus knowledge of the equation of state, of the capillary pressure, of
the parameters belonging to these functions, and of the constants g and �,
lead to the calculation of the relative permeabilities for stabilized flows.

4. A Numerical Application

In this section we apply the DI-model presented above to a numerical
investigation of relative permeabilities for non-stabilized flows. We force the
flows to be nonstabilized by the use of start and boundary conditions. We
begin with an outline of a method for calculating relative permeabilities
numerically.

4.1. “experimental” relative permeabilities

We assume a one-dimensional porous medium of length L, mixed wetting,
and we begin with the definition of relative permeabilities:

Ṽ ∗
l = krl(exp)

η̃(R̃∗
l )

(
−∂p̃∗

l

∂x̃
+ g̃R̃∗

l

)
, Ṽ ∗

v = krv(exp)

η̃(R̃∗
v)

(
−∂p̃∗

v

∂x̃
+ g̃R̃∗

v

)
. (43)

The dimensionless quantities not already defined are as follows: x̃ = x/L,
and x is the coordinate which increases in the direction of the force of
gravity; p̃∗

l and p̃∗
v are pressures, referred to Pc as earlier in the paper. The

velocities on the left-hand sides are made dimensionless by the following
general formula, valid for all other velocities used later in the paper:

Ṽ = (φηcL/(KPc))V . (44)

The DI-model does not provide phase velocities, nor any other phase quan-
tities. To obtain them we generalize the method used in P2. We begin with
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the dimensionless velocity Ṽ and momentum �̃, defined as follows:

Ṽ =− R̃

η̃(R̃)

∂

∂x̃

(
d�̃

dR̃
− g̃x̃ − �̃

∂2R̃

∂x̃2

)
, �̃ = R̃Ṽ . (45)

We now introduce the following notation for the velocities and momenta
at, respectively, S∗

l =0 and S∗
l =1:

Ṽ0 = Ṽ |S∗
l =0, Ṽ1 = Ṽ |S∗

l =1,

�̃0 = �̃|S∗
l =0, �̃1 = �̃|S∗

l =1. (46)

Following P2 we then postulate that

Ṽ ∗
l = �̃0 − �̃

�̃0 − �̃1
Ṽ1, Ṽ ∗

v = �̃ − �̃1

�̃0 − �̃1
Ṽ0. (47)

As pointed out in P2, these equations ensure that the local momenta car-
ried by each phase add to the total fluid momentum. We can, with Equa-
tion (47), obtain the phase velocities during the calculation of a given pro-
cess, since all quantities on the right-hand sides are calculable.

Turning to the pressure gradients in the two phases, the central argu-
ment leading to their calculation is given in P2 as follows. If P̃ b denotes
the bulk pressure in the fluid, then the gradient of P̃ b is zero at equilib-
rium and when wetting is absent since, following the Maxwell construction,
the van der Waals “loops” in the equation of state are replaced by an hor-
izontal line. With wetting, where the W̃ -function is replaced by W̃ + Ĩ s, it
is the gradient of P̃ b + P̃ cs that must vanish at equilibrium. It follows that[

∂P̃ b

∂x̃

]
eq

=−∂P̃ cs

∂x̃
=−d P̃ cs

dR̃

∂R̃

∂x̃
. (48)

For the simple case of a vapor wetting medium considered in P2, one
identifies the pressure gradient in each phase with the left-hand side of
Equation (48), taken at the proper value of the saturation. Generalizing to
mixed wetting, we put

∂p̃∗
l

∂x̃
=−g̃R̃∗

vγexp(S
∗
l ),

∂p̃∗
v

∂x̃
=−g̃R̃∗

vγexp(1−S∗
l ). (49)

where γexp is

γexp(S
∗
l )=−

[
1

g̃R̃∗
v

dP̃ cs
v

dR̃

∣∣∣∣∣
∂R̃

∂x̃

∣∣∣∣∣
]

1−S∗
l

−
[

1

g̃R̃∗
v

dP̃ cs
l

dR̃

∣∣∣∣∣
∂R̃

∂x̃

∣∣∣∣∣
]

S∗
l

. (50)

In this expression, the derivatives of P̃ cs
l and P̃ cs

v are given by Equation
(38), while the partial derivative of R̃ is obtained by using the solution of
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the partial differential equations. (In stabilized flow, an analytical expres-
sion can be found for this partial derivative, leading to the expressions of
Section 3.)

One can thus calculate

krl(exp) =
Ṽ ∗

l η̃(R̃∗
l )

g̃R̃∗
l

1
1+ (R∗

v/R
∗
l )γexp(S

∗
l )

, (51a)

krv(exp) = Ṽ ∗
v η̃(R̃∗

v)

g̃R̃∗
v

1
1+γexp(1−S∗

l )
, (51b)

at any time step and at values of x̃ where the density R̃ is intermediate
between R̃∗

v and R̃∗
l .

4.2. numerical experiments

We have done three numerical experiments, where one can be character-
ized as a drainage, and two as imbibitions. We have labeled them Drain-
age, Imbibition 1, and Imbibition 2: see Appendix A for the parameter
specifications, and for the initial and boundary conditions. In the “Drain-
age” and “Imbibition 1” cases the boundary conditions have been deter-
mined in such a way that flow velocities decrease and static final states are
approached, with both phases clearly present. In the “Imbibition 2” case
the boundary conditions do not allow a static final state to occur before
most of the medium is filled with liquid.

The results of the drainage calculation are shown in Figure 2. The solu-
tion R̃(x̃, t̃) of the flow Equation (1) is shown in (a). Note the qualita-
tive agreement with the experimental results of Terwilliger et al. (1951) (see
in particular their Figure 2). Parts (b) and (c) are plots of the liquid and
vapor velocities (Equation (47)), versus the normalized liquid saturation
(Equation (40)). The essential information contained in Figures (b) and (c)
is that we have counter-current flow: liquid velocity is positive so that the
liquid phase moves in the direction of the gravitational force, while the
vapor phase moves in the opposite direction. In other words, the liquid
falls, leaving a rising vapor behind it.

Similar figures for the imbibition calculations are not shown here. The
main features are as follows.

For Imbibition 1 we again have counter-current flow, with the liquid
phase being drawn upwards, against the gravitational force, while the vapor
phase falls into the rising liquid and liquefies. The inter-phase region (i.e.,
the diffuse interface) rises and liquid is drawn in the medium from below
thus justifying the name “imbibition”. The only non-conventional feature
is the gas being drawn in the medium from above and liquefying.
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Figure 2. Drainage simulation. In (a) Fluid density versus x̃, given by the solution
of Equation (1) with the specifications given in Appendix A, for t̃-values of 0, 0.02,
0.08, 0.16, 0.32, 0.40 (increasing from the broken line and to the right). In (b)
Dimensionless liquid velocity versus normalized liquid saturation S∗

l , for t̃-values
of 0.02, 0.08, 0.16, 0.32, 0.40, increasing from top to bottom as indicated. In (c)
Dimensionless vapor velocity versus normalized liquid saturation S∗

l , for the same
t̃-values as in (b), increasing from bottom to top as indicated.

The physics is somewhat more complex for Imbibition 2: flow is now
co-current, both phases moving with positive velocities, i.e., in the direc-
tion of the gravitational force. But the vapor velocity is about ten times
larger than the liquid velocity so that we have the same overall effect as in
Imbibition 1, i.e., vapor falling into liquid and liquefying. The inter-phase
region rises, but liquid is expelled from below and vapor is drawn in from
above. Thus we do not have imbibition in the traditional sense, but we have
kept the name since the overall liquid saturation in the medium increases
and the “interface” rises.

4.3. discussion of the results of the numerical experiments

“Experimental” relative permeabilities are calculated for each of the three
processes presented in Section 4.2, and for a number of t̃-values between 0
and 0.4. The results of these calculations are shown on Figure 3, top row.

We first take up the fact, apparent from the figure, that the model pre-
dicts relative permeabilities larger than one. The explanation is found in the
expression for fluid velocity, Equation (2). In one spatial dimension and
using the thermodynamical relations of Section 2.3, one finds

V =− K

φη

(
∂P b

∂x
−gR

)
− KR

φη

(
d2I

dR2

∂R

∂x
−�

∂3R

∂x3

)
. (52)

We shall refer to the first and second terms on the right-hand side as the
Darcy and DI-non-Darcy (not to be confused with the inertial non-Darcy
velocity) velocities. Obviously, the calculations of relative permeabilities are
a two step process where the first step is to partition the fluid velocity in its
liquid and vapor parts. The second step consist essentially in taking away
the DI-non-Darcy term and accounting for its contribution by a factor (the
relative permeability) multiplying the Darcy term.
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Figure 3. Liquid (ascending curves) and vapor (descending curves) relative perme-
abilities versus normalized liquid saturation S∗

l , for the three processes specified in
Appendix A and for t̃-values of 0.02, 0.04, then up to 0.40 by steps of 0.04. Top
row: calculated, see Equation (51). Bottom row: drawn in gray are the curves of the
top row, with ordinates divided by their (largest) end-point values; drawn in black
are the theoretical relative permeabilities of Section 3.

One important difference between stabilized flow types considered in P2
and the non-stabilized ones considered here is illustrated in Figure 4. For
stabilized flow types (left) the large gradients in the density are confined
to the transition region so that the DI-non-Darcy term only contributes
to the velocity inside that region. This contribution gradually vanishes as
one approaches the 100% liquid or vapor regions, which leads to a relative
permeability that behaves as expected, being in particular less than 1. For
non-stabilized flow types (right) the large gradients show a tendency to spill
over in the 100% liquid and vapor regions, so that the DI-non-Darcy term
remains important in the pure-phase regions, giving a velocity that is larger
than what is expected from the Darcy expression. Accounting for the non-
Darcy term by a multiplicative factor leads in this case to the factor being
larger than 1.

The question that immediately arises is whether permeabilities larger
than 1 are experimentally observable. To answer this question we note that
the very large relative permeabilities occur for small times, and for the
phase for which the dimensionless velocities are roughly larger than 1: see
Figures 2 and 3. The reference velocity (see Equation (44)) is KPc/(φηcL).
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Figure 4. In stabilized flow types the large gradients are confined to the transition
region.

Using the following laboratory values

K =100 mD φ =0.3 L=20 cm
Pc =2.21×107 N/m2, ηc =0.042 cP

(where critical pressure Pc and critical viscosity ηc belong to the water–
steam system) we get a reference velocity of the order of 1 m/s. This is
at least 10,000 times larger than the usually occurring velocities, which
explains that relative permeabilities larger than one are not observed.

The other obvious feature of the top row of Figure 3 is the absence
of a unique relative permeability curve. The present model thus confirms
the well-accepted fact that relative permeabilities are not functions of sat-
uration alone. In fact, the foregoing discussion has shown that the relative
permeabilities are linked to the second term on the right-hand side of Equa-
tion (52), i.e., to the density and its derivatives. In view of our simple rela-
tion (Equations (6)) between density and saturation, a reasonable assumption
would be that

kra =kra(S, ∂S;P) (a = l,v).

Here we have used ∂S is a shorthand notation for the dependence of kra

on the partial derivatives of S of (in principle) all orders; P stands for a
set of parameters which usually do not vary with time and space, like pure
phase densities, viscosities, and other parameters included in the definition
of the equation of state, and the capillary pressure.

The bottom row of the Figure 3 is a redrawing of the curves of the
top row, after a renormalization consisting in dividing the ordinates of each
curve by the curve’s end-point ordinate (left end point for the vapor, right
end point for the liquid relative permeabilities). The analytical curves of
Section 3 are also drawn. A gathering of the renormalized curves, like the
one happening for the Drainage case, would have indicated that relative
permeabilities are functions of the type f (S;P)g(∂S;P). Obviously, the
DI-model clearly indicates that such simplified functional dependence does
not exist in general.
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5. Conclusions

We have presented the DI-model of two-phase flow in porous media. This
paper clarifies questions left open in two previous papers (referred to above
as P1 and P2), concerning the description of wetting. In particular, it elabo-
rates on the assumption of incomplete wetting at the pore level, introduced
in P2.

The main limitation of the model is in its assumption of one chemical
component, which restricts its applicability to liquid–vapor systems, or to
systems whose thermodynamical description can be approximated by that
of a liquid–vapor system.

The advantage of the model is a theoretical description which incorpo-
rates the separation of the phases as an integral part of the solution of the
flow equation. Thus numerical dispersion, with spurious breakthroughs of
a mobile phase, does not occur. The absence of relative permeabilities is an
additional advantage.

Concerning capillary pressure: a function P c(R) has been defined, not
as the difference P n −P w between the pressures in the non-wetting and the
wetting phases, but as a quantity with the formal properties of a pressure.
The P c-function is related to that part of the Helmholtz free energy per
unit volume (the I -function) which pertains to the description of wetting,
in the same formal manner as the bulk pressure P b is related to �b: see
Equations (23) and (24). It is then natural to identify P c(R) with the tra-
ditional capillary pressure function pc(S), with the purpose of calculating
the I -function, provided a definition of saturation as a function of den-
sity is given, and provided one keeps in mind that this identification does
not yield I (R) for all R. (See Section 2.3.2.) Some statements about pc(S)

resulting from this identification are as follows: (i) pc is not, in general,
a function of state, in the thermodynamic sense (see P1); (ii) pc is, to a
good approximation, a function of state if one assumes incomplete wetting,
i.e., wetting angles strictly between 0 and 180◦, at the pore level, or if one
assumes permeabilities of the order of one Darcy and above (see P2); (iii)
pc can not become infinite. It is to be noted that similar statements have
been made in Hassanizadeh and Gray (1993): see their comments in con-
nection with their Equations (14), (15), and (44).

Concerning relative permeabilities: the DI-model does not use them but
it can, assuming its experimental correctness, be used to perform simula-
tions leading to their evaluation. The conclusions from such simulations
are as follows. Analytical expressions exist (see Section 3) and can be used
for constant velocity traveling wave flow types. For other flow types, the
model confirms the belief that relative permeabilities, as functions of satu-
ration alone, cannot capture the full complexity of two-phase flow. In fact,
the model indicates a likely dependence on the spatial derivatives of the
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saturation. In addition, the model does not confirm the hypothesis of a
separation of the functional dependence on saturation from the functional
dependence on derivatives of saturation.

Concerning experimental verification: qualitative verification results first
from the fact that I can be calculated from pc (after adjusting its com-
monly assumed infinities) in such a way that W + I is W -like. We would
also like to point out the resemblance of the drainage curves of Figure 2
with the classical results of Terwilliger et al. (1951). Quantitative verifica-
tion with published results is, for the time being, not feasible since the
information on thermodynamical properties, which is necessary for the sim-
ulations with the DI-model is usually not provided.

Appendix. Specifications for the Numerical Experiments of Section 4.2

The flow equation in one dimension, with the space axis pointing in the
direction of the gravitational force (downwards), is

∂R̃

∂t̃
= ∂

∂x̃

[
R̃2

η̃(R̃)

∂

∂x̃

(
d�̃

dR̃
− �̃

∂2R̃

∂x̃2
− g̃x̃

)]
,

using dimensionless quantities defined in the main text and with

t̃ = (KPc/(φηcL
2))t.

We have chosen

�̃=0.01, g̃ =0.5, ηv/ηl =0.1.

We have used the pseudo-van-der-Waals fluid, i.e., the fluid having the �̃b

given by Equation (18). The parameters describing this function and the Ĩ -
function of Section 2.3.2 are chosen as follows:

R̃l =1.6, R̃v =0.4, Slr =0.4, Svr =0.1,

al =0.50, av =1.15, for drainage,
al =1.00, av =1.40, for imbibition.

(A.1)

The numerical values on the first line imply that the minima of the W -
function are at R̃∗

v = 0.88 (density of phase consisting of pure vapor and
residual liquid) and R̃∗

l = 1.48 (density of phase consisting of pure liquid
and residual vapor). Note the different choices for al and av, depending on
whether one simulates drainage or imbibition. The two resulting capillary
pressure functions, given by Equation (26), are shown in Figure A.1 (see
Section 2.3.2 for the calculation of Cl and Cv or rather of Cs

l and Cs
v.).

The initial conditions are as follows: R̃(x̃,0) is first given by a step func-
tion, where R̃ = R̃∗

v for x̃ less than the position of the discontinuity, and
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Figure A.1. The capillary pressure functions versus liquid saturation Sl, resulting
from constants given in (A.1), see Equation (26). (The left vertical asymptote is at
Sl =Slr, the right one at Sl =1−Svr.) The upper curve is used for drainage, the lower
for imbibition simulations.

R̃ = R̃∗
l otherwise. The position of the discontinuity is at about 0.1 for

drainage, at about 0.9 for imbibition. The step function is then smoothed
(see the broken line in Figure 2a).

The boundary conditions are of the type (d) (see Equation (4b)), i.e.,
R̃(x̃, t̃) and R̃x(x̃, t̃) (the partial derivative of R with respect to x) are given
for all t̃ at x̃ =0 and x̃ =1:

R̃(0, t̃)= R̃0, R̃x(0, t̃)=0,

R̃(1, t̃)= R̃1, R̃x(0, t̃)=0.
(A.2)

The values of R̃0 and R̃1 depend on the simulated process and are as fol-
lows:

Drainage: R̃0 =0.7902 R̃1 =1.4824
Imbibition 1: R̃0 =0.8427 R̃1 =1.4866
Imbibition 2: R̃0 =0.8800 R̃1 =1.4800.

(A.3)
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