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Abstract

We present a bundle of triangular tubes model that simulates three-phase mixed-wet capillary pressure curves for any sequences
of gas, oil, and water invasion processes. A diversity of cross-sectional fluid configurations may occur because of pore shape and
different combinations of the contact angles. We use expressions for the capillary entry pressures that truly accounts for the mixed
wettability condition and the possibility of simultaneous displacement of the fluids occupying the cross-sections. As a
consequence, invasion does not necessarily proceed in the order of monotonic increasing or decreasing pore size. We simulate
primary drainage and imbibition first. The saturation dependencies of the three-phase capillary pressures are analyzed for the
subsequent gas injections and waterfloods and compared with the results from a similar bundle of cylindrical tubes model.
Simulations are performed for three sets of contact angles representing oil-wet conditions with variable contact angle hysteresis. It
is shown that the capillary pressure at the end of primary drainage, Pcow

max, strongly affects the saturation dependencies in the bundle
of triangular tubes. For moderate values of Pcow

max, we have identified regions in the saturation space where two or all three capillary
pressures are functions of two saturations, while the corresponding results from the bundle of cylindrical tubes often show that only
one of the capillary pressures depends on more than one saturation, regardless of Pcow

max. The differences are caused by the capillary
entry pressures in the triangular tubes that are strongly affected by the hinging interfaces in the corners when contact angle
hysteresis is assumed. This leads to different bulk pore occupancies in the two bundle models, and hence different saturation
dependencies. Furthermore, the level of gas–water and oil–water capillary pressure is higher for the bundle of triangular tubes
during the gas and water invasion processes. The saturation dependencies, capillary levels and pore occupancies calculated from
triangular tubes approach the corresponding results calculated from cylindrical tubes when Pcow

max is increased.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

To describe three-phase transition zones and the
dynamics of water–oil and gas–oil contact movements,
a three-phase capillary pressure correlation is needed for
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mixed-wet reservoirs. The correlation should be based
on sound physical principles yet sufficiently simple to
be included in a reservoir simulator. In the reservoir,
situations may occur where one of the phases appears or
disappears, e.g., transitions between gas and oil phase in
condensate reservoirs, or when zero residual oil
saturation is approached by drainage through connected
layers. The correlation should be designed to account for
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a smooth transition between two- and three-phase flow
to accommodate these situations.

Three-phase capillary pressure vs. saturation rela-
tionships have traditionally been predicted from
corresponding two-phase measurements. However,
both experimental and numerical work have shown
that this approach is not always valid. Hence, there is a
need for direct measurements of three-phase capillary
pressure relationships to develop reliable correlations.
There is a paucity of data reported in the literature. To
our knowledge, measurements with three varying
saturations have only been reported by Kalaydjian
(1992). He measured three-phase drainage and imbibi-
tion capillary pressures in water-wet sandstone core
samples. Bradford and Leij (1995a,b, 1996) measured
three-phase capillary pressures in sandpacks for several
wetting conditions achieved by mixing different frac-
tions of water-wet and oil-wet sands. In these experi-
ments, however, one saturation was kept fixed.

As there are few measured three-phase capillary data
available, we have chosen the route of adding artificially
generated data from a simple simulation model. Because
of two independent saturations, there is an infinite
number of possible three-phase displacement processes.
The trajectory of a specific process in the saturation
space is determined by the three capillary pressures. A
simulation model that produces realistic capillary
pressure curves may be used to predict processes not
covered by time-consuming measurements. We choose
to represent the pore network as a bundle of tubes, the
tubes having triangular, equilateral cross-sections. The
triangular pore shape allows for representation of
physical processes such as the development of mixed
wettability within a single pore (Kovscek et al., 1993;
Hui and Blunt, 2000) and oil drainage through layers in
the crevices (Dong et al., 1995; Keller et al., 1997; Hui
and Blunt, 2000). The possibility of simultaneous
occupancy of more than one fluid phase in the cross-
sectional area of a triangular tube requires analysis of the
fluid configurations and accurate calculation of the
capillary entry pressures accounting for all possible
displacements. Although a simple bundle of triangular
tubes model does not produce residual saturations
caused by phase entrapment, we have found that main
features of two-phase, mixed-wet, capillary pressure
curves with scanning loops can be reproduced when
contact angle hysteresis is assumed (Helland and
Skjæveland, 2004a).

Recently, van Dijke and Sorbie (2003) derived a
general formula for three-phase capillary entry pressures
into tubes with angular cross-sections accounting for
simultaneous displacement of all phases. However, they
only considered pores of uniform wettability. We extend
the method to account for mixed-wet tubes with contact
angle hysteresis from the two-phase derivation given by
Ma et al. (1996). Along with the derivations we propose
an algorithm that determines which displacement to
occur for different capillary pressures and combinations
of the contact angles. The first version of the present
paper was submitted April 26 and presented May 18 at
the 8th International Symposium on Reservoir Wetta-
bility. Independently, similar work on three-phase entry
pressure with contact angle hysteresis was carried out by
Piri and Blunt (2004), and their results were submitted
July 10 and published December 14. The authors derive
a general expression for the entry pressures and study in
detail gas invasion into bulk oil and oil invasion into
bulk gas with water present in the corners. In this paper
we describe the more complicated cases when gas
invades configurations with oil layers bounded by bulk
water and water in the corners, and when water invades
configurations with oil layers surrounded by bulk gas
and water in the corners. These two scenarios are
important when water alternate gas (WAG) injections
are simulated using mixed-wet triangular tubes.

The saturation dependencies of three-phase capillary
pressures and relative permeabilities for mixed-wet
conditions without contact angle hysteresis have been
analyzed by van Dijke et al. (2001a,b) using a bundle of
cylindrical tubes. They identified three regions in the
saturation space where the capillary pressures have
different saturation dependencies. In each region only
one of the capillary pressures depends on more than one
saturation. However, this may not be true if contact
angle hysteresis is assumed as other pore occupancies
than those analyzed by van Dijke et al. (2001a,b) can
occur. Very recently, van Dijke and Sorbie (in press)
compared the displacement paths and saturation depen-
dencies from the bundle of cylindrical tubes with the
corresponding results from a bundle of triangular tubes
without contact angle hysteresis. The results were in
good agreement.

In the present paper, we describe the three-phase
bundle of triangular tubes model. Three-phase capillary
pressure vs. saturation relationships are calculated for
gas injection followed by waterflooding when contact
angle hysteresis is assumed. The gas phase is introduced
after the first imbibition. For this sequence of processes
we investigate if the three-phase entry pressures are
sensitive to the capillary pressures at the end of the
preceding invasion process and to the capillary pressure
where primary drainage was terminated, Pcow

max. The
saturation dependencies of the capillary pressures
during the gas and water injections are analyzed and
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compared with the results from a similar model of
cylindrical tubes. The effect of Pcow

max on the saturation
dependencies is also explored.

2. Preliminaries

The wetting preference of a solid surface in contact
with two fluids is typically characterized by the contact
angle. Assuming that the denser phase j is wetting
relative to phase i, then cos θij≥0, where the contact
angle θij is measured through phase j. The wetting order
in a three-phase fluid system of oil, water and gas may
be divided into three categories (Zhou and Blunt, 1998;
Hui and Blunt, 2000):

• In water-wet media, water is wetting, oil intermedi-
ate-wetting, and gas non-wetting. The contact angles
satisfy howV

k
2
; hgoV

k
2
; and hgwV

k
2
.

• In weakly oil-wet media, oil is wetting, water
intermediate-wetting, and gas non-wetting (how >

k
2
;

hgoV
k
2
; and hgwV

k
2
).

• In strongly oil-wet media, oil is wetting, gas
intermediate-wetting, and water non-wetting (how >

k
2
;

hgoV
k
2
; and hgw >

k
2
).

Recently, van Dijke and Sorbie (2002b) proposed
linear relationships of cos θgo and cos θgw as functions
of cos θow accounting for the above wetting orders:

coshgo ¼ 1
2rgo

ðCsocoshow þ Cso þ 2rgoÞ; ð1Þ

and

coshgw ¼ 1
2rgw

ððCso þ 2rowÞcoshow þ Cso þ 2rgoÞ;

ð2Þ
where the oil spreading coefficient Cso=σgw−σgo−σow

is nonpositive and reflects the interfacial tensions
measured at thermodynamic equilibrium. Thus assum-
ing that the underlying wettability is known in terms of
the oil–water contact angles, calculations of θgo and θgw
are possible by Eqs. (1) and (2).

An important feature of the capillary behavior in an
angular tube is the possibility of simultaneous occu-
pancy of more than one fluid in the cross-section. The
prevailing cross-sectional fluid configuration depends
on the pore shape, the contact angles, and the capillary
pressures. Expressions for the two-phase capillary entry
pressures are derived by the MS–P method, named after
the contributions from Mayer and Stowe (1965) and
Princen (1969a,b, 1970). This method is founded on an
energy balance equation which equates the virtual work
with the associated change of surface free energy for a
small displacement of the interface in the direction along
the tube. The energy balance equation then relates the
entry radius of curvature to the cross-sectional area
exposed to change of fluid occupancy, the bounding
cross-sectional fluid–solid and fluid–fluid lengths, and
the contact angle.

Following this approach, Ma et al. (1996) derived the
capillary entry pressures for primary drainage and
imbibition for mixed-wet, regular, n-sided tubes. The
analysis for this geometry is largely simplified as all
corners have the same half-angle α and hence the same
fluid configuration. There are two scenarios that need to
be considered separately depending on the contact
angle. As an example, consider invasion of phase i into a
uniformly wetted tube initially filled with the denser
phase j. If

hij <
k
2
−a; ð3Þ

phase i occupies the bulk area while phase j is still
residing in the corners. If the contact angle does not
satisfy Eq. (3), phase i occupies the entire cross-section
during invasion. The invading interface separating the
bulk fluids is referred to as the main terminal meniscus
(MTM), and the interface separating bulk fluid from
corner fluid, if present, is referred to as the arc meniscus
(AM). The curvature of an AM is represented by a cross-
sectional circular arc of radius rij. Thus, by Laplace's
equation, the capillary pressure may be expressed as

Pcij ¼ rij
rij

: ð4Þ

In a three-phase system the capillary pressures are, by
definition, related to each other by

Pcgw ¼ Pcgo þ Pcow: ð5Þ
The application of Eq. (4) on all capillary pressures

then yields the useful relation

rgw
rgw

¼ rgo
rgo

þ row
row

: ð6Þ

Hence, if two of the radii of curvature are known, we
may calculate the third from Eq. (6).

3. Model description

The pore network is represented as a bundle of
parallel tubes, the tubes having equilateral, triangular
cross-sections. The geometry of an equilateral triangle is



Fig. 1. Final configuration of a tube after primary drainage. The bold
lines along the sides represent the lengths of the pore wall where the
wettability may have changed. The distances bpd in the corners remain
water-wet.

103J.O. Helland, S.M. Skjæveland / Journal of Petroleum Science and Engineering 52 (2006) 100–130
readily described by the half-angle of the corner, a ¼ k
6
,

and the radius of the inscribed circle R. We assume that
the pore-size frequency is described by a truncated two-
parameter Weibull distribution. This is a flexible
distribution that has been employed frequently for this
purpose (Diaz et al., 1987; Fenwick and Blunt, 1998;
Hui and Blunt, 2000). The pore sizes R are selected from
the cumulative distribution function in the following
manner: Pick random numbers x∈ [0, 1] and calculate
the inscribed radius from

R ¼ Rch −ln ð1−xÞexp −
Rmax−Rmin

Rch

� �g� �
þ x

� �� �
1
g

þ Rmin;

ð7Þ
where Rmax, Rmin and Rch are the inscribed radii of the
largest, smallest and characteristic pore sizes, respec-
tively, and η is a dimensionless parameter.

The model is programmed to simulate gas, oil and
water invasion processes in any sequence starting with
primary drainage of a waterfilled and water-wet
medium. An invasion process is simulated by
increasing or decreasing a capillary pressure stepwise
until some maximum or minimum value is reached. At
each step the fluid occupancies in the tubes are
updated and the saturation is calculated. The satura-
tions are calculated based on the fraction of the cross-
sectional area that each phase occupies. Invasion of
the oil phase is simulated by increasing Pcow at a
constant Pcgw. At each pressure step Pcgo is calculated
from Eq. (5). During water invasion Pcow is decreased
at a constant Pcgo, and Pcgw is calculated by Eq. (5).
During gas invasion Pcgo is increased, and Pcgw is
calculated from Eq. (5) assuming a constant Pcow. To
simulate a predetermined sequence of several gas, oil
and water invasion processes, a list of capillary
pressures is specified where each value corresponds
to the capillary pressure at which the specific process
is terminated.

Initially all tubes are waterfilled and strongly water-
wet, and hence the contact angle during primary
drainage, θpd, is always small and satisfies Eq. (3). It
is assumed that oil always contacts the pore walls of the
invaded tubes, and hence the sides may experience a
wettability alteration while the corners remain water-
wet. The final configuration of a tube after primary
drainage is shown in Fig. 1. The distance bpd of the solid
surface that remains water-wet is given by

bpd ¼ rowcosðhpd þ aÞ
Pmax
cow sina

; ð8Þ

where Pcow
max is the capillary pressure at the end of

primary drainage. Irreducible water saturations caused
by phase entrapment do not occur in the model as we
only consider a bundle of tubes. However, we may argue
that a legitimate value of Pcow

max is reached if the next
pressure increase results in a saturation change smaller
than some tolerance value.

The amount of contact angle hysteresis between
primary drainage, imbibition and secondary drainage is
affected by the degree of wettability alteration and the
surface roughness (Morrow, 1975; Yang et al., 1999). To
accommodate this we allow all receding and advancing
oil–water contact angles, θowr and θowa respectively,
that satisfy θpd≤θowr≤θowa. If gas displaces oil and
water, the gas–oil and gas–water interfaces are receding
with contact angles θgor and θgwr calculated from Eqs.
(1) and (2) with θow=θowr. Similarly, oil and water
displace gas with advancing contact angles θgoa and
θgwa calculated from Eqs. (1) and (2) assuming
θow=θowa.
4. Fluid configurations

The model allows for simulations of any sequence of the invasion processes starting with primary drainage. Contact
angle hysteresis then leads to a diversity of possible fluid configurations that have to be analyzed individually. The
number of configurations is restricted by the following assumptions:

(i) We only consider the three aforementioned wetting orders.
(ii) We allow maximum two AMs to be present on the surface exposed to a potential wettability change. An

additional AM may be located at position bpd.



Fig. 2. Fluid configurations for any sequences of the invasion processes, with water in blue, oil in red, and gas in yellow. The bold lines along the sides
represent the lengths with potentially altered wettability. Oil is always assumed to be wetting relative to gas.
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(iii) We do not study situations where the gas pressure is large enough for gas invasion into tubes, and corners of
tubes, where oil has never been.
With these constraints we find that the 17 configurations presented in Fig. 2 may occur during the simulations.
Configuration A shows a tube that has always been waterfilled and water-wet. The configurations B–Q represent
tubes that at some point have been invaded by oil and thus may have altered wettability. The curvatures of the gas–
oil interfaces present in the configurations are always positive, whereas the gas–water and oil–water interfaces may
have positive or negative curvatures to satisfy Eq. (5). In Table 1 we have specified the combinations of receding
and advancing contact angles for which the different fluid configurations may occur. Contact angles are also
specified to discriminate between the three wetting sequences whenever it is possible. Three-phase fluid
configurations in mixed-wet angular tubes have previously been analyzed by Piri and Blunt (2002, 2004, 2005). As
opposed to us, they also consider cases where gas is wetting relative to oil. However, they have not accounted for
our configurations F and K, which may occur when contact angle hysteresis is large. To our knowledge, only the
configurations A–E, H, I, M and N have been observed by experiments in triangular tubes or in micromodels (e.g.,
Kovscek et al., 1993; Dong and Chatzis, 1995; Dong et al., 1995; Keller et al., 1997; Zhou et al., 1997; Spildo and
Buckley, 1999).

Assumption (i) implies that oil is always wetting relative to gas, i.e., hgo <
k
2
. Hence, bulk oil cannot be bounded by

gas layers in the cross-sections. Assumption (ii) is introduced to restrict the number of AMs in cases where contact
angle hysteresis is large. If

hija >
k
2
þ a and hijr <

k
2
−a; ij ¼ ow; gw; ð9Þ

it is possible, in theory, that the number of AMs present in a cross-section could increase constantly as the number of
saturation change reversals increases. For example, if Eq. (9) is satisfied for the oil–water contact angles, water
invasion into configuration C may be a displacement to configuration E, while oil invasion into configuration E may be
a displacement to configuration F. A subsequent water invasion into configuration F could then result in formation of a
fourth AM in the corner, separating bulk water from a second oil layer. Even though Eq. (9) is satisfied, we do not allow
formation of a new AM in the corner when two AMs are already present on the surface of altered wettability, by



Table 1
Advancing and receding contact angles for which the cross-sectional fluid configurations are possible

Configuration θowa θowr θgwa θgwr θgoa θgor

A n/a n/a n/a n/a n/a n/a

B – <
k
2
−a – V

k
2

V
k
2

V
k
2

C – – – – V
k
2

V
k
2

D – – – – V
k
2

V
k
2

E >
k
2
þ a – – – V

k
2

V
k
2

F >
k
2
þ a <

k
2
−a – V

k
2

V
k
2

V
k
2

G >
k
2
þ a <

k
2
−a – V

k
2

V
k
2

V
k
2

H – – – <
k
2
−a V

k
2

V
k
2

I – – – – V
k
2

V
k
2

J >
k
2

– >
k
2
þ a – V

k
2

V
k
2

K >
k
2

– >
k
2
þ a <

k
2
−a V

k
2

V
k
2

L >
k
2

– >
k
2
þ a <

k
2
−a V

k
2

V
k
2

M – <
k
2
−a – V

k
2

V
k
2

<
k
2
−a

N – – – – V
k
2

<
k
2
−a

O >
k
2
þ a – – <

k
2
−a V

k
2

V
k
2

P >
k
2

– >
k
2
þ a – V

k
2

<
k
2
−a

Q >
k
2

<
k
2
−a >

k
2
þ a V

k
2

V
k
2

V
k
2

It is always assumed that hpd <
k
2
−a. Contact angles are also specified to associate the configurations to the three wettability orderings, if possible.

Empty spaces indicate that all values satisfying θija≥θijr, ij=go, ow, gw are allowed.
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assumption (ii). We believe that this simplification is reasonable, since new AMs are likely to interfere with the AMs
already present in most of these cases. Hence, water invasion into the bulk of configuration F is always assumed to be a
displacement from configuration F to E.

This sequence of oil–water displacements can only occur if the tube behaves as oil-wet during waterflooding and as
water-wet during oil invasion. Similar configuration changes may occur during the gas–water displacements if Eq. (9)
is satisfied for both the gas–water and the oil–water contact angles, i.e., when the tube behaves as strongly oil-wet
during waterflooding and as water-wet during gas invasion. Notice from Table 1 that the configurations F, G, K, L and
Q can only occur if the wetting sequence of the three phases changes with the direction of the displacement. We allow
for such capillary behavior since measurements indicate that contact angle hysteresis may be large if wettability
alteration has occurred (Yang et al., 1999). Furthermore, this effect may be more common when irregular geometries
with different corner half angles α are assumed, since the contact angle hysteresis required to satisfy Eq. (9) is smaller
in narrow corners.

By assumption (iii), we do not allow for invasion of gas–water interfaces onto the water-wet surface where oil has
never been, since we believe that the most realistic cases of three-phase flow in reservoirs can be studied without
including this feature in the model. Nevertheless, such displacements could be accounted for by specifying gas–water
and gas–oil contact angles on the water-wet surface as well, although this would increase the number of configurations.
Assumption (iii) implies that any gas–water AMs located at position bpd are hinging with contact angles varying with
Pcgw. Oil–water AMs located at this position are allowed to move on to the water-wet surface when the hinging contact
angle has reached θpd. This happens when Pcow=Pcow

max, and a further increase of Pcow causes the length of the water-wet
surface, bpd, to decrease additionally.



Table 2
The programmed direct displacements during the oil, water and gas invasion processes

Initial configuration Final configuration

Oil invasion Water invasion Gas invasion

A C – –
B C D or G H, I or M
C – D or E I or N
D B or C – H or I
E C or F D I, N or O
F C E I, N or O
G B D H, I or M
H B or C D or L I
I C D or J –
J C or Q D I or K
K C or Q J I
L B or C D H
M B or N D, G or H H
N C D, E, I, M or P I
O C, F or N E or H N
P C or E E or J J or N
Q C B or J I or K
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The AMs located on the surface of altered wettability may also hinge at fixed positions while the contact angles
change with capillary pressure. The contact angles hinge according to

hijh ¼
arccos

Pcijbijsina
rij

� �
−a if bulk phase i is bounded by corner phase j;

arccos
Pcijbijsina

rij

� �
þa if bulk phase j is bounded by corner phase i;

8>><
>>: ð10Þ

where ij=go, ow, gw, and bij is the distance from the apex of the corner to the three-phase contact line. If the advancing
or receding contact angle is reached, the AMs begin to move at constant contact angles during a further change of
capillary pressure. The position bij is then changing according to

bij ¼
rij
Pcij

cosðhijþaÞ
sina

if bulk phase i is bounded by corner phase j;

rij
Pcij

cosðhij−aÞ
sina

if bulk phase j is bounded by corner phase i;

8>><
>>: ð11Þ

where θij is equal to θijr or θija depending on the direction of the displacement.
All the direct displacements implemented in the model are presented in Table 2, including piston-like

invasion, collapse of fluid layers and change of the fluid areas in the corners. The configurations A–G may
appear during the two-phase oil–water displacements. Helland and Skjæveland (2004a) provided a detailed
description of the two-phase oil–water invasion processes, including expressions for the capillary entry pressures
and the layer collapse capillary pressures. If the oil saturation has become zero, and only gas and water invasion
processes are considered, the treatment of configuration H–L is analogous to the corresponding two-phase oil–
water situation.

If piston-like invasion occurs into a configuration containing multiple fluid layers in the corners, several
displacements are possible, as shown in Table 2 for gas invasion into configuration F, and water invasion into
configuration N for instance. Which particular displacement occurs is determined by the selected combination of
contact angles and the capillary pressures. We only consider piston-like displacements where the invading fluid enters
the bulk portion of the cross-section by a single MTM. This reduces the number of possible displacements in cross-
sections where the invading fluid is already present as layers. As an example, piston-like water invasion into
configuration O is always assumed to be a displacement to configuration E. If the oil layers collapse before an MTM
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invades into the bulk portion, the displacement O to H occurs, and MTM invasion is instead considered for
configuration H. Thus, a configuration change from O to D is treated as two independent two-phase displacements that
rarely occur simultaneously, since the capillary pressures associated with the two displacements must satisfy Eq. (5).
Similar reasoning applies to the other three-phase configurations where the invading fluid is already present as layers.
The algorithm used to determine the displacements and the associated expressions for the capillary entry pressures are
described in the next Section for cases of gas and water invasion.

A fluid layer is assumed to collapse when the bounding AMs meet at the contact lines or the midpoints. We employ
the expressions derived by Hui and Blunt (2000) for the collapse of fluid layers in a three-phase configuration. For a
complete list of collapse capillary pressures we refer to Piri and Blunt (2005). The displacement resulting from water
layer collapse in configuration Q is somewhat different from similar events in the other configurations since oil
occupied in the bulk then becomes surrounded by gas, which is not allowed by assumption (i). However, oil is still
wetting relative to gas, and thus a decreased Pcgowould cause spontaneous imbibition of oil into the corner and displace
all of the gas phase immediately, resulting in a direct diplacement from configuration Q to C. This displacement has
been identified in simulations using very large contact angle hysteresis satisfying the constraints for configuration Q in
Table 1.
5. Three-phase capillary entry pressures

An algorithm is formulated to determine the actual
displacements occurring during piston-like invasion for
all combinations of the contact angles and the capillary
pressures. For each type of displacement the
corresponding capillary entry pressures are calculated
using the method proposed by van Dijke and Sorbie
(2003). They derive three-phase capillary entry pres-
sures from an energy balance equation which equates
the virtual work W with the corresponding change in
surface free energy ΔF for a small displacement δx of
the MTM in the direction along the tube. The energy
balance then relates the entry radius of curvature to the
cross-sectional fluid occupancy, accounting for the
possibility of simultaneous displacement of the fluids
occupying the cross-section. We extend their method to
account for mixed wettability and contact angle
hysteresis following the approach by Ma et al. (1996).
Thus we incorporate the effect of hinging AMs stuck at
fixed positions along the pore walls in the calculations.
For two-phase flow, Helland and Skjæveland (2004a)
showed that invasion does not necessarily proceed in the
order of monotonic increasing or decreasing pore size
when the AMs are hinging. Recently, Piri and Blunt
(2004) have used the same approach to study three-
phase capillary entry pressure for mixed-wet conditions
and contact angle hysteresis. They consider bulk gas–oil
displacements that are affected by water present in the
corners, e.g., displacements between the configurations
C and I. We explain how to treat the more complicated
case occurring when a third phase invades a cross-
section occupied by the two other phases distributed into
an arbitrary number of fluid layers with one of the
phases occupied in the bulk. Such displacements include
gas invasion into the configurations B–G, and oil
invasion into the configurations A, D and H–L.We also
consider water invasion into configurations occupied by
all three phases.

The conditions for layer formation are required to
determine the correct displacement in each case.
Formation of a new AM separating phase i from phase
j at a position bij>bpd can only occur if the contact
angles satisfy the following condition:

hij <
k
2
−a if invading phase i is bounded by corner

phase j;

ð12aÞ

hij >
k
2
þ a if invading phase j is bounded by corner

phase i;

ð12bÞ

where ij=go, ow, gw, and θij is equal to θijr or θija
depending on the direction of the displacement.
However, if Eqs. (12a) and (12b) is not satisfied, a new
AM still forms at position bij=bpd since then the AM is
assumed to hinge with contact angle θijh. If an AM is
already present in the corner before invasion, a second
condition required for layer formation is that the
capillary pressure associated with the displacement
must be favourable compared to the collapse capillary
pressure calculated when the AMs surrounding the layer
meet (van Dijke and Sorbie, 2003). According to van
Dijke et al. (2004) and Piri and Blunt (2004) these two
geometric conditions are necessary but not sufficient for
layer formation. Using free energy principles they argue
that even if the above conditions are satisfied, one should
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also calculate the entry pressure for the displacement
without layer formation and compare it with the entry
pressure for the displacement with layer formation. The
actual displacement occurring is the one associated with
the most favourable capillary pressure.

Thus, layers form if and only if the two geometric
conditions are satisfied and the displacement is the most
favourable. In this work we follow van Dijke et al.
(2004) and Piri and Blunt (2004) and employ all the
three conditions to determine if layers form, as opposed
to Helland and Skjæveland (2004a) who only used the
necessary geometric conditions.

5.1. Gas into oil and water

For gas invasion into the configurations B–G, the
expression for the virtual work may be written in
generalized form as

W ¼
(
PcgwAgwIgw þ PcgoAgoIgo þ ðPcgw−PcgoÞ

�
XN init

ow

k¼N fin
owþ1

AðkÞ
ow ð−1Þk

)
yx; ð13Þ

where we have applied the indicator notation of van
Dijke et al. (2004),

Iij ¼
1 if AMs between phases i and j form;

0 otherwise:

�
ð14Þ

The cross-sectional area exposed to gas invasion is
denoted Agw or Ago if gas–water or gas–oil AMs form
during the displacement, respectively. The oil–water
AMs are numbered in order from the corner towards the
center of the cross-section. The cross-sectional bulk area
bounded by oil–water AM k is denoted Aow

(k). The total
number of oil–water AMs is Now

init before gas invasion
and Now

fin afterwards. Thus we always have Now
init≥Now

fin.
The corresponding generalized form of the surface

free energy is given by

DF ¼
(
ðLfgwþLsgwcoshgwrÞrgwIgwþðLfgoþLsgocoshgorÞ

� rgoIgo þ ðrgwcoshgwr−rgocoshgorÞ

�
XN init

ow

k¼N fin
owþ1

LðkÞsowð−1Þk−row
XN init

ow

k¼N fin
owþ1

LðkÞfow

)
yx;

ð15Þ
where Lfgw and Lsgw are the gas–water and gas–
solid lengths, respectively, that bound area Agw if
gas–water AMs form. Similarly, the lengths Lfgo and
Lsgo bound area Ago if gas–oil AMs form instead.
The lengths Lfow

(k) and Lsow
(k) bound the oil–water area

Aow
(k).
In the following we consider gas invasion into

configuration E in detail. However, Eqs. (13) and (15)
could easily be applied to the other oil–water config-
urations with appropriate values of Now

init and Now
fin.

Configuration E contains two oil–water AMs, and
thus Now

init = 2. The parameters of configuration E
required for the derivation of the capillary entry
pressures are as follows, see Fig. 3(a):

bð1Þow ¼ k
2
−a−hð1Þowh; ð16Þ

Að1Þ
ow ¼ R2

2tana
−
rowb

ð1Þ
ow sinðaþ bð1Þow Þ

2
þ r2owb

ð1Þ
ow

2
; ð17Þ

Lð1Þfow ¼ rowb
ð1Þ
ow ; ð18Þ

Lð1Þsow ¼ R
tana

−bð1Þow ; ð19Þ

bð1Þow ¼ rowcosðhð1Þowh þ aÞ
sina

; ð20Þ

bð2Þow ¼ k
2
þ a−hð2Þowh; ð21Þ

Að2Þ
ow ¼ R2

2tana
−
rowb

ð2Þ
ow sinðbð2Þow−aÞ

2
−
r2owb

ð2Þ
ow

2
; ð22Þ

Lð2Þfow ¼ rowb
ð2Þ
ow ; ð23Þ

Lð2Þsow ¼ R
tana

−bð2Þow ; ð24Þ

and

bð2Þow ¼ rowcosðhð2Þowh−aÞ
sina

; ð25Þ

where the contact angle of the innermost AM is denoted
θowh
(2) to account for the possibility of a hinging AM

before gas invasion. Moreover, bow
(1) =bpd for configura-

tion E.
Gas invasion into configuration E is a displacement

to configuration I, N or O. In configuration N and O
fluid layers form during invasion. The gas–water



Fig. 3. Representation of the cross-sectional parameters of the fluid–fluid and fluid–solid interfaces. (a) Configuration E. (b) Configuration N. (c)
Displacement from configuration E to N. (d) Configuration I. (e) Displacement from configuration E to I.
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capillary pressure at which the water layer in
configuration O collapses is given by (e.g., Piri and
Blunt, 2005)

Pcol
cgw ¼

Pcow
rgw
row

coshgwr−sina

coshð2Þowh þ sina
if hgwr < k−hð2Þowh;

Pcow
rgw
row

cosðhgwr þ aÞ
cosðhð2Þowh−aÞ

if hgwrzk−hð2Þowh:

8>>><
>>>:

ð26Þ
The gas–oil capillary pressure at which the oil layer

in configuration N collapses is (Piri and Blunt, 2005)

Pcol
cgo ¼

Pcow
rgo
row

coshgor−sina

coshð1Þowh−sina
if hgor < hð1Þowh;

Pcow
rgo
row

cosðhgor þ aÞ
cosðhð1Þowh−aÞ

if hgorzhð1Þowh:

8>>><
>>>:

ð27Þ

We first consider the displacements and the associ-
ated capillary entry pressures when θgwr and θgor satisfy
Eq. (12a). In this case the displacements to configura-
tions I, N and O are all possible. The capillary pressures
associated with these displacements are calculated first
and then the actual displacement occurring is deter-
mined using the three conditions for layer formation.

For the displacement from configuration E to O Eqs.
(13) and (15) are applied with Now

fin =2, Igo=0 and Igw=1.
By solving W=ΔF, a simple two-phase expression for
the gas–water capillary entry pressure is derived (e.g.,
Ma et al., 1996):

Pcgw ¼ rgw
R

coshgwrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tana
2

ðsin2hgwr−2hgwr−2aþkÞ
r" #

:

ð28Þ

For the displacement from configuration E to N, the
energy balance equation W=ΔF, with Now

fin =1, Igo=1
and Igw=0, may be written as

rgw
rgw

Að2Þ
ow þ rgo

rgo
ðAgo−Að2Þ

ow Þ
¼ Lð2Þsowrgwcoshgwr þ ðLsgo−Lð2ÞsowÞrgocoshgor

þ Lfgorgo−L
ð2Þ
fowrow; ð29Þ

where the capillary pressures are expressed in terms of
the radii of curvature by Eq. (4). The cross-sectional
occupancy after invasion is shown in Fig. 3(b), and a
view of the displacement in the direction along the tube
is shown in Fig. 3(c). The gas–oil parameters are as
follows:

rgo ¼ rgo
rgw
rgw

− row
row

; ð30Þ

Ago ¼ R2

2tana
−
rgobgosinðaþ bgoÞ

2
þ r2gobgo

2
; ð31Þ
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Lsgo ¼ R
tana

−bgo; ð32Þ

Lfgo ¼ rgobgo; ð33Þ

rgosinbgo ¼ bgosina; ð34Þ

with βgo defined as

bgo ¼
k
2
−a−hgor: ð35Þ

Inserting Eqs. (30)–(35) into Eq. (29) then yields a
polynomial

C1r
2
go þ C2rgo þ C3 ¼ 0; ð36Þ

with the coefficients

C1 ¼ rgo
2

sinbgocoshgor
sina

−bgo

� �
; ð37Þ

C2 ¼ rowA
ð2Þ
ow

row
−Lð2Þsowrgwcoshgwr−

R
tana

−Lð2Þsow

� �

� rgocoshgor þ Lð2Þfowrow; ð38Þ
and

C3 ¼ rgo
R2

2tana
: ð39Þ

The correct solution for rgo has to agree with a
position bgo of the invading gas–oil AM located
between the apex of the corner and the position bow

(2).
This condition may be formulated as

0 < rgoV
bð2Þow sina
sinbgo

: ð40Þ

The solution rgo that satisfies Eq. (40) is used to
calculate Pcgo by Eq. (4). However, for some combina-
tions of the capillary pressures it is possible that none of
the solutions of Eq. (36) satisfy Eq. (40). In that case the
gas–oil AM may either enter at position bgo=bow

(2) with
contact angle θgoh, or, if θgoh>θgoa, the AM is instead
invading at a position bgo>bow

(2) with contact angle θgoa.
Piri and Blunt (2004) account for such capillary
behavior, while we always assume the former case
with gas–oil AMs entering position bgo=bow

(2) if Eq. (40)
is not satisfied. This simplification is reasonable since
the latter case rarely occurs when contact angle
hysteresis is assumed.

Thus, if Eq. (40) is not satisfied, the capillary entry
pressures for the displacement to configuration N are
calculated again using Eq. (29). Since the contact angle
θgoh of the gas–oil AM entering position bgo=bow

(2) is
unknown, the entry pressures have to be solved from an
iterative procedure. In this case βgo is defined as

bgo ¼
k
2
−a−hgoh: ð41Þ

Furthermore, Lsgo=Lsow
(2) and hence the second term on

the right-hand side of Eq. (29) vanishes. The capillary
entry pressures are solved iteratively in the following
manner: assume rgw=R as the initial value and calculate
rgo, βgo, Ago and Lfgo from Eqs. (30)–(34). A new value
of rgw is then calculated from Eq. (29). Finally, Pcgo and
Pcgw are obtained from the converged values of rgo and
rgw, by Eq. (4).

For the displacement from configuration E to I Eqs.
(13) and (15) are applied with Now

fin =0, Igo=0 and Igw=1.
The gas–water AM invades at position bgw=bpd,
implying that Lsgw=Lsow

(1) . Thus, the energy balance
equation W=ΔF, expressed in terms of radii of
curvature by Eq. (4), is given by

rgw
rgw

ðAgw−Að1Þ
ow þ Að2Þ

ow Þ þ
rgo
rgo

ðAð1Þ
ow−A

ð2Þ
ow Þ

¼ Lð2Þsowrgwcoshgwr þ ðLsgw−Lð2ÞsowÞrgocoshgor
þ Lfgwrgw−ðLð1Þfow þ Lð2ÞfowÞrow; ð42Þ

where

Agw ¼ R2

2tana
−
rgwbpdsinðaþ bgwÞ

2
þ r2gwbgw

2
; ð43Þ

Lsgw ¼ R
tana

−bpd; ð44Þ

Lfgw ¼ rgwbgw; ð45Þ

rgwsinbgw ¼ bpdsina; ð46Þ
with βgw defined as

bgw ¼ k
2
−a−hgwh: ð47Þ

The cross-sectional fluid occupancy after gas inva-
sion is shown in Fig. 3(d), and the displacement in the
direction along the tube is shown in Fig. 3(e). In this
case the gas–water AMs are invading at an unknown
hinging contact angle θgwh. The capillary entry pressures
are solved iteratively in the following manner: assume
rgw=R as the initial value and calculate rgo, Agw, Lsgw,
Lfgw and βgw from Eqs. (30), (43)–(46). A new value of
rgw is obtained from Eq. (42). Finally, Pcgo and Pcgw are
calculated from the converged values of rgo and rgw.
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The actual displacement occurring for different
capillary pressures are determined from the three
conditions for layer formation during invasion. If θgwr
and θgor satisfy Eq. (12a), the following cases must be
considered for configuration E:

(i) The displacement is from configuration E to O if
and only if the entry capillary pressures satisfy

PEYO
cgw < Pcol

cgw; PEYO
cgw < PEYN

cgw

and PEYO
cgw < PEYI

cgw : ð48Þ

(ii) The displacement is from configuration E to N if
and only if Eq. (48) is not met and the capillary
entry pressures satisfy

PEYN
cgo < Pcol

cgo and PEYN
cgo < PEYI

cgo : ð49Þ

(iii) The displacement is from E to I if and only if the
capillary entry pressures do not satisfy Eqs. (48)
and (49).

If only θgwr satisfies Eq. (12a), formation of gas–oil
AMs is not possible, and hence only the cases (i) and (iii)
apply. Similarly, if only θgor satisfies Eq. (12a), water
layers do not form, and hence only the cases (ii) and (iii)
apply. Finally, if both θgwr and θgor does not satisfy Eq.
(12a), only case (iii) applies as the only geometrically
possible displacement is to configuration I.

Similar analysis of the entry capillary pressures is
employed for the other oil–water configurations. An
interesting consequence of using the most favourable
entry pressure to determine the true displacement
applies to mixed-wet tubes if AMs are absent at
position bpd before invasion. For example, gas invasion
into configuration D is a displacement to configuration
H or I. With Now

init =0, Now
fin =1, Igo=0 and Igw=1 in Eqs.

(13) and (15) the energy balance W=ΔF becomes (Ma
et al., 1996)

Agw

rgw
¼ Lfgw þ Lsgwcoshgwr; ð50Þ

where the gas–water parameters are given by Eqs.
(43)–(47). For the displacement to configuration I Pcgw

is calculated by iterations since the gas–water AM
enters position bpd at an unknown contact angle θgwh,
while for the displacement to configuration H the
resulting expression for Pcgw is given by Eq. (28). If the
geometric conditions for the displacement to configu-
ration H are fulfilled, i.e., if Eq. (12a) is met for θgwr
and the corresponding entry pressure agrees with a
position bgw>bpd of the gas–water AM, then the actual
displacement is determined by comparing the entry
pressures of the respective displacements to configura-
tions I and H. Similar comparisons of the entry
pressures are made for configurations B and G to
determine if the actual displacement occurs with gas–
water AMs entering position bgw=bpd or bgw>bpd.

For oil invasion into cross-sections occupied by gas
and water, the equivalents of Eqs. (13) and (15) are
given by

W ¼
(
−PcgoAgoIgo þ PcowAowIow þ ðPcgo þ PcowÞ

�
XN init

gw

k¼N fin
gwþ1

AðkÞ
gw ð−1Þk

)
yx; ð51Þ

and

DF ¼
(
ðLfgo−LsgocoshgoaÞrgoIgo þ ðLfow þ LsowcoshowrÞ

� rowIow þ ðrgocoshgoa þ rowcoshowrÞ

�
XN init

gw

k¼N fin
gwþ1

LðkÞsgwð−1Þk−rgw
XN init

gw

k¼N fin
gwþ1

LðkÞfgw

)
yx; ð52Þ

respectively. The cross-sectional parameters of the gas–water
configurations H–L, Agw

(k), Lsgw
(k) and Lfgw

(k) , are given by
expressions similar to the corresponding oil–water parameters
in configurations B, C and E–G. The capillary entry pressures
and the associated displacements during oil invasion are
derived correspondingly, except that displacements resulting
in gas–oil AMs separating bulk oil from gas in layers are not
allowed because of the assumed wetting sequences. Thus,
Igo=0 in Eqs. (51) and (52).
5.2. Water into gas, oil and water

In the following we consider water invasion into
cross-sections containing all three phases. In configura-
tion O and Q the bulk phase is bounded by water layers,
and water invasion is therefore a two-phase displace-
ment with the associated entry capillary pressure given
by simple two-phase expressions (e.g., Helland and
Skjæveland, 2004a). As configuration P is already
occupied by water in the bulk, the only possible
configuration changes in this case are fluid-layer-
collapse events. Thus, we restrict the analysis to cross-
sections with oil layers surrounded by bulk gas and
water in the corners, i.e., configuration M and N, as this
is the only case where the three-phase entry capillary
pressures are employed during waterflooding. The
cross-sectional parameters of the oil–water AM in
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configuration M and N are given by Eqs. (16)–(20),
with bow

(1) =bpd for configuration N. The parameters of the
gas–oil AM are given by Eqs. (31)–(33), with βgo
defined as in Eq. (41), and the position bgo expressed by

bgo ¼ rgocosðhgoh þ aÞ
sina

ð53Þ

to account for the possibility of a hinging gas–oil
contact angle before waterflooding.

Water invasion into configuration N is a displace-
ment to configuration D, E or P, while water into
configuration M results in either configuration G or D as
additional AMs are not allowed to form, by assumption
(ii), Section 4. If a reduced Pcow causes a change in
configuration by an increase of the area of water in the
corners, e.g., by a displacement from configuration M to
H, then the capillary entry pressure and the associated
displacement are updated for the new configuration
during the simulations. In the following we omit
descriptions of such configuration changes that may
occur prior to piston-like invasion of water.

The gas–water capillary pressure at which the gas
layer in configuration P collapses is (Piri and Blunt,
2005)

Pcol
cgw ¼

Pcgo
rgw
rgo

coshgwa þ sina
coshgoh−sina

if hgwa > k−hgoh;

Pcgo
rgw
rgo

cosðhgwa−aÞ
cosðhgoh þ aÞ if hgwaVk−hgoh;

8>><
>>:

ð54Þ
and the oil–water capillary pressure at which the oil
layers in configuration E and G collapses is (Helland
and Skjæveland, 2004a)

Pcol
cow ¼ rowðn2−1Þ

bð1Þow ðncosaþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−n2sin2a

p
Þ
; ð55Þ

where

n ¼ coshowa
sina

þ 2: ð56Þ

We first consider the case when θowa and θgwa satisfy
Eq. (12b) since then all assumed displacements are
geometrically possible. The capillary entry pressure for
the displacement from configuration N to P is given by
the simple two-phase expression

Pcgw ¼ r
R

coshgwa−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tana
2

ð−sin2hgwa þ 2hgwa−2a−kÞ
r" #

:

ð57Þ
For the displacements to configuration E or G the
energy balance equation yields

rgw
rgw

Ago þ row
row

ðAð2Þ
ow−AgoÞ

¼ Lsgorgwcoshgwa þ ðLð2Þsow−LsgoÞrowcoshowa
þ Lfgorgo−L

ð2Þ
fowrow; ð58Þ

where the capillary pressures are expressed in terms of
the radii of curvature by Eq. (4). The cross-sectional
parameters of the oil–water AM that forms in the
displacement is given by Eqs. (22)–(24), where bow

(2) is
obtained from Eq. (11) with θow=θowa, and

bð2Þow ¼ k
2
þ a−howa: ð59Þ

Since the invading oil–water AM is not assumed to
be hinging, Eq. (58) is formulated as a polynomial,
which can be solved for row when rgw is eliminated from
the expressions by Eq. (6):

C1r
2
ow þ C2row þ C3 ¼ 0; ð60Þ

where the coefficients are given by

C1 ¼ row
2

sinbð2Þowcoshowa
sina

þ bð2Þow

 !
; ð61Þ

C2 ¼ rgoAgo

rgo
−Lsgorgwcoshgwa−

R
tana

−Lsgo
� �

� rowcoshowa−Lfgorgo;

and

C3 ¼ row
R2

2tana
: ð63Þ

The solution of Eq. (60) has to agree with a position
bow
(2) of the invading oil–water AM located between the

apex of the corner and the position bgo of the gas–oil
AM. Thus, the solution row that satisfies

bgosina

sinbð2Þow

Vrow < 0 ð64Þ

is used to calculate Pcow from Eq. (4). However, for
some combinations of the capillary pressures it is
possible that none of the solutions of Eq. (60) satisfy
Eq. (64). In that case, the oil–water AM is assumed to
invade at position bow

(2) =bgo with a hinging contact
angle θowh

(2) which is now related to βow
(2) by Eq. (21).

The capillary entry pressures are calculated iteratively
from Eq. (58) and Eqs. (21)–(25) as described in
Section 5.1.



Table 3
Contact angles for the three different wetting conditions

Case θpd θowa θowr θgwa θgwr θgoa θgor

1 0° 180° 100° 123.1° 84.7° 30.4° 0°
2 0° 180° 160° 123.1° 119.9° 8.1° 0°
3 0° 100° 80° 84.7° 68.8° 36.5° 30.4°
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For the displacements from configuration M or N to
D the energy balance yields

rgw
rgw

Ago þ row
row

ðAð1Þ
ow−AgoÞ

¼ Lsgorgwcoshgwa þ ðLð1Þsow−LsgoÞrowcoshowa
þ Lfgorgo þ Lð1Þfowrow: ð65Þ

Eq. (65) and Eqs. (6), (16)–(20) are solved iteratively
for row, and the capillary entry pressures are calculated
from Eq. (4) using the converged values of row and rgw.

The actual displacements occurring are determined
next. If θgwa and θowa satisfy Eq. (12b), the following
cases must be considered for configuration N:

(i) The displacement is from configuration N to P if
and only if the capillary entry pressures satisfy

PNYP
cgw > Pcol

cgw; PNYP
cgw

> PNYE
cgw and PNYP

cgw > PNYD
cgw : ð66Þ

(ii) The displacement is from configuration N to E if
and only if Eq. (66) is not met and the capillary
entry pressures satisfy

PNYE
cow > Pcol

cow and PNYE
cow > PNYD

cow : ð67Þ
(iii) The displacement is from N to D if and only if the

capillary entry pressures do not satisfy Eqs. (66)
and (67).

If only θgwa satisfies Eq. (12b), formation of new
oil–water AMs is not possible, and hence only the cases
(i) and (iii) apply. Similarly, if only θowa satisfies Eq.
(12b), gas layers do not form, and hence only the cases
(ii) and (iii) apply. Finally, if both θowa and θgwa do not
satisfy Eq. (12b), only case (iii) applies as the only
geometrically possible displacement is to configuration
D. The analysis of configuration M is similar for the
different contact angle combinations, except that
formation of additional AMs are not allowed, as
commented earlier. Thus, only the cases (ii) and (iii)
apply to determine the displacements from configura-
tion M in waterflooding.
6. Numerical experiments

We have performed several simulations of gas and
water invasion processes to study the effect of a variable
saturation history on the three-phase entry pressures and
to analyze the saturation dependencies of the capillary
pressures. The simulations are conducted on a bundle of
2000 tubes. The inscribed radii of the triangular tubes
are calculated from Eq. (7) assuming Rmin=1 μm,
Rmax=100 μm, Rch=20 μm and η=2. We consider a
fluid system with the interfacial tensions σgo=0.015 N/
m, σow=0.045 N/m and σgw=0.055 N/m, representing
realistic values for a system of water, crude oil and
natural gas (Whitson and Brulè, 2000). Three different
wettability conditions are modelled, and the contact
angles for each case are presented in Table 3.
Advancing and receding gas–oil and gas–water contact
angles are calculated from Eqs. (1) and (2), respectively,
from the specified values of θowr and θowa. The
advancing contact angles of case 1 indicate strongly
oil-wet conditions and the receding contact angles
indicate weakly oil-wet conditions. Case 2 always
represents strongly oil-wet conditions, whereas the
contact angle hysteresis of case 3 suggests weakly oil-
wet conditions during waterflooding and water-wet
conditions during gas injection.

Although the model allows for any two-phase oil–
water saturation history starting with primary drainage,
we have decided to introduce the gas phase after the first
imbibition in all simulations. This sequence of processes
may occur in reservoirs where gas is injected to increase
oil recovery by pressure maintenance. The two-phase
saturation history is varied by terminating primary
drainage at several values of Pcow

max, and by simulating
gas invasion processes at different Pcow after imbibition.
Waterflooding processes are simulated from different
capillary levels on selected gas invasion trajectories.

6.1. Sensitivity analysis of three-phase capillary entry
pressure

Capillary entry pressures are studied for piston-like
displacements in gas invasion and the following water
invasion. For contact angles of case 1 and 2,
configuration E occurs frequently during imbibition,
while configuration N may occur in the subsequent gas
injection. For gas invasion into configuration E, we
investigate if variations of Pcow

max (corresponding to
variations of bpd by Eq. (8)) and Pcow (corresponding
to variations of bow

(2) by Eq. (25)) are sensitive to Pcgw for
the actual displacements occurring. Similarly, for water
into configuration N, we explore if Pcgw is sensitive to



Fig. 4. Two-phase capillary entry pressures for imbibition as a function
of pore size for several Pcow

max and contact angles of case 1 and 2.

114 J.O. Helland, S.M. Skjæveland / Journal of Petroleum Science and Engineering 52 (2006) 100–130
variations of Pcow
max and Pcgo (corresponding to variations

of bgo by Eq. (53)).
We have previously found that the oil–water capillary

entry pressure is sensitive to Pcow
max for displacements

from configuration C to D when howa >
k
2
(Helland and

Skjæveland, 2004a). This effect is demonstrated in Fig.
4. The distance bpd decreases according to an increased
Pcow
max by Eq. (8), resulting in lower entry pressures. The

smaller tubes are more affected by the hinging oil–water
AMs in the corners than the larger tubes since bpd does
not depend on pore size. Thus, the peculiar invasion
order manifested by Fig. 4 depends on both pore size and
fraction of water-wet surface. However, the entry
pressure for the limiting displacement from configura-
Fig. 5. Capillary entry pressures as a function of pore size with different Pcow
max f

−3.0 kPa fixed. (b) Pcgw for displacements N to D and E with Pcgo=2.0 kP
tion C to E does not depend on Pcow
max as the displacement

is unaffected by the water in the corners.
Results for case 1 with variation of Pcow

max and other
parameters fixed are shown in Fig. 5. The displacements
from configuration E to I exhibit a slight increase of
Pcgw as the level of Pcow

max is increased. A more
pronounced dependence of Pcow

max is observed when
water into configuration N results in configuration D. In
this case Pcgw decreases with increasing Pcow

max, as shown
in Fig. 5(b). Thus, an increased water content in the
corners tends to increase the entry pressure. This is
similar to the two-phase behaviour presented in Fig. 4.
The bottom curve in Fig. 5(b) represents the limiting
displacement from configuration N to E when Pcgw

evidently does not depend on Pcow
max anymore.

Corresponding experiments performed with contact
angles of case 2 show the same sensitivity.

The effects of a variable Pcow in displacements
resulting from gas invasion into configuration E is
investigated while Pcow

max is unchanged. The results for
contact angles of case 1 and 2 are shown in Fig. 6(a),
(b). The variations of Pcow presented in Fig. 6(a) for
case 1 are more sensitive to Pcgw than the variations of
Pcow
max plotted in Fig. 5(a). In displacements from

configuration E to I and N, Pcgw is negative and
decreasing according to pore size even though hgor <

k
2and hgwr <

k
2
. This is because the area of oil in layers is

constant for all pore sizes, and hence the oil layers affect
the entry pressure increasingly as pore size decreases.
Since the distance bow

(2) decreases with Pcow, it is
expected that Pcgw increases as Pcow decreases.
Eventually the limiting level of Pcow is approached,
or contact angles of case 1. (a) Pcgw for displacements E to I with Pcow=
a fixed. Gas was injected at Pcow=−3.0 kPa.



Fig. 6. Capillary entry pressures as a function of pore size with Pcow
max constant. (a), (b) Effect of Pcow on Pcgw for displacements E to I and N with

Pcow
max=15 kPa. (c) Effect of Pcgo on Pcgw for displacement N to D with Pcow

max=15 kPa. Gas was injected at Pcow=−1.97 kPa. (d) Effect of Pcgo on Pcgw

for displacements N to E with Pcow
max=150 kPa. Gas was injected at Pcow=−3.0 kPa.
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corresponding to displacements from configuration D to
I where the oil layers have collapsed before invasion.
This latter displacement, which is independent of Pcow

since oil is absent, also occurs in smaller pore sizes
where configuration E has not formed, as shown in Fig.
6(a). In this case Pcgw is positive and monotonic
increasing as pore size decreases. The experiment with
contact angles of case 2 presented in Fig. 6(b) exhibits
the opposite behaviour since hgwr >

k
2. In this case Pcgw

decreases according to Pcow, and thus for a smaller
distance bow

(2) the bulk gas–water displacement occurring
with contact angle θgwr affects Pcgw to a greater extent.
However, in the limiting displacement from configura-
tion D to I, the gas–water AMs enter position bgw=bpd
while oil layers are absent, resulting in a higher level of
Pcgw, as shown in Fig. 6(b).

The effects of a variable Pcgo on the entry pressures
for water invasion into configuration N are investigated
while the capillary pressures after primary drainage and
imbibition are fixed. Since the advancing contact angles
of case 1 and 2 are equal, the same behaviour occurs in
water invasion for both cases. Results are presented in
Fig. 6(c), (d) for two different Pcow

max values. The displace-
ment to configuration D is favorable for small Pcow

max,
and Pcgw increases according to Pcgo in this case. For a
much larger Pcow

max, the displacement to configuration



Fig. 7. Capillary pressure curves for primary drainage and imbibition
for the triangular (black) and cylindrical (grey) geometries.
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E occurs, with Pcgw decreasing as Pcgo is increased.
However, the variations of Pcgw shown in Fig. 6(c) are
smaller than the variations occurring when Pcow

max is
changed, as shown in Fig. 5(b). Thus, for the particular
sequence of processes investigated here using the
specified interfacial tensions and contact angles of
case 1 or 2, we find that Pcgw is more sensitive to the
location of the oil–water AM than the gas–oil AM for
the range of capillary pressures where the displacements
from configuration N to D occur.

6.2. Saturation dependencies

The capillary pressure vs. saturation relationships
computed from the bundle of triangular tubes are
compared with the results from a bundle of cylindrical
tubes, using the constraint that the total cross-sectional
area of all tubes, Ap, and the capillary pressure curves for
primary drainage are identical in both models. This
enables us to study the effect of pore geometry and
contact angle hysteresis on the subsequent invasion
processes. van Dijke et al. (2001a,b) analyzed the
saturation dependencies of three-phase capillary pres-
sures and relative permeabilities for mixed-wet condi-
tions without contact angle hysteresis using a bundle of
cylindrical tubes. They identified three regions in the
saturation space where the capillary pressures have
different saturation dependencies. In each region one
phase acts as “intermediate-wetting” in the sense that
only the capillary pressure between the other two phases
depends on more than one saturation. The regions
remain unchanged for all invasion processes, since there
exists a unique relation between saturation and pore
occupancy. This is certainly not true if contact angle
hysteresis is assumed since different pore occupancies
may occur for the same saturations. Thus, the location,
size, and existence of these regions depend in general on
the invasion processes and the saturation history for a
given set of interfacial tensions and contact angles. In
accordance with van Dijke et al. (2001a,b), we take oil
as intermediate-wetting phase in region I, gas as
intermediate-wetting in region II, and water as interme-
diate-wetting in region III.

The bundle of cylindrical tubes is made comparable
to the bundle of triangular tubes in the following
manner: a set of primary drainage data (Pcow, Sw)i, i=1,
…, m+1, calculated from a model of m triangular tubes,
is used to calculate m cylindrical pore sizes Ri from the
Young–Laplace equation:

Ri ¼ 2rowcoshpd
Pcow;i

; i ¼ 1; N ; m: ð68Þ
The frequencies of the cylindrical pore sizes, fi, are
calculated from the relation

fikR2
i ¼ −DSw;iAp; i ¼ 1; N ; m; ð69Þ

where the data are organized in the order of decreasing
water saturation, and ΔSw,i=Sw,i+1−Sw,i. The same
contact angles and interfacial tensions are employed
for the respective geometries. The simulation proce-
dures are similar for both models, except that in the
bundle of cylindrical tubes model the cross-sectional
areas are multiplied by the corresponding pore-size
frequencies in the saturation calculations. Only four
cross-sectional fluid configurations apply to the cylin-
drical geometry, of, which one is equivalent to
configuration A, representing cross-sections that always
have been occupied by water. The three other config-
urations represent cross-sections occupied by gas, oil
and water in cases where the wettability has been
allowed to change. Consistently with the assumptions
for the triangular configurations, we do not allow gas to
invade the waterfilled cylindrical cross-sections where
oil has never been.

Two-phase capillary pressure curves are shown in
Fig. 7. The imbibition curves from the two models are in
good agreement for high values of Pcow

max, while
pronounced differences can occur if Pcow

max is decreased.
This is caused by the capillary behaviour in the
triangular tubes demonstrated in Fig. 4. In the simula-
tions with contact angles of case 1, primary drainage is
terminated when Pcow

max =15 kPa. At this capillary level
some of the smallest pore sizes remain waterfilled.
During imbibition of the bundle of triangular tubes, the
configurations may be arranged as A–D–C–D–E in



Fig. 8. Results for triangular tubes (black) and cylindrical tubes (grey) using contact angles of case 1. (a), (b) Displacement paths for gas and water
invasion. (c), (d) Pcgo and Pcgw iso-lines calculated for gas invasion. (e), (f) Pcow and Pcgw iso-lines calculated for water invasion.
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order of increasing pore size at a certain capillary level.
The imbibition process for the bundle of cylindrical
tubes is much simpler. Starting with the largest pore
size, water invades successively smaller pores. Thus, the
discrepancies observed in the shape of the two
imbibition curves in Fig. 7 are explained by different
entry pressures, which results in different invasion
orders of the pore sizes in the two models.

Displacement paths for the subsequent gas invasion
are shown in Fig. 8(a). The simulations by both models
are generated from equal initial saturations. This implies
that the corresponding trajectories calculated by the two
bundles represent oil–water “iso-caps” (capillary pres-
sure iso-lines) at different levels of Pcow since the
imbibition curve for the triangular and cylindrical
geometry generally differs, as shown in Fig. 7. In the
bundle of triangular tubes model, the displacements are
in general from configuration C to I and N in the smaller
pores, from configuration D to I in the medium-sized
pores, and from configuration E to I and N in the larger
pores. A deviation from this scenario occurs for the gas
invasion at Sw=0.1, where configuration D has not yet
formed, and for gas invasion at Sw=0.9, where the
displacement D to I occurs in some of the smallest pores
as well. The trajectories generated from the bundle of
cylindrical tubes show that gas first invades most of the
pores occupied by oil, representing a large region in the
saturation space where Pcow depends only on Sw,
followed by simultaneous invasion into pores occupied
by oil and water, representing a small region II where
Pcow depends on two saturations. The corresponding
Fig. 9. Capillary pressure as a function of pore size with case 1 parameters.
Sw=0.1. Triangular tubes (black) are compared with cylindrical tubes (grey).
waterfloods.
results generated from the bundle of triangular tubes
agree fairly well, except that the region where Pcow

depends on two saturations is larger. This can be
explained by different entry pressures in the models, as
shown in Fig. 9(a) for gas invasion at Sw=0.1 where the
deviation in region II is conspicuous. Since the gas–oil
capillary pressure required for gas to enter configuration
E is lower than for corresponding gas–water displace-
ments in the cylindrical tubes, larger oil-filled pore sizes
are invaded simultaneously, resulting in a larger region
for the triangular geometry where Pcow depends on two
saturations. The displacements E to I and N occur at
entry pressures increasing with pore size, as opposed to
similar displacements in cylindrical tubes. This effect
may also yield further deviations in region II. However,
smaller deviations are expected for gas injections at
larger water saturations since Pcgw for gas into
configuration E increases as Pcow decreases, as demon-
strated in Fig. 6(a).

The following waterfloods are initiated from various
saturations on the gas invasion path starting at Sw=0.1.
Since the gas invasion paths for the two models differ
slightly, waterfloods for the triangular tubes are
generated in such a way that the displacement paths
meet the initial point on the corresponding trajectories
for the cylindrical tubes, as shown in Fig. 8(b). The
displacement paths calculated from the two bundles
represent gas–oil iso-caps at different levels ofPcgo since
the capillary pressure in gas invasion for the two
geometries generally differs. In all the waterfloods of
the triangular tubes the displacements are from
(a) Pcgo for the displacements occurring in the gas invasion starting at
(b) Pcow for displacements occurring in the triangular tubes during the



Fig. 10. Results for triangular tubes (black) and cylindrical tubes (grey) with contact angles of case 3 and Pcow
max=15 kPa. (a), (b) Displacement paths

for gas and water invasion. (c), (d) Pcgo and Pcgw iso-lines calculated for gas invasion. (e), (f) Pcow and Pcgw iso-lines calculated for water invasion.
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Fig. 11. Gas–oil capillary pressure as a function of pore size for gas
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configuration C to D in the smaller tubes and from
configuration N to D in the larger tubes. The oil–water
capillary pressure for these displacements are plotted in
Fig. 9(b) as a function of pore size. The capillary
behavior in the displacement C to D is equivalent to the
behavior shown in Fig. 4. Clearly, gas first invades all
pores occupied by bulk oil, except for the waterfloods
initiated from the two lower Pcgo values, where the
displacements C to D occur simultaneously in some of
the smaller pores. Moreover, in the displacements N to
D, oil in layers are displaced in addition to the bulk gas,
which further explains why the trajectories do not follow
the lines of constant oil saturations exactly. However,
these effects are absent in the cylindrical tubes, and thus
the trajectories trace lines of constant oil saturations,
implying that Pcgo depends only on So.

Because of contact angle hysteresis, different satura-
tion dependencies may occur in the different invasion
processes. To investigate this, we calculate iso-caps for
the remaining two capillary pressures from the gas and
water invasion data, by employing the contour function
in MATLAB1. This function uses an interpolation
method to calculate iso-lines, and thus small oscillations
may occur in the results due to possible abrupt changes
in the directions of the displacement paths. Neverthe-
less, general trends can be read from the results, and
consequently regions of different saturation dependen-
cies can be detected. Lines of constant Pcgo and Pcgw for
gas invasion are shown in Fig. 8(c), (d) providing
additional evidence of the existence of region I in most
of the saturation space for the cylindrical tubes. The
results for the triangular tubes exhibit the same general
trends, and thus Pcow is a function of Sw, Pcgo is a
function of So, while Pcgw depends on two saturations.
However, because of the possibility of simultaneous
displacement of the phases occupying a triangular cross-
section, these dependencies are only approximate,
although the deviations caused by displacement of
fluid layers may not be visible in the plots. Other reasons
why Pcgo is not unique with respect to So are addressed
when the simulation results for contact angles of case 3
are discussed. The level of Pcgo agrees fairly well for
both models, while the level of Pcgw is generally higher
for the triangular tubes. This is explained by the
increased difference of imbibition capillary pressure at
large Sw, resulting in different levels of Pcgw by Eq. (5).
Lines of constant Pcow and Pcgw during the waterfloods
are shown in Fig. 8(e), (f). In this case both Pcow and
Pcgw are higher for the triangular tubes. This is explained
by the effect of water in the corners in displacements
1 MATLAB is a registered trademark of TheMathWorks Inc.
from C to D and N to D, as demonstrated in Figs. 4 and 5
(b), respectively. During waterflooding of the cylindri-
cal tubes, region II occurs, and thus Pcow has become a
function of two saturations, while Pcgw depends only on
Sw, and Pcgo depends only on So. As in gas invasion,
these dependencies are only approximate for the
triangular tubes although the results display the same
qualitative trends. The different saturation dependencies
appearing in the gas and water invasion processes are
caused by significant hysteresis between receding and
advancing oil–water and gas–water contact angles.

We have shown that the capillary entry pressures, and
thereby the level of capillary pressure, may be strongly
affected by the value of Pcow

max. To investigate if a
changed reversal point after primary drainage can result
in different saturation dependencies as well, we simulate
the gas and water invasion processes with contact angles
of case 2 and 3 for two very different values of Pcow

max.
The gas invasion trajectories for contact angles of case 3
with Pcow

max =15 kPa are shown in Fig. 10(a). During gas
injection, the displacements are from configuration D to
I in the smaller pores, from C to I and N in the medium-
sized pores, and from D to I in a few large pores. The
arrangement of displacements is different in the model
of cylindrical tubes where gas invasion into waterfilled
pores exlusively occurs in the large pores and invasion
into oil occurs in the smaller pores. This feature causes
large differences in the displacement paths at small So
for the two models. Fig. 11 shows a comparison of Pcgo

for the displacements occurring in the bundles when gas
is injected at Sw=0.3. In the range of Pcgo where
simultaneous invasion into medium-sized oilfilled pores
and large waterfilled pores occurs, the water saturation
invasion with contact angles of case 3 and Pcow
max=15 kPa. Results for

triangular tubes (black) and cylindrical tubes (grey) are compared.
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exhibits a more pronounced decrease for the cylindrical
tubes, as shown in Fig. 10(a). This is caused by the
different water distributions in the bundles, and thus the
contribution of Sw from the large cylindrical pore sizes is
larger than from the corresponding triangular tubes. At
higher Pcgo, gas displaces bulk water in the triangular
tubes while gas displaces oil in the cylindrical tubes, as
demonstrated by Fig. 11.

The gas invasion trajectories and the calculated gas–
oil and gas–water iso-caps, presented in Fig. 10(a), (c),
(d), respectively, reveal that region I occurs for the
cylindrical tubes at high So, and thus Pcgw depends on
two saturations, while Pcgo is a function of only So.
However, the corresponding results from the triangular
tubes show that both Pcgw and Pcgo depend strongly on
two saturations. The different saturation dependencies
of Pcgo are caused by different water distributions in the
bundles. This is illustrated in Fig. 12(a), (b), where the
pore occupancies in the bundles are indicated for gas
injection at two different inital water saturations Sw1 and
Sw2. The corresponding largest oilfilled pores prior to
gas invasion are R1 and R2. In the bundle of cylindrical
Fig. 12. Sketches of the bulk pore occupancies during gas invasion with con
saturations Sw1 and Sw2, and the largest oilfilled pore size before gas inva
configuration A are not shown. (a) Cylindrical tubes. (b) Triangular tubes. (
tubes, gas invades successively smaller oilfilled pores,
and thus R2 is invaded at the same oil saturation in both
cases, implying that Pcgo2=Pcgo(R2) corresponds to a
unique oil saturation So2. Thus, Pcgo depends on only the
oil saturation, which is in agreement with similar
analysis made by van Dijke et al. (2001a,b). However,
this dependency is violated for the triangular geometry
since water also invades the smaller pore sizes in the
preceding imbibition, as depicted in Fig. 12(b).
Consequently, gas invades pore size R2 at different oil
saturations in the two gas invasion processes, implying
that the oil saturation is not unique with respect to Pcgo2,
as shown in Fig. 12(c). If Pcow

max is reduced, water may
only invade the smaller triangular tubes during imbibi-
tion, by Fig. 4. In that case, a similar reasoning based on
pore occupancies implies that Pcgo becomes a function
of only Sg. At smaller oil saturations, gas starts to invade
the large waterfilled pores in order of decreasing pore
size, as illustrated in Fig. 12(a), (b). This can occur at
different saturation combinations in both models, and
thus Pcow and Pcgw are functions of two saturations in
the bundle of cylindrical tubes, while all three capillary
tact angles of case 3 and Pcow
max=15 kPa. Gas is injected at initial water

sion is R1 and R2 in the two cases. For clarity, waterfilled pores of
c) Corresponding Pcgo−So curves.



Fig. 13. Gas–water capillary pressure as a function of pore size for the waterfloods with contact angles of case 3. (a) Results for triangular tubes
(black) and cylindrical tubes (grey) are compared when Pcow

max=15 kPa. (b) Results for triangular tubes when Pcow
max=150 kPa.
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pressures are functions of two saturations in the
triangular tubes, as shown in Fig. 10(a), (c), (d). Such
regions where more than one capillary pressure depends
on two saturations occur because of contact angle
hysteresis and were therefore not identified by van Dijke
et al. (2001a,b).

The displacement paths for the subsequent water-
floods, presented in Fig. 10(b), exhibit conspicuous
differences between the two models. The configurations
for the triangular tubes are in general arranged as A–D–
C–N–D in order of increasing pore size at the different
stages where the preceding gas invasion was terminated.
The oil layers in configuration N collapse at early stages
of the waterfloods because of increased water content in
the corners. This results in sudden increases of the gas
and water saturations before the piston-like displace-
Fig. 14. Sketches of the bulk pore occupancies during waterflooding for conta
oil before waterflooding is denoted R1. For clarity, waterfilled pores of config
different initial gas saturations for the cylindrical tubes. (b) Fluid distributio
ments take place, as shown for the waterflood
originating from the highest gas saturation in Fig. 10
(b). Thus, the displacements are from configuration N to
I to D and from C to D. The differences in the behaviour
of Pcgw during waterflooding of the two bundle models
are illustrated in Fig. 13(a). Clearly, the deviations are
caused by the displacements from configuration C to D.

Fig. 10(b), (e), (f) reveal that region III occurs for the
cylindrical tubes during waterflooding, and thus Pcgo

depends on two saturations, while Pcow is a function of
only So, and Pcgw is a function of only Sg. However, the
dependency of Pcgw is violated for small oil saturations
since two of the waterfloods are originating from
smaller water saturations, implying that gas had started
to invade the largest pores before the preceding gas
injection was terminated. This is illustrated by the pore
ct angles of case 3 and Pcow
max=15 kPa. The largest pore size occupied by

uration A are not shown. (a) Fluid distribution during waterfloods from
n at different stages of the waterfloods for triangular tubes.
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occupancies shown in Fig. 14(a). The results for the
triangular tubes exhibit two regions where the capillary
pressure has different saturation dependencies. The pore
occupancies at early stages of the waterfloods, where
water only invades configuration C, are shown in Fig.
14(b) (top). The water saturation is more or less constant
in the preceding gas injection, implying that Pcow is a
function of Sw in this region, while Pcgw is a function of
two saturations. These dependencies are further dem-
onstrated by Fig. 10(e), where the Pcow iso-lines track
constant water saturations, and by Fig. 10(f), where the
Pcgw iso-lines are curved. Moreover, Pcgo is a function of
Sg since water only invades oilfilled pores. These
saturation dependencies do not occur in the
corresponding simulations with cylindrical tubes as
water invades both oil- and gasfilled pores initially, as
demonstrated by Figs. 13(a) and 14(a). At larger water
saturations, the scenario shown in Fig. 14(b) (bottom)
occurs. In this region, water starts to invade the medium-
sized pores on the boundary between gas and oil, which
causes the saturation dependencies to change signifi-
cantly. Because of the simultaneous displacement of oil
and gas, Pcgo depends strongly on two saturations.
Furthermore, Pcow and Pcgw have become functions of
So and Sg, respectively. This behaviour is similar to the
cylindrical geometry. Although a comparison between
Fig. 14(a), (b)(bottom) shows that the bulk pore
occupancies for the two geometries are different, water
separates gas and oil such that no gas–oil boundaries
exist in both cases. This, in turn, indicates similar
saturation dependencies in the two models. However,
the iso-caps presented in Fig. 10(e), (f) show that the
level of Pcow and Pcgw is higher during waterflooding of
Fig. 15. Results for triangular tubes (black) and cylindrical tubes (grey) with c
from the gas injections. (b) Displacement paths for the waterfloods.
the triangular tubes. This is caused by the capillary
behaviour demonstrated in Fig. 13(a).

Similar experiments are performed for the contact
angles of case 3 with Pcow

max =150 kPa. In this case, the
water content in the corners is very small, and thus we
expect that the two models show better agreement.
The same configuration changes occur in the triangular
tubes as in the previous simulations with Pcow

max =15 kPa.
However, the bulk pore occupancies in the bundle
have become equal to the scenario for the cylindrical
tubes shown in Figs. 12(a) and 14(a). Selected results
are presented in Fig. 15. The gas–oil iso-caps
calculated for gas injection reveal that Pcgo has
become strongly dependent on So since bulk water is
only present in the largest pores as in Fig. 12(a). The
displacement paths and the gas–water iso-caps for the
gas injections match correspondingly. The displace-
ment paths for the waterfloods in Fig. 15(b) also show
a better agreement. However, the triangular tubes yield
a region at small Sw where Pcgo behaves as a function
of only So. Thus, water invades some of the larger
gasfilled pores before successively smaller oilfilled
pores are invaded as well. This is caused by slightly
higher entry pressures in the smaller gasfilled pores
than in the larger oilfilled pores, as shown in Fig. 13
(b). Notice also the large difference in capillary levels
for the displacement from configuration C to D as
compared to the case with Pcow

max =15 kPa in Fig. 13(a).
The calculated iso-caps for the waterfloods are not
shown here, but a good agreement between the two
models is obtained, except for small Sw, where Pcow

derived from the triangular tubes depends strongly on
two saturations.
ontact angles of case 3 and Pcow
max=150 kPa. (a) Pcgo iso-lines calculated
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Results for the gas and water invasions with contact
angles of case 2 and Pcow

max =6.0 kPa are shown in Fig. 16.
Because of the small Pcow

max value, configuration A
Fig. 16. Results for triangular tubes (black) and cylindrical tubes (grey) with
for gas and water invasion. (c), (d) Pcgo and Pcgw iso-lines calculated for gas
remains present in a large amount of the smaller tubes in
the invasion processes. At the different stages of
imbibition where gas is injected, the configurations in
contact angles of case 2 and Pcow
max=6.0 kPa. (a), (b) Displacement paths

invasion. (e), (f) Pcow and Pcgw iso-lines calculated for water invasion.



Fig. 17. Gas–oil capillary pressure for the displacements in triangular
tubes with contact angles of case 2 and Pcow

max=6.0 kPa. Gas is injected
at Sw=0.1 and Sw=0.7.

Fig. 18. Gas–water capillary pressure as a function of pore size during
waterflooding of the triangular tubes with contact angles of case 2 and
Pcow
max=6.0 kPa.
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the bundle of triangular tubes are arranged in order of
increasing pore size as A–C–D for small Sw and as A–
D–C–D for larger Sw. Gas invasion into configuration D
is always a displacement to I, while water into
configuration C is a displacement to I in the smaller
tubes and to N in the larger tubes. Gas invades
successively smaller oilfilled pores first, until invasion
proceeds into successively larger waterfilled pores
simultaneously, as demonstrated by the displacement
paths in Fig. 16(a), and by the entry pressures in Fig. 17.
The triangular tubes show a stronger decrease of Sw than
the cylindrical tubes since the entry pressure for the
displacement D to I does not decrease as much with
decreasing pore size as the entry pressure for the
equivalent displacements in the cylindrical tubes. Thus,
a smaller range of capillary pressure is required for gas
to invade large tubes of configuration D than for similar
displacements in the bundle of cylindrical tubes. The
displacement paths for the cylindrical tubes in Fig. 16(a)
together with the calculated Pcgo and Pcgw iso-lines,
presented in Fig. 16(c), (d), respectively, reveal the
existence of region I for small Sg, where only Pcgw

depends on two saturations, and region II for larger Sg,
where only Pcow depends on two saturations. Thus, Pcgo

is a function of only So in both regions. As in previous
simulations, the saturation dependency of Pcgo is
violated for the triangular tubes since water also invades
the smaller pore sizes in the preceding imbibition. This
also causes Pcgw to become strongly dependent on two
saturations in the entire saturation space. Furthermore,
the level of Pcgo is slightly higher for the cylindrical
tubes, while the level of Pcgw is higher for the triangular
tubes, as in the previous simulations of gas injection.
Displacement paths for the waterfloods generated
from different stages of the preceding gas injection are
presented in Fig. 16(b). After the gas injection is
terminated, the configurations are arranged in order of
increasing pore size as A–C–N–I for small Sg. The
displacements occurring are from configuration C to D,
from I to D, and from N to I to D. The latter
displacement represents collapse of the oil layers in
configuration N before piston-like invasion, which is
caused by increased water content in the corners during
early stages of the waterfloods. The configurations are
arranged as A–C–I–N–I when gas injection is termi-
nated at large Sg, and the corresponding displacements
are from C to D, from I to D, and from N to I to D. As
shown in Fig. 16(b), the displacement paths from the
bundle of triangular tubes can have a variety of shapes
corresponding to different invasion orders. This is
further manifested by Fig. 18 where the variations of
Pcgw for the piston-like displacements occurring in the
waterfloods are shown. In the bundle of cylindrical
tubes, water first invades all the gasfilled pores in order
of decreasing pore size, as illustrated by the pore
occupancies in Fig. 19(a). Thus, Pcgo depends only on
So, while Pcgw depends only on Sw in the cylindrical
tubes.

These dependencies are violated for the triangular
tubes since the water invasion does not occur in the
order of monotonic decreasing pore size, as shown in
Fig. 18. The bulk pore occupancies in the waterfloods
originating from small initial gas saturations are shown
in Fig. 19(b). The positions of the gas–water and oil–
water boundaries may vary differently relative to each
other for different initial gas saturations, implying that



Fig. 19. Bulk pore occupancies sketched at different stages of the waterfloods for contact angles of case 2 and Pcow
max=6.0 kPa. (a) Scenarios for

cylindrical tubes. (b)–(d) Scenarios for triangular tubes when the initial gas saturation are (b) small, (c) medium, and (d) large. Waterfilled tubes of
configuration A are not shown.
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all three capillary pressures are functions of two
saturations in this case. However, the displacement
paths agree approximately with the results obtained with
the cylindrical geometry, since the water saturation
change by invasion into large gasfilled pores is more
significant than the corresponding change by invasion
into the smallest oilfilled pores. Pore occupancies for the
waterfloods from medium initial gas saturations are
Fig. 20. Results for waterflooding of triangular tubes (black) and cylindric
Displacement paths. (b) Calculated Pcow iso-lines.
shown in Fig. 19(c). In this case water may invade at the
gas–oil boundary, implying that Pcow and Pcgw become
functions of So and Sg, respectively, while Pcgo depends
strongly on two saturations. At higher initial gas
saturations, a larger amount of the small oilfilled pores
are invaded first, as illustrated in Fig. 19(d) (top). This
results in a small region where Pcow behaves as a
function of only Sw, while Pcgo behaves as a function of
al tubes (grey) with contact angles of case 2 and Pcow
max=150 kPa. (a)
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only Sg. At a later stage of the waterflood, the pore
occupancy shown in Fig. 19(d) (bottom) occurs,
implying that all the capillary pressures become
functions of two saturations. The significantly different
behaviours of the two models during waterflooding are
further elucidated by the calculated iso-caps presented in
Fig. 16(e), (f). Differences are most noticeable in Fig. 16
(f) where the Pcgw iso-lines for the cylindrical tubes
track constant Sw, whereas the triangular tubes clearly
deviate from this dependency. The different scenarios
illustrated in Fig. 19 indicate that the triangular tubes
generate capillary pressures that all depend strongly on
two saturations in a complex manner when the entire
saturation space is considered as a whole. As in the
previous simulations, we find that the level of Pcow and
Pcgw is significantly higher for the triangular tubes
during waterflooding.

Corresponding experiments are simulated for case
2 when Pcow

max =150 kPa, and some selected results are
shown in Fig. 20. After imbibition, configuration C
has formed in the smaller tubes, while configuration
E has formed in the larger tubes. Configuration A is
absent since all tubes were invaded by oil in primary
drainage. The displacements occurring in gas injec-
tion are from configuration C to I and N in the
smaller tubes and from E to N in the larger tubes. In
the subsequent water invasions the displacements C
to D and E occur in the small tubes, while
displacements N to E occur in the larger tubes. The
pore occupancies at different stages of the water-
floods are compatible with the scenario shown in Fig.
19(a) for both models, resulting in an excellent
agreement between the saturation dependencies and
the level of capillary pressure during the sequence of
invasion processes.

The results indicate that the amount of water in the
corners of mixed-wet tubes may have a pronounced
effect on the saturation dependencies of three-phase
capillary pressure when contact angle hysteresis is
assumed. The effect of hinging AMs in the corners
during two-phase displacements is identified as the
main reason why different saturation dependencies can
occur in the triangular and cylindrical geometries. The
fractions of water-wet and oil-wet area in a triangular
tube vary with pore size. As a consequence, the
saturation dependencies generated from the triangular
tubes, with Pcow

max fixed, may display trends similar to
those derived from a bundle of cylindrical tubes with
distributed contact angles (van Dijke and Sorbie,
2002a). Furthermore, the fraction of water-wet area in
the triangular tubes, quantified in terms of bpd,
decreases as Pcow

max is increased. Ma et al. (1996) derived
the critical contact angle corresponding to zero entry
pressure in the displacement from configuration C to D
when howa >

k
2
:

hcritowa ¼ arccos
−bpdsina
R

tana−bpd

" #
: ð70Þ

Thus, for small Pcow
max, which corresponds to large θowa

crit ,
we expect the saturation dependencies to agree more
with water-wet conditions, e.g., with Pcgo as strongly
dependent on Sg, see Fig. 10(b), (c). Similarly, for large
Pcow
max, which corresponds to smaller θowa

crit , we expect the
saturation dependencies to agree more with oil-wet
conditions, e.g., with Pcgo as strongly dependent on So,
see Fig. 15(a), (b). On the other hand, if howa <

k
2
, we

do not expect the saturation dependencies to change
much according to Pcow

max, since water always starts to
invade the smallest pores. Thus, a good agreement
between the saturation dependencies from cylindrical
and triangular geometry is expected when contact angle
hysteresis is absent, as in the work by van Dijke and
Sorbie (in press).

7. Summary and conclusions

A bundle of triangular tubes model has been
developed for simulation of three-phase capillary
pressure curves for mixed-wet conditions. Contact
angle hysteresis leads to a diversity of different fluid
configurations that can occur in the cross-sections
during different sequences of the invasion processes.
Algorithms are formulated to determine the actual
displacements occurring for all combinations of
receding and advancing contact angles, including the
possibility of simultaneous displacement of the fluids
present in the cross-section. Expressions for the
corresponding capillary entry pressures are derived,
accounting for hinging interfaces at fixed positions in
the corners while the contact angle changes according
to capillary pressure. This is an extension of the
method proposed by van Dijke and Sorbie (2003) who
considered three-phase entry pressure in angular tubes
of uniform wettability.

The sequence of processes primary drainage,
imbibition, gas injection and waterflooding are simu-
lated for a specific set of interfacial tensions and three
different combinations of contact angles representing
oil-wet conditions with variable contact angle hyster-
esis. In these invasion processes, gas may invade
configurations with oil layers bounded by bulk water
and water in the corners (configuration E), while water
may invade configurations with oil layers bounded by
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bulk gas and water in the corners (configuration N).
We have investigated if the three-phase entry pressures
for such displacements are sensitive to the capillary
pressures at the end of the preceding invasion process
and to the capillary pressure at the end of primary
drainage, Pcow

max. The specific conclusions are as
follows:

(i) The gas–water capillary pressure, Pcgw, for gas
invasion into configuration E, is more sensitive to
variations of the oil–water capillary pressure,
Pcow, than to variations of Pcow

max. Furthermore, Pcgw

increases with decreasing Pcow if hgwr <
k
2
, while

Pcgw decreases according to Pcow if hgwr >
k
2
.

(ii) The gas–water capillary pressure for water
invasion into configuration N is less sensitive to
variations of Pcgo than to variations of Pcow

max for the
range of capillary pressures where configuration
N occurs.

The three-phase capillary pressure vs. saturation
relationships calculated for the gas and water invasion
processes are compared with corresponding results from
a bundle of cylindrical tubes model, using the constraint
that the capillary pressures in primary drainage and the
pore volumes are identical for both geometries. The
specific conclusions are as follows:

(i) For moderate levels of Pcow
max, the two models may

yield different saturation dependencies of three-
phase capillary pressure. In the bundle of
triangular tubes, two or even all three capillary
pressures may depend strongly on two saturations
in the same region of the saturation space, while
the corresponding results from the bundle of
cylindrical tubes often show that only one of the
capillary pressures depends on more than one
saturation in the same region.

(ii) The different saturation dependencies derived
from the bundle of triangular tubes result from
capillary entry pressures that are affected by
hinging interfaces in the corners when contact
angle hysteresis is assumed. In general, these
entry pressures predict different bulk pore
occupancies than the simple Young–Laplace
equation, which is valid for the cylindrical
geometry.

(iii) The saturation dependencies derived from trian-
gular tubes with Pcow

max small, agree with expected
behaviour for water-wet conditions, e.g., with Pcgo

strongly dependent on Sg (Bradford and Leij,
1995a,b, 1996), while for high Pcow

max, the results
agree with expected behaviour for oil-wet condi-
tions, e.g., with Pcgo strongly dependent on So
(Bradford and Leij, 1995a,b, 1996). This is
explained by a reduced area of water-wet surface
when Pcow

max is increased. Thus, triangular tubes
induce a relationship between wettability and
reversal point after primary drainage, which in
turn leads to a relationship between Pcow

max and the
three-phase saturation dependencies.

(iv) The level of Pcgw and Pcow is generally higher for
the triangular tubes than for the cylindrical tubes
during the gas and water injections.

(v) The saturation dependencies, capillary levels
and bulk pore occupancies calculated from
triangular tubes approach the corresponding
results calculated from cylindrical tubes when
the capillary level at the end of primary drainage
is increased.

The results from this work indicate that three-phase
capillary pressure correlations for mixed-wet reservoirs
should be formulated as functions of two saturations, as
proposed by Helland and Skjæveland (2004b).

Nomenclature
A Cross-sectional tube area
Ap Total cross-sectional tube area in the bundle
b Position of arc meniscus
Cs Spreading coefficient
C1, C2, C3 Coefficients in polynomial, see Eqs. (37)–

(39) and Eqs. (61)–(63)
f Pore-size frequency
I Indicator notation, see Eq. (14)
Ls Cross-sectional fluid–solid length
Lf Cross-sectional fluid–fluid length
N Total number of AMs present in a corner
P Pressure
r Radius of curvature
R Radius of the inscribed circle
S Saturation
W Virtual work
x Random number between 0 and 1
α Corner half angle
β Angle defined from geometry of the AMs in

the corners
ΔF Change of surface free energy
δx Virtual displacement
η Parameter in the Weibull distribution
θ Contact angle
ξ See Eq. (56)
σ Interfacial tension
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Subscripts
a Advancing
c Capillary
ch Characteristic
g Gas
h Hinging
max Maximum
min Minimum
o Oil
pd Primary drainage
r Receding
w Water

Superscripts
Col Collapse
Crit Critical
Fin Final
Init Initial
(k) AM number counted in order from corner

towards center
Max Maximum
X→Y Displacement from configuration X to Y

Abbreviations
AM Arc meniscus
MS–P Mayer and Stowe–Princen
MTM Main terminal meniscus
WAG Water alternate gas
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