
Three-phase mixed-wet capillary pressure curves from a
bundle-of-triangular-tubes model

Johan O. Helland∗, Svein M. Skjæveland

University of Stavanger, N-4036 Stavanger, Norway

Abstract

We present a bundle-of-triangular-tubes model that simulates three-phase mixed-wet cap-
illary pressure curves for any sequences of gas, oil, and water invasion processes. A diver-
sity of cross-sectional fluid configurations may occur because of pore shape and different
combinations of the contact angles. We use expressions for the capillary entry pressures
that truly accounts for the mixed wettability condition and the possibility of simultaneous
displacement of the fluids occupying the cross-sections. As a consequence, invasion does
not necessarily proceed in the order of monotonic increasing or decreasing pore size. We
simulate primary drainage and imbibition first. The saturation dependencies of the three-
phase capillary pressures are analyzed for the subsequent gas injections and waterfloods
and compared with the results from a similar bundle-of-cylindrical-tubes model. Simula-
tions are performed for three sets of contact angles representing oil-wet conditions with
variable contact angle hysteresis. It is shown that the capillary pressure at the end of pri-
mary drainage,Pmax

cow , strongly affects the saturation dependencies in the bundle of triangu-
lar tubes. For moderate values ofPmax

cow , we have identified regions in the saturation space
wheretwo or all three capillary pressures are functions of two saturations, while the cor-
responding results from the bundle of cylindrical tubes show that only one of the capillary
pressures depends on more than one saturation, regardless ofPmax

cow . The differences are
caused by the capillary entry pressures in the triangular tubes that are strongly affected by
the hinging interfaces in the corners when contact angle hysteresis is assumed. This leads
to different bulk pore occupancies in the two bundle models, and hence different satura-
tion dependencies. Furthermore, the level of gas-water and oil-water capillary pressure is
higher for the bundle of triangular tubes during the gas and water invasion processes. The
saturation dependencies, capillary levels and pore occupancies calculated from triangular
tubes approach the corresponding results calculated from cylindrical tubes whenPmax

cow is
increased.
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1 Introduction

To describe three-phase transition zones and the dynamics of water-oil and gas-
oil contact movements, a three-phase capillary pressure correlation is needed for
mixed-wet reservoirs. The correlation should be based on sound physical princi-
ples yet sufficiently simple to be included in a reservoir simulator. In the reservoir,
situations may occur where one of the phases appears or disappears, e.g., transitions
between gas and oil phase in condensate reservoirs, or when zero residual oil satu-
ration is approached by drainage through connected layers. The correlation should
be designed to account for a smooth transition between two- and three-phase flow
to accommodate these situations.

Three-phase capillary pressure vs. saturation relationships have traditionally been
predicted from corresponding two-phase measurements. However, both experimen-
tal and numerical work have shown that this approach is not always valid. Hence,
there is a need for direct measurements of three-phase capillary pressure relation-
ships to develop reliable correlations. There is a paucity of data reported in the lit-
terature. To our knowledge, measurements with three varying saturations have only
been reported by Kalaydjian (1992). He measured three-phase drainage and imbi-
bition capillary pressures in water-wet sandstone core samples. Bradford and Leij
(1995a,b, 1996) measured three-phase capillary pressures in sandpacks for several
wetting conditions achieved by mixing different fractions of water-wet and oil-wet
sands. In these experiments, however, one saturation was kept fixed.

As there are few measured three-phase capillary data available, we have chosen the
route of adding artificially generated data from a simple simulation model. Because
of two independent saturations, there is an infinite number of possible three-phase
displacement processes. The trajectory of a specific process in the saturation space
is determined by the three capillary pressures. A simulation model that produces
realistic capillary pressure curves may be used to predict processes not covered by
time-consuming measurements. We choose to represent the pore network as a bun-
dle of tubes, the tubes having triangular, equilateral cross-sections. The triangular
pore shape allows for representation of physical processes such as the development
of mixed wettability within a single pore (Kovscek et al., 1993; Hui and Blunt,
2000) and oil drainage through layers in the crevices (Hui and Blunt, 2000; Dong
et al., 1995; Keller et al., 1997). The possibility of simultaneous occupancy of more
than one fluid phase in the cross-sectional area of a triangular tube requires analysis
of the fluid configurations and accurate calculation of the capillary entry pressures
accounting for all possible displacements. Although a simple bundle-of-triangular-
tubes model does not produce residual saturations caused by phase entrapment, we
have found that main features of two-phase, mixed-wet, capillary pressure curves
with scanning loops can be reproduced when contact angle hysteresis is assumed
(Helland and Skjæveland, 2004a).
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Recently, van Dijke and Sorbie (2003) derived a general formula for three-phase
capillary entry pressures into tubes with angular cross-sections accounting for si-
multaneous displacement of all phases. However, they only considered pores of uni-
form wettability. We extend the method to account for mixed-wet tubes with con-
tact angle hysteresis from the two-phase derivation given by Ma et al. (1996). Along
with the derivations we propose an algorithm that determines which displacement
to occur for different capillary pressures and combinations of the contact angles.
The first version of the present paper was submitted April 26 and presented May 18
at the 8th International Symposium on Reservoir Wettability. Independently, simi-
lar work on three-phase entry pressure with contact angle hysteresis was carried out
by Piri and Blunt (2004), and their results were submitted July 10 and published
December 14. The authors derive a general expression for the entry pressures and
study in detail gas invasion into bulk oil and oil invasion into bulk gas with wa-
ter present in the corners. In this paper we describe the more complicated cases
when gas invades configurations with oil layers bounded by bulk water and water
in the corners, and when water invades configurations with oil layers surrounded by
bulk gas and water in the corners. These two scenarios are important when water-
alternate-gas (WAG) injections are simulated using mixed-wet triangular tubes.

The saturation dependencies of three-phase capillary pressures and relative per-
meabilities for mixed-wet conditions without contact angle hysteresis have been
analyzed by van Dijke et al. (2001a,b) using a bundle of cylindrical tubes. They
identified three regions in the saturation space where the capillary pressures have
different saturation dependencies. In each region only one of the capillary pressures
depends on more than one saturation. However, this may not be true if contact angle
hysteresis is assumed as other pore occupancies than those analyzed by van Dijke
et al. (2001a,b) can occur. Very recently, van Dijke and Sorbie (2005) compared
the displacement paths and saturation dependencies from the bundle of cylindri-
cal tubes with the corresponding results from a bundle of triangular tubes without
contact angle hysteresis. The results where in good agreement.

In the present paper, we describe the three-phase bundle-of-triangular-tubes model.
Three-phase capillary pressure vs. saturation relationships are calculated for gas
injection followed by waterflooding when contact angle hysteresis is assumed. The
gas phase is introduced after the first imbibition. For this sequence of processes we
investigate if the three-phase entry pressures are sensitive to the capillary pressures
at the end of the preceding invasion process and to the capillary pressure where
primary drainage was terminated,Pmax

cow . The saturation dependencies of the capil-
lary pressures during the gas and water injections are analyzed and compared with
the results from a similar model of cylindrical tubes. The effect ofP max

cow on the
saturation dependencies is also explored.
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2 Preliminaries

The wetting preference of a solid surface in contact with two fluids is typically
characterized by the contact angle. Assuming that the denser phasej is wetting
relative to phasei , then cosθij ≥ 0, where the contact angleθij is measured through
phasej . The wetting order in a three-phase fluid system of oil, water and gas may
be divided into three categories (Hui and Blunt, 2000; Zhou and Blunt, 1998):

• In water-wet media, water is wetting, oil intermediate-wetting, and gas non-
wetting. The contact angles satisfyθow ≤ π

2 , θgo ≤ π
2 , andθgw ≤ π

2 .
• In weakly oil-wet media, oil is wetting, water intermediate-wetting, and gas non-

wetting (θow > π
2 , θgo ≤ π

2 , andθgw ≤ π
2 ).

• In strongly oil-wet media, oil is wetting, gas intermediate-wetting, and water
non-wetting (θow > π

2 , θgo ≤ π
2 , andθgw > π

2 ).

Recently, van Dijke and Sorbie (2002b) proposed linear relationships of cosθgo and
cosθgw as functions of cosθow accounting for the above wetting orders:

cosθgo = 1

2σgo
(Cso cosθow + Cso + 2σgo), (1)

and

cosθgw = 1

2σgw
((Cso + 2σow) cosθow + Cso + 2σgo), (2)

where the oil spreading coefficientCso = σgw−σgo−σow is nonpositive and reflects
the interfacial tensions measured at thermodynamic equilibrium. Thus assuming
that the underlying wettability is known in terms of the oil-water contact angles,
calculations ofθgo andθgw are possible by Eqs. (1), (2).

An important feature of the capillary behavior in an angular tube is the possibility of
simultaneous occupancy of more than one fluid in the cross-section. The prevailing
cross-sectional fluid configuration depends on the pore shape, the contact angles,
and the capillary pressures. Expressions for the two-phase capillary entry pressures
are derived by the MS-P method, named after the contributions from Mayer and
Stowe (1965) and Princen (1969a,b, 1970). This method is founded on an energy
balance equation which equates the virtual work with the associated change of sur-
face free energy for a small displacement of the interface in the direction along
the tube. The energy balance equation then relates the entry radius of curvature to
the cross-sectional area exposed to change of fluid occupancy, the bounding cross-
sectional fluid-solid and fluid-fluid lengths, and the contact angle.

Following this approach, Ma et al. (1996) derived the capillary entry pressures for
primary drainage and imbibition for mixed-wet, regular,n-sided tubes. The analysis
for this geometry is largely simplified as all corners have the same half-angleα

and hence the same fluid configuration. There are two scenarios that need to be
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considered separately depending on the contact angle. As an example, consider
invasion of phasei into a uniformly wetted tube initially filled with the denser
phasej . If

θij <
π

2
− α, (3)

phasei occupies the bulk area while phasej is still residing in the corners. If the
contact angle does not satisfy Eq. (3), phasei occupies the entire cross-section
during invasion. The invading interface separating the bulk fluids is referred to as
the main terminal meniscus (MTM), and the interface separating bulk fluid from
corner fluid, if present, is referred to as the arc meniscus (AM). The curvature of an
AM is represented by a cross-sectional circular arc of radiusrij. Thus, by Laplace’s
equation, the capillary pressure may be expressed as

Pcij = σij

rij
. (4)

In a three-phase system the capillary pressures are, by definition, related to each
other by

Pcgw = Pcgo + Pcow. (5)

The application of Eq. (4) on all capillary pressures then yields the useful relation

σgw

rgw
= σgo

rgo
+ σow

row
. (6)

Hence, if two of the radii of curvature are known, we may calculate the third from
Eq. (6).

3 Model description

The pore network is represented as a bundle of parallel tubes, the tubes having
equilateral, triangular cross-sections. The geometry of an equilateral triangle is
readily described by the half-angle of the corner,α = π

6 , and the radius of the
inscribed circleR. We assume that the pore-size frequency is described by a trun-
cated two-parameter Weibull distribution. This is a flexible distribution that has
been employed frequently for this purpose (Diaz et al., 1987; Fenwick and Blunt,
1998; Hui and Blunt, 2000). The pore sizesR are selected from the cumulative
distribution function in the following manner: Pick random numbersx ∈ [0, 1] and
calculate the inscribed radius from

R = Rch
( − ln[(1 − x) exp(−

[ Rmax − Rmin

Rch

]η

) + x]) 1
η + Rmin, (7)

whereRmax, Rmin andRch are the inscribed radii of the largest, smallest and char-
acteristic pore sizes, respectively, andη is a dimensionless parameter.
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pdb

Figure 1. Final configuration of a tube after primary drainage. The bold lines along the
sides represent the lengths of the pore wall where the wettability may have changed. The
distancesbpd in the corners remain water-wet.

The model is programmed to simulate gas, oil and water invasion processes in any
sequence starting with primary drainage of a waterfilled and water-wet medium.
An invasion process is simulated by increasing or decreasing a capillary pressure
stepwise until some maximum or minimum value is reached. At each step the fluid
occupancies in the tubes are updated and the saturation is calculated. The satura-
tions are calculated based on the fraction of the cross-sectional area that each phase
occupies. Invasion of the oil phase is simulated by increasingPcow at a constant
Pcgw. At each pressure stepPcgo is calculated from Eq. (5). During water invasion
Pcow is decreased at a constantPcgo, andPcgw is calculated by Eq. (5). During gas
invasionPcgo is increased, andPcgw is calculated from Eq. (5) assuming a constant
Pcow. To simulate a predetermined sequence of several gas, oil and water invasion
processes, a list of capillary pressures is specified where each value corresponds to
the capillary pressure at which the specific process is terminated.

Initially all tubes are waterfilled and strongly water-wet, and hence the contact an-
gle during primary drainage,θpd, is always small and satisfies Eq. (3). It is assumed
that oil always contacts the pore walls of the invaded tubes, and hence the sides
may experience a wettability alteration while the corners remain water-wet. The
final configuration of a tube after primary drainage is shown in Fig. 1. The distance
bpd of the solid surface that remains water-wet is given by

bpd = σow cos(θpd + α)

Pmax
cow sinα

, (8)

where Pmax
cow is the capillary pressure at the end of primary drainage. Irreducible

water saturations caused by phase entrapment do not occur in the model as we only
consider a bundle of tubes. However, we may argue that a legitimate value ofP max

cow
is reached if the next pressure increase results in a saturation change smaller than
some tolerance value.

The amount of contact angle hysteresis between primary drainage, imbibition and
secondary drainage is affected by the degree of wettability alteration and the surface
roughness (Morrow, 1975; Yang et al., 1999). To accommodate this we allow all
receding and advancing oil-water contact angles,θowr andθowa respectively, that
satisfy θpd ≤ θowr ≤ θowa. If gas displaces oil and water, the gas-oil and gas-
water interfaces are receding with contact anglesθgor and θgwr calculated from
Eqs. (1), (2) withθow = θowr. Similarly, oil and water displaces gas with advancing
contact anglesθgoa andθgwa calculated from Eqs. (1), (2) assumingθow = θowa.
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4 Fluid configurations

The model allows for simulations of any sequence of the invasion processes start-
ing with primary drainage. Contact angle hysteresis then leads to a diversity of
possible fluid configurations that have to be analyzed individually. The number of
configurations are restricted by the following assumptions:

(i) We only consider the three aforementioned wetting orders.
(ii) We allow maximum two AMs to be present on the surface exposed to a po-

tential wettability change. An additional AM may be located at positionbpd.
(iii) We do not study situations where the gas pressure is large enough for gas

invasion into tubes, and corners of tubes, where oil has never been.

With these constraints we find that the 17 configurations presented in Fig. 2 may
occur during the simulations. Configuration A shows a tube that has always been
waterfilled and water-wet. The configurations B–Q represent tubes that at some
point have been invaded by oil and thus may have altered wettability. The cur-
vatures of the gas-oil interfaces present in the configurations are always positive,
whereas the gas-water and oil-water interfaces may have positive or negative cur-
vatures to satisfy Eq. (5). In Table 1 we have specified the combinations of receding
and advancing contact angles for which the different fluid configurations may oc-
cur. Contact angles are also specified to discriminate between the three wetting
sequences whenever it is possible. Three-phase fluid configurations in mixed-wet
angular tubes have previously been analyzed by Piri and Blunt (2002, 2004, 2005).
As opposed to us, they also consider cases where gas is wetting relative to oil. How-
ever, they have not accounted for our configurations F and K, which may occur
when contact angle hysteresis is large. To our knowledge, only the configurations
A–D, H, I, M and N have been observed by experiments in triangular tubes or in
micromodels (e.g., Dong et al., 1995; Dong and Chatzis, 1995; Zhou et al., 1997;
Keller et al., 1997; Spildo and Buckley, 1999).

Assumption (i) implies that oil is always wetting relative to gas, i.e.,θgo < π
2 .

Hence, bulk oil can not be bounded by gas layers in the cross-sections. Assump-
tion (ii) is introduced to restrict the number of AMs in cases where contact angle
hysteresis is large. If

θija >
π

2
+ α and θijr <

π

2
− α, ij = ow, gw, (9)

it is possible, in theory, that the number of AMs present in a cross-section could
increase constantly as the number of saturation change reversals increases. For ex-
ample, if Eq. (9) is satisfied for the oil-water contact angles, water invasion into
configuration C may be a displacement to configuration E, while oil invasion into
configuration E may be a displacement to configuration F. A subsequent water in-
vasion into configuration F could then result in formation of a fourth AM in the
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A B C D E F

G H I J K L

M N O P Q

Figure 2. Fluid configurations for any sequences of the invasion processes, with water in
blue, oil in red, and gas in yellow. The bold lines along the sides represent the lengths with
potentially altered wettability. Oil is always assumed to be wetting relative to gas.

corner, separating bulk water from a second oil layer. Even though Eq. (9) is sat-
isfied, we do not allow formation of a new AM in the corner when two AMs are
already present on the surface of altered wettability, by assumption (ii). We believe
that this simplification is reasonable, since new AMs are likely to interfere with the
AMs already present in most of these cases. Hence, water invasion into the bulk of
configuration F is always assumed to be a displacement from configuration F to E.

This sequence of oil-water displacements can only occur if the tube behaves as oil-
wet during waterflooding and as water-wet during oil invasion. Similar configura-
tion changes may occur during the gas-water displacements if Eq. (9) is satisfied for
both the gas-water and the oil-water contact angles, i.e., when the tube behaves as
strongly oil-wet during waterflooding and as water-wet during gas invasion. Notice
from Table 1 that the configurations F, G, K, L and Q can only occur if the wetting
sequence of the three phases changes with the direction of the displacement. We
allow for such capillary behavior since measurements indicate that contact angle
hysteresis may be large if wettability alteration has occured (Yang et al., 1999).
Furthermore, this effect may be more common when irregular geometries with dif-
ferent corner half anglesα are assumed, since the contact angle hysteresis required
to satisfy Eq. (9) are smaller in narrow corners.

By assumption (iii), we do not allow for invasion of gas-water interfaces onto the
water-wet surface where oil has never been, since we believe that the most realistic
cases of three-phase flow in reservoirs can be studied without including this feature
in the model. Nevertheless, such displacements could be accounted for by specify-
ing gas-water and gas-oil contact angles on the water-wet surface as well, although
this would increase the number of configurations. Assumption (iii) implies that any
gas-water AMs located at positionbpd are hinging with contact angles varying with
Pcgw. Oil-water AMs located at this position are allowed to move on to the water-
wet surface when the hinging contact angle has reachedθpd. This happens when
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Configuration θowa θowr θgwa θgwr θgoa θgor

A n/a n/a n/a n/a n/a n/a

B – < π
2 − α – ≤ π

2 ≤ π
2 ≤ π

2

C – – – – ≤ π
2 ≤ π

2

D – – – – ≤ π
2 ≤ π

2

E > π
2 + α – – – ≤ π

2 ≤ π
2

F > π
2 + α < π

2 − α – ≤ π
2 ≤ π

2 ≤ π
2

G > π
2 + α < π

2 − α – ≤ π
2 ≤ π

2 ≤ π
2

H – – – < π
2 − α ≤ π

2 ≤ π
2

I – – – – ≤ π
2 ≤ π

2

J > π
2 – > π

2 + α – ≤ π
2 ≤ π

2

K > π
2 – > π

2 + α < π
2 − α ≤ π

2 ≤ π
2

L > π
2 – > π

2 + α < π
2 − α ≤ π

2 ≤ π
2

M – < π
2 − α – ≤ π

2 ≤ π
2 < π

2 − α

N – – – – ≤ π
2 < π

2 − α

O > π
2 + α – – < π

2 − α ≤ π
2 ≤ π

2

P > π
2 – > π

2 + α – ≤ π
2 < π

2 − α

Q > π
2 < π

2 − α > π
2 + α ≤ π

2 ≤ π
2 ≤ π

2

Table 1
Advancing and receding contact angles for which the cross-sectional fluid configurations
are possible. It is always assumed thatθpd < π

2 − α. Contact angles are also specified to
associate the configurations to the three wettability orderings, if possible. Empty spaces
indicate that all values satisfyingθija ≥ θijr, ij = go, ow, gw are allowed.

Pcow = Pmax
cow , and a further increase ofPcow causes the length of the water-wet

surface,bpd, to decrease additionally.

The AMs located on the surface of altered wettability may also hinge at fixed po-
sitions while the contact angles change with capillary pressure. The contact angles
hinge according to

θijh =




arccos
( Pcijbij sinα

σij

)
− α if bulk phasei is bounded

by corner phasej ,

arccos
( Pcijbij sinα

σij

)
+ α if bulk phasej is bounded

by corner phasei ,

(10)
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Final configuration

Initial configuration Oil invasion Water invasion Gas invasion

A C – –

B C D or G H, I or M

C – D or E I or N

D B or C – H or I

E C or F D I, N or O

F C E I, N or O

G B D H, I or M

H B or C D or L I

I C D or J –

J C or Q D I or K

K C or Q J I

L B or C D H

M B or N D, G or H H

N C D, E, I, M or P I

O C, F or N E or H N

P C or E E or J J or N

Q C B or J I or K
Table 2
The programmed direct displacements during the oil, water and gas invasion processes.

whereij = go, ow, gw, andbij is the distance from the apex of the corner to the
three-phase contact line. If the advancing or receding contact angle is reached, the
AMs begin to move at constant contact angles during a further change of capillary
pressure. The positionbij is then changing according to

bij =




σij

Pcij

cos(θij + α)

sinα
if bulk phasei is bounded by corner phasej ,

σij

Pcij

cos(θij − α)

sinα
if bulk phasej is bounded by corner phasei ,

(11)

whereθij is equal toθijr or θija depending on the direction of the displacement.

All the direct displacements implemented in the model are presented in Table 2,
including piston-like invasion, collapse of fluid layers and change of the fluid areas
in the corners. The configurations A–G may appear during the two-phase oil-water
displacements. Helland and Skjæveland (2004a) provided a detailed description of
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the two-phase oil-water invasion processes, including expressions for the capillary
entry pressures and the layer collapse capillary pressures. If the oil saturation has
become zero, and only gas and water invasion processes are considered, the treat-
ment of configuration H–L is analogous to the corresponding two-phase oil-water
situation.

If piston-like invasion occur into a configuration containing multiple fluid layers in
the corners, several displacements are possible, as shown in Table 2 for gas invasion
into configuration F, and water invasion into configuration N for instance. Which
particular displacement occurs is determined by the selected combination of contact
angles and the capillary pressures. However, the number of possible displacements
is reduced if the invading fluid is already present as layers. As an example, water
invasion into configuration O is always a displacement to configuration E. Obvi-
ously, a direct displacement from configuration O to D is not possible since then
the oil layers would have collapsed prior to MTM invasion. In that case the dis-
placement O to H has occured and MTM invasion must instead be considered for
configuration H. The algorithm used to determine the displacements and the asso-
ciated expressions for the capillary entry pressures are described in the next section
for cases of gas and water invasion.

A fluid layer is assumed to collapse when the bounding AMs meet at the contact
lines or the midpoints. We employ the expressions derived by Hui and Blunt (2000)
for the collapse of fluid layers in a three-phase configuration. For a complete list
of collapse capillary pressures we refer to Piri and Blunt (2005). The displacement
resulting from water layer collapse in configuration Q is somewhat different from
similar events in the other configurations since oil occupied in the bulk then be-
comes surrounded by gas, which is not allowed by assumption (i). However, oil
is still wetting relative to gas, and thus a decreasedPcgo would cause spontaneous
imbibition of oil into the corner and displace all of the gas phase immediately, re-
sulting in a direct diplacement from configuration Q to C. This displacement has
been identified in simulations using very large contact angle hysteresis satisfying
the constraints for configuration Q in Table 1.

5 Three-phase capillary entry pressures

An algorithm is formulated to determine the actual displacements occuring dur-
ing piston-like invasion for all combinations of the contact angles and the capillary
pressures. For each type of displacement the corresponding capillary entry pres-
sures are calculated using the method proposed by van Dijke and Sorbie (2003).
They derive three-phase capillary entry pressures from an energy balance equation
which equates the virtual workW with the corresponding change in surface free
energy�F for a small displacementδx of the MTM in the direction along the
tube. The energy balance then relates the entry radius of curvature to the cross-
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sectional fluid occupancy, accounting for the possibility of simultaneous displace-
ment of the fluids occupying the cross-section. We extend their method to account
for mixed wettability and contact angle hysteresis following the approach by Ma
et al. (1996). Thus we incorporate the effect of hinging AMs stuck at fixed positions
along the pore walls in the calculations. For two-phase flow, Helland and Skjæve-
land (2004a) showed that invasion does not necessarily proceed in the order of
monotonic increasing or decreasing pore size when the AMs are hinging. Recently,
Piri and Blunt (2004) have used the same approach to study three-phase capillary
entry pressure for mixed-wet conditions and contact angle hysteresis. They con-
sider bulk gas-oil displacements that are affected by water present in the corners,
e.g., displacements between the configurations C and I. We explain how to treat
the more complicated case occuring when a third phase invades a cross-section oc-
cupied by the two other phases distributed into an arbitrary number of fluid layers
with one of the phases occupied in the bulk. Such displacements include gas in-
vasion into the configurations B–G, and oil invasion into the configurations A, D
and H–L. We also consider water invasion into configurations occupied by all three
phases.

The conditions for layer formation is required to determine the correct displacement
in each case. Formation of a new AM separating phasei from phasej at a position
bij > bpd can only occur if the contact angles satisfy the following condition:

θij <
π

2
− α if invading phasei is bounded by corner phasej , (12a)

θij >
π

2
+ α if invading phasej is bounded by corner phasei , (12b)

whereij = go, ow, gw, andθij is equal toθijr or θija depending on the direction of
the displacement. However, if Eq. (12) is not satisfied, a new AM still forms at po-
sition bij = bpd since then the AM is assumed to hinge with contact angleθijh. If
an AM is already present in the corner before invasion, a second condition required
for layer formation is that the capillary pressure associated with the displacement
must be favorable compared to the collapse capillary pressure calculated when the
AMs surrounding the layer meet (van Dijke and Sorbie, 2003). According to van
Dijke et al. (2004) and Piri and Blunt (2004) these two geometric conditions are
necessary but not sufficient for layer formation. Using free energy principles they
argue that even if the above conditions are satisfied, one should also calculate the
entry pressure for the displacement without layer formation and compare it with the
entry pressure for the displacement with layer formation. The actual displacement
occuring is the one associated with the most favorable capillary pressure. Thus,
layers form if and only if the two geometric conditions are satisfied and the dis-
placement is the most favorable. In this work we follow van Dijke et al. (2004) and
Piri and Blunt (2004) and employ all the three conditions to determine if layers
form, as opposed to Helland and Skjæveland (2004a) who only used the necessary
geometric conditions.
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5.1 Gas into oil and water

For gas invasion into the configurations B–G, the expression for the virtual work
may be written in generalized form as

W = {Pcgw AgwIgw + Pcgo AgoIgo

+ (Pcgw − Pcgo)
∑N init

ow

k=Nfin
ow+1

A(k)
ow(−1)k}δx,

(13)

where we have applied the indicator notation of van Dijke et al. (2004),

Iij =
{

1 if AMs between phasesi and j form,

0 otherwise.
(14)

The cross-sectional area exposed to gas invasion is denotedAgw or Ago if gas-water
or gas-oil AMs form during the displacement, respectively. The oil-water AMs are
numbered in order from the corner towards the center of the cross-section. The
cross-sectional bulk area bounded by oil-water AMk is denotedA(k)

ow . The total
number of oil-water AMs isN init

ow before gas invasion andN fin
ow afterwards. Thus we

always haveN init
ow ≥ N fin

ow.

The corresponding generalized form of the surface free energy is given by

�F = {(Lfgw + Lsgw cosθgwr)σgwIgw + (Lfgo + Lsgo cosθgor)σgo Igo

+ (σgw cosθgwr − σgo cosθgor)
∑N init

ow

k=Nfin
ow+1

L(k)
sow(−1)k

− σow
∑N init

ow

k=Nfin
ow+1

L(k)
fow}δx,

(15)

where Lfgw and Lsgw are the gas-water and gas-solid lengths, respectively, that
bound areaAgw if gas-water AMs forms. Similarly, the lengthsL fgo andLsgo bound

areaAgo if gas-oil AMs form instead. The lengthsL (k)
fow and L(k)

sow bound the oil-

water areaA(k)
ow .

In the following we consider gas invasion into configuration E in detail. However,
Eqs. (13), (15) could easily be applied to the other oil-water configurations with
appropriate values ofN init

ow andN fin
ow. Configuration E contains two oil-water AMs,

and thusN init
ow = 2. The parameters of configuration E required for the derivation

of the capillary entry pressures are as follows, see Fig. 3(a):

β(1)
ow = π

2
− α − θ

(1)
owh, (16)

A(1)
ow = R2

2 tanα
− rowb(1)

ow sin(α + β
(1)
ow )

2
+ r2

owβ
(1)
ow

2
, (17)

L(1)
fow = rowβ(1)

ow , (18)
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Figure 3. Representation of the cross-sectional parameters of the fluid-fluid and fluid-solid
interfaces. (a) Configuration E. (b) Configuration N. (c) Displacement from configuration
E to N. (d) Configuration I. (e) Displacement from configuration E to I.

L(1)
sow = R

tanα
− b(1)

ow , (19)

b(1)
ow = row cos(θ (1)

owh + α)

sinα
, (20)

β(2)
ow = π

2
+ α − θ

(2)
owh, (21)

A(2)
ow = R2

2 tanα
− rowb(2)

ow sin(β(2)
ow − α)

2
− r2

owβ
(2)
ow

2
, (22)

L(2)
fow = rowβ(2)

ow , (23)

L(2)
sow = R

tanα
− b(2)

ow , (24)

and

b(2)
ow = row cos(θ (2)

owh − α)

sinα
, (25)

where the contact angle of the innermost AM is denotedθ
(2)
owh to account for the

possibility of a hinging AM before gas invasion. Moreover,b(1)
ow = bpd for configu-

ration E.

Gas invasion into configuration E is a displacement to configuration I, N or O. In
configuration N and O fluid layers form during invasion. The gas-water capillary
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pressure at which the water layer in configuration O collapses is given by (e.g., Piri
and Blunt, 2005)

Pcol
cgw =




Pcow
σgw

σow

cosθgwr − sinα

cosθ(2)
owh + sinα

if θgwr < π − θ
(2)
owh,

Pcow
σgw

σow

cos(θgwr + α)

cos(θ (2)
owh − α)

if θgwr ≥ π − θ
(2)
owh.

(26)

The gas-oil capillary pressure at which the oil layer in configuration N collapses is
(Piri and Blunt, 2005)

Pcol
cgo =




Pcow
σgo

σow

cosθgor − sinα

cosθ(1)
owh − sinα

if θgor < θ
(1)
owh,

Pcow
σgo

σow

cos(θgor + α)

cos(θ (1)
owh + α)

if θgor ≥ θ
(1)
owh.

(27)

We first consider the displacements and the associated capillary entry pressures
when θgwr and θgor satisfy Eq. (12a). In this case the displacements to configu-
rations I, N and O are all possible. The capillary pressures associated with these
displacements are calculated first and then the actual displacement occuring is de-
termined using the three conditions for layer formation.

For the displacement from configuration E to O Eqs. (13), (15) are applied with
N fin

ow = 2, Igo = 0 andIgw = 1. By solvingW = �F , a simple two-phase expres-
sion for the gas-water capillary entry pressure is derived (e.g., Ma et al., 1996):

Pcgw = σgw

R

[
cosθgwr +

√
tanα

2
(sin 2θgwr − 2θgwr − 2α + π)

]
. (28)

For the displacement from configuration E to N, the energy balance equationW =
�F , with N fin

ow = 1, Igo = 1 andIgw = 0, may be written as

σgw

rgw
A(2)

ow + σgo

rgo
(Ago − A(2)

ow) = L(2)
sowσgw cosθgwr

+ (Lsgo − L(2)
sow)σgo cosθgor + Lfgoσgo − L(2)

fowσow,

(29)

where the capillary pressures are expressed in terms of the radii of curvature by
Eq. (4). The cross-sectional occupancy after invasion is shown in Fig. 3(b), and a
view of the displacement in the direction along the tube is shown in Fig. 3(c). The
gas-oil parameters are as follows:

rgo = σgo
σgw

rgw
− σow

row

, (30)
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Ago = R2

2 tanα
− rgobgo sin(α + βgo)

2
+ r2

goβgo

2
, (31)

Lsgo = R

tanα
− bgo, (32)

Lfgo = rgoβgo, (33)

rgo sinβgo = bgo sinα, (34)

with βgo defined as

βgo = π

2
− α − θgor. (35)

Inserting Eqs. (30)–(35) into Eq. (29) then yields a polynomial

C1r2
go + C2rgo + C3 = 0, (36)

with the coefficients

C1 = σgo

2

(sinβgo cosθgor

sinα
− βgo

)
, (37)

C2 = σow A(2)
ow

row
− L(2)

sowσgw cosθgwr −
( R

tanα
− L(2)

sow

)
σgo cosθgor + L(2)

fowσow, (38)

and

C3 = σgo
R2

2 tanα
. (39)

The correct solution forrgo has to agree with a positionbgo of the invading gas-oil

AM located between the apex of the corner and the positionb(2)
ow . This condition

may be formulated as

0 < rgo ≤ b(2)
ow sinα

sinβgo
. (40)

The solutionrgo that satisfies Eq. (40) is used to calculatePcgo by Eq. (4). How-
ever, for some combinations of the capillary pressures it is possible that none of
the solutions of Eq. (36) satisfy Eq. (40). In that case the gas-oil AM may either
enter at positionbgo = b(2)

ow with contact angleθgoh, or, if θgoh > θgoa, the AM is

instead invading at a positionbgo > b(2)
ow with contact angleθgoa. Piri and Blunt

(2004) account for such capillary behavior, while we always assume the former
case with gas-oil AMs entering positionbgo = b(2)

ow if Eq. (40) is not satisfied. This
simplification is reasonable since the latter case rarely occurs when contact angle
hysteresis is assumed.

Thus, if Eq. (40) is not satisfied, the capillary entry pressures for the displacement
to configuration N are calculated again using Eq. (29). Since the contact angleθgoh

of the gas-oil AM entering positionbgo = b(2)
ow is unknown, the entry pressures have

to be solved from an iterative procedure. In this caseβgo is defined as

βgo = π

2
− α − θgoh. (41)
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Furthermore,Lsgo = L(2)
sow, and hence the second term on the right-hand side of

Eq. (29) vanishes. The capillary entry pressures are solved iteratively in the follow-
ing manner: assumergw = R as the initial value and calculatergo, βgo, Ago and
Lfgo from Eqs. (30), (31), (33), (34). A new value ofrgw is then calculated from
Eq. (29). Finally,Pcgo andPcgw are obtained from the converged values ofrgo and
rgw, by Eq. (4).

For the displacement from configuration E to I Eqs. (13), (15) are applied with
N fin

ow = 0, Igo = 0, Igw = 1. The gas-water AM invades at positionbgw = bpd,

implying thatLsgw = L(1)
sow. Thus, the energy balance equationW = �F , expressed

in terms of radii of curvature by Eq. (4), is given by

σgw

rgw
(Agw − A(1)

ow + A(2)
ow) + σgo

rgo
(A(1)

ow − A(2)
ow) =

L(2)
sowσgw cosθgwr + (Lsgw − L(2)

sow)σgo cosθgor

+ Lfgwσgw − (L(1)
fow + L(2)

fow)σow,

(42)

where

Agw = R2

2 tanα
− rgwbpd sin(α + βgw)

2
+ r2

gwβgw

2
, (43)

Lsgw = R

tanα
− bpd, (44)

Lfgw = rgwβgw, (45)

rgw sinβgw = bpd sinα, (46)

with βgw defined as

βgw = π

2
− α − θgwh. (47)

The cross-sectional fluid occupancy after gas invasion is shown in Fig. 3(d), and the
displacement in the direction along the tube is shown in Fig. 3(e). In this case the
gas-water AMs are invading at an unknown hinging contact angleθgwh. The capil-
lary entry pressures are solved iteratively in the following manner: assumergw = R
as the initial value and calculatergo, Agw, Lsgw, Lfgw andβgw from Eqs. (30), (43)–
(46). A new value ofrgw is obtained from Eq. (42). Finally,Pcgo and Pcgw are
calculated from the converged values ofrgo andrgw.

The actual displacement occuring for different capillary pressures are determined
from the three conditions for layer formation during invasion. Ifθgwr andθgor sat-
isfy Eq. (12a), the following cases must be considered for configuration E:

(i) The displacement is from configuration E to O if and only if the entry capillary
pressures satisfy

PE→O
cgw < Pcol

cgw, PE→O
cgw < PE→N

cgw and PE→O
cgw < PE→I

cgw . (48)
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(ii) The displacement is from configuration E to N if and only if Eq. (48) is not
met and the capillary entry pressures satisfy

PE→N
cgo < Pcol

cgo and PE→N
cgo < PE→I

cgo . (49)

(iii) The displacement is from E to I if and only if the capillary entry pressures do
not satisfy Eqs. (48), (49).

If only θgwr satisfies Eq. (12a), formation of gas-oil AMs is not possible, and hence
only the cases (i) and (iii) apply. Similarly, if onlyθgor satisfies Eq. (12a), water
layers do not form, and hence only the cases (ii) and (iii) apply. Finally, if bothθgwr

andθgor does not satisfy Eq. (12a), only case (iii) applies as the only geometrically
possible displacement is to configuration I.

Similar analysis of the entry capillary pressures is employed for the other oil-water
configurations. An interesting consequence of using the most favorable entry pres-
sure to determine the true displacement applies to mixed-wet tubes if AMs are
absent at positionbpd before invasion. For example, gas invasion into configuration
D is a displacement to configuration H or I. WithN init

ow = 0, N fin
ow = 1, Igo = 0 and

Igw = 1 in Eqs. (13), (15) the energy balanceW = �F becomes (Ma et al., 1996)

Agw

rgw
= Lfgw + Lsgw cosθgwr, (50)

where the gas-water parameters are given by Eqs. (43)–(47). For the displacement
to configuration IPcgw is calculated by iterations since the gas-water AM enters
positionbpd at an unknown contact angleθgwh, while for the displacement to con-
figuration H the resulting expression forPcgw is given by Eq. (28). If the geometric
conditions for the displacement to configuration H is fulfilled, i.e., if Eq. (12a) is
met forθgwr and the corresponding entry pressure agree with a positionbgw > bpd

of the gas-water AM, then the actual displacement is determined by comparing the
entry pressures of the respective displacements to configurations I and H. Similar
comparisons of the entry pressures are made for configurations B and G to de-
termine if the actual displacement occurs with gas-water AMs entering position
bgw = bpd or bgw > bpd.

For oil invasion into cross-sections occupied by gas and water, the equivalents of
Eqs. (13), (15) are given by

W = {−Pcgo Ago Igo + Pcow AowIow

+ (Pcgo + Pcow)
∑N init

gw

k=Nfin
gw+1

A(k)
gw(−1)k}δx,

(51)
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and

�F = {(Lfgo − Lsgo cosθgoa)σgo Igo + (Lfow + Lsow cosθowr)σow Iow

+ (σgo cosθgoa + σow cosθowr)
∑N init

gw

k=Nfin
gw+1

L(k)
sgw(−1)k

− σgw
∑N init

gw

k=Nfin
gw+1

L(k)
fgw}δx,

(52)

respectively. The cross-sectional parameters of the gas-water configurations H–L,
A(k)

gw, L(k)
sgw andL(k)

fgw, are given by expressions similar to the corresponding oil-water
parameters in configurations B, C and E–G. The capillary entry pressures and the
associated displacements during oil invasion are derived correspondingly, except
that displacements resulting in gas-oil AMs separating bulk oil from gas in lay-
ers are not allowed because of the assumed wetting sequences. Thus,Igo = 0 in
Eqs. (51), (52).

5.2 Water into gas, oil and water

In the following we consider water invasion into cross-sections containing all three
phases. In configuration O and Q the bulk phase is bounded by water layers, and
water invasion is therefore a two-phase displacement with the associated entry cap-
illary pressure given by simple two-phase expressions (e.g., Helland and Skjæve-
land, 2004a). As configuration P is already occupied by water in the bulk, the only
possible configuration changes in this case are fluid-layer-collapse events. Thus,
we restrict the analysis to cross-sections with oil layers surrounded by bulk gas and
water in the corners, i.e., configuration M and N, as this is the only case where
the three-phase entry capillary pressures are employed during waterflooding. The
cross-sectional parameters of the oil-water AM in configuration M and N are given
by Eqs. (16)–(20), withb(1)

ow = bpd for configuration N. The parameters of the gas-
oil AM are given by Eqs. (31)–(33), withβgo defined as in Eq. (41), and the position
bgo expressed by

bgo = rgo cos(θgoh + α)

sinα
(53)

to account for the possibility of a hinging gas-oil contact angle before waterflood-
ing.

Water invasion into configuration N is a displacement to configuration D, E or P,
while water into configuration M results in either configuration G or D as additional
AMs are not allowed to form, by assumption (ii), Section 4. If a reducedPcow

causes a change in configuration by an increase of the area of water in the corners,
e.g., by a displacement from configuration M to H, then the capillary entry pressure
and the associated displacement is updated for the new configuration during the
simulations. In the following we omit descriptions of such configuration changes
that may occur prior to piston-like invasion of water.
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The gas-water capillary pressure at which the gas layer in configuration P collapses
is (Piri and Blunt, 2005)

Pcol
cgw =




Pcgo
σgw

σgo

cosθgwa + sinα

cosθgoh − sinα
if θgwa > π − θgoh,

Pcgo
σgw

σgo

cos(θgwa − α)

cos(θgoh + α)
if θgwa ≤ π − θgoh,

(54)

and the oil-water capillary pressure at which the oil layers in configuration E and
G collapses is (Helland and Skjæveland, 2004a)

Pcol
cow = σow(ξ2 − 1)

b(1)
ow

(
ξ cosα +

√
1 − ξ2 sin2 α

), (55)

where

ξ = cosθowa

sinα
+ 2. (56)

We first consider the case whenθowa andθgwa satisfy Eq. (12b) since then all as-
sumed displacements are geometrically possible. The capillary entry pressure for
the displacement from configuration N to P is given by the simple two-phase ex-
pression

Pcgw = σ

R

[
cosθgwa −

√
tanα

2
(− sin 2θgwa + 2θgwa − 2α − π)

]
. (57)

For the displacements to configuration E or G the energy balance equation yields

σgw

rgw
Ago + σow

row
(A(2)

ow − Ago) = Lsgoσgw cosθgwa

+ (L(2)
sow − Lsgo)σow cosθowa + Lfgoσgo − L(2)

fowσow,

(58)

where the capillary pressures are expressed in terms of the radii of curvature by
Eq. (4). The cross-sectional parameters of the oil-water AM that forms in the dis-
placement is given by Eqs. (22)–(24), whereb(2)

ow is obtained from Eq. (11) with
θow = θowa, and

β(2)
ow = π

2
+ α − θowa. (59)

Since the invading oil-water AM is not assumed to be hinging, Eq. (58) is formu-
lated as a polynomial which can be solved forrow whenrgw is eliminated from the
expressions by Eq. (6):

C1r2
ow + C2row + C3 = 0, (60)

where the coefficients are given by

C1 = σow

2

(sinβ
(2)
ow cosθowa

sinα
+ β(2)

ow

)
, (61)
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C2 = σgo Ago

rgo
− Lsgoσgw cosθgwa −

( R

tanα
− Lsgo

)
σow cosθowa − Lfgoσgo, (62)

and

C3 = σow
R2

2 tanα
. (63)

The solution of Eq. (60) has to agree with a positionb(2)
ow of the invading oil-water

AM located between the apex of the corner and the positionbgo of the gas-oil AM.
Thus, the solutionrow that satisfies

bgo sinα

sinβ
(2)
ow

≤ row < 0 (64)

is used to calculatePcow from Eq. (4). However, for some combinations of the cap-
illary pressures it is possible that none of the solutions of Eq. (60) satisfy Eq. (64).
In that case, the oil-water AM is assumed to invade at positionb(2)

ow = bgo with

a hinging contact angleθ (2)
owh which is now related toβ(2)

ow by Eq. (21). The capil-
lary entry pressures are calculated iteratively from Eq. (58) and Eqs. (21)–(25) as
described in Section 5.1.

For the displacements from configuration M or N to D the energy balance yields

σgw

rgw
Ago + σow

row
(A(1)

ow − Ago) = Lsgoσgw cosθgwa

+ (L(1)
sow − Lsgo)σow cosθowa + Lfgoσgo + L(1)

fowσow.

(65)

Eq. (65) and Eqs. (6), (16)–(20) are solved iteratively forrow, and the capillary
entry pressures are calculated from Eq. (4) using the converged values ofrow and
rgw.

The actual displacements occuring are determined next. Ifθgwa and θowa satisfy
Eq. (12b), the following cases must be considered for configuration N:

(i) The displacement is from configuration N to P if and only if the capillary entry
pressures satisfy

PN→P
cgw > Pcol

cgw, PN→P
cgw > PN→E

cgw and PN→P
cgw > PN→D

cgw . (66)

(ii) The displacement is from configuration N to E if and only if Eq. (66) is not
met and the capillary entry pressures satisfy

PN→E
cow > Pcol

cow and PN→E
cow > PN→D

cow . (67)

(iii) The displacement is from N to D if and only if the capillary entry pressures
do not satisfy Eqs. (66), (67).

If only θgwa satisfies Eq. (12b), formation of new oil-water AMs is not possible, and
hence only the cases (i) and (iii) apply. Similarly, if onlyθowa satisfies Eq. (12b),
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gas layers do not form, and hence only the cases (ii) and (iii) apply. Finally, if both
θowa andθgwa do not satisfy Eq. (12b), only case (iii) applies as the only geomet-
rically possible displacement is to configuration D. The analysis of configuration
M is similar for the different contact angle combinations, except that formation of
additional AMs are not allowed, as commented earlier. Thus, only the cases (ii) and
(iii) apply to determine the displacements from configuration M in waterflooding.

6 Numerical experiments

We have performed several simulations of gas and water invasion processes to study
the effect of a variable saturation history on the three-phase entry pressures and to
analyze the saturation dependencies of the capillary pressures. The simulations are
conducted on a bundle of 2000 tubes. The inscribed radii of the triangular tubes are
calculated from Eq. (7) assumingRmin = 1µm, Rmax = 100µm, Rch = 20µm and
η = 2. We consider a fluid system with the interfacial tensionsσgo = 0.015 N/m,
σow = 0.045 N/m andσgw = 0.055 N/m, representing realistic values for a system
of water, crude oil and natural gas (Whitson and Brul`e, 2000). Three different wet-
tability conditions are modelled, and the contact angles for each case are presented
in Table 3. Advancing and receding gas-oil and gas-water contact angles are cal-
culated from Eqs. (1), (2), respectively, from the specified values ofθowr andθowa.
The advancing contact angles of case 1 indicate strongly oil-wet conditions and the
receding contact angles indicate weakly oil-wet conditions. Case 2 always repre-
sents strongly oil-wet conditions, whereas the contact angle hysteresis of case 3
suggests weakly oil-wet conditions during waterflooding and water-wet conditions
during gas injection.

Although the model allows for any two-phase oil-water saturation history starting
with primary drainage, we have decided to introduce the gas phase after the first
imbibition in all simulations. This sequence of processes may occur in reservoirs
where gas is injected to increase oil recovery by pressure maintenance. The two-
phase saturation history is varied by terminating primary drainage at several values
of Pmax

cow , and by simulating gas invasion processes at differentPcow after imbibition.
Waterflooding processes are simulated from different capillary levels on selected
gas invasion trajectories.

Case θpd θowa θowr θgwa θgwr θgoa θgor

1 0◦ 180◦ 100◦ 123.1◦ 84.7◦ 30.4◦ 0◦

2 0◦ 180◦ 160◦ 123.1◦ 119.9◦ 8.1◦ 0◦

3 0◦ 100◦ 80◦ 84.7◦ 68.8◦ 36.5◦ 30.4◦

Table 3
Contact angles for the three different wetting conditions.
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Figure 4. Two-phase capillary entry pressures for imbibition as a function of pore size for
severalPmax

cow and contact angles of case 1 and 2.

6.1 Sensitivity analysis of three-phase capillary entry pressure

Capillary entry pressures are studied for piston-like displacements in gas invasion
and the following water invasion. For contact angles of case 1 and 2, configura-
tion E occurs frequently during imbibition, while configuration N may occur in the
subsequent gas injection. For gas invasion into configuration E, we investigate if
variations ofPmax

cow (corresponding to variations ofbpd by Eq. (8)) andPcow (cor-

responding to variations ofb(2)
ow by Eq. (25)) are sensitive toPcgw for the actual

displacements occuring. Similarly, for water into configuration N, we explore if
Pcgw is sensitive to variations ofP max

cow andPcgo (corresponding to variations ofbgo

by Eq. (53)).

We have previously found that the oil-water capillary entry pressure is sensitive
to Pmax

cow for displacements from configuration C to D whenθowa > π
2 (Helland

and Skjæveland, 2004a). This effect is demonstrated in Fig. 4. The distancebpd

decreases according to an increasedPmax
cow by Eq. (8), resulting in lower entry pres-

sures. The smaller tubes are more affected by the hinging oil-water AMs in the
corners than the larger tubes sincebpd does not depend on pore size. Thus, the pe-
culiar invasion order manifested by Fig. 4 depends on both pore size and fraction of
water-wet surface. However, the entry pressure for the limiting displacement from
configuration C to E does not depend onPmax

cow as the displacement is unaffected by
the water in the corners.

Results for case 1 with variation ofPmax
cow and other parameters fixed are shown

in Fig. 5. The displacements from configuration E to I exhibit a slight increase of
Pcgw as the level ofPmax

cow is increased. A more pronounced dependence ofPmax
cow is

observed when water into configuration N results in configuration D. In this case
Pcgw decreases with increasingPmax

cow , as shown in Fig. 5(b). Thus, an increased
water content in the corners tend to increase the entry pressure. This is similar to the
two-phase behavior presented in Fig. 4. The bottom curve in Fig. 5(b) represents
the limiting displacement from configuration N to E whenPcgw evidently does
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Figure 5. Capillary entry pressures as a function of pore size with differentPmax
cow for contact

angles of case 1. (a)Pcgw for displacements E to I withPcow = −3.0 kPa fixed. (b)Pcgw for
displacements N to D and E withPcgo = 2.0 kPa fixed. Gas was injected atPcow = −3.0
kPa.

not depend onPmax
cow anymore. Corresponding experiments performed with contact

angles of case 2 show the same sensitivity.

The effects of a variablePcow in displacements resulting from gas invasion into
configuration E is investigated whileP max

cow is unchanged. The results for contact
angles of case 1 and 2 are shown in Fig. 6(a), (b). The variations ofPcow presented
in Fig. 6(a) for case 1 contact angles are more sensitive toPcgw than the variations
of Pmax

cow plotted in Fig. 5(a). In displacements from configuration E to I and N,
Pcgw is negative and decreasing according to pore size even thoughθgor < π

2 and
θgwr < π

2 . This is because the area of oil in layers is constant for all pore sizes, and
hence the oil layers affect the entry pressure increasingly as pore size decreases.
Since the distanceb(2)

ow decreases withPcow, it is expected thatPcgw increases as
Pcow decreases. Eventually the limiting level ofPcow is approached, corresponding
to displacements from configuration D to I where the oil layers have collapsed be-
fore invasion. This latter displacement, which is independent ofPcow since oil is
absent, also occurs in smaller pore sizes where configuration E has not formed, as
shown in Fig. 6(a). In this casePcgw is positive and monotonic increasing as pore
size decreases. The experiment with contact angles of case 2 presented in Fig. 6(b)
exhibits the opposite behavior sinceθgwr > π

2 . In this casePcgw decreases accord-

ing to Pcow, and thus for a smaller distanceb(2)
ow the bulk gas-water displacement

occuring with contact angleθgwr affectsPcgw to a greater extent. However, in the
limiting displacement from configuration D to I, the gas-water AMs enter position
bgw = bpd while oil layers are absent, resulting in a higher level ofPcgw, as shown
in Fig. 6(b).

The effects of a variablePcgo on the entry pressures for water invasion into config-
uration N is investigated while the capillary pressures after primary drainage and
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Figure 6. Capillary entry pressures as a function of pore size withPmax
cow constant. (a), (b)

Effect of Pcow on Pcgw for displacements E to I and N withPmax
cow = 15 kPa. (c) Effect ofPcgo

on Pcgw for displacement N to D withPmax
cow = 15 kPa. Gas was injected atPcow = −1.97

kPa. (d) Effect ofPcgo on Pcgw for displacements N to E withPmax
cow = 150 kPa. Gas was

injected atPcow = −3.0 kPa.

imbibition are fixed. Since the advancing contact angles of case 1 and 2 are equal,
the same behavior occurs in water invasion for both cases. Results are presented in
Fig. 6(c), (d) for two differentPmax

cow values. The displacement to configuration D is
favorable for smallPmax

cow , and Pcgw increases according toPcgo in this case. For a
much largerPmax

cow , the displacement to configuration E occurs, withPcgw decreas-
ing as Pcgo is increased. However, the variations ofPcgw shown in Fig. 6(c) are
smaller than the variations occuring whenPmax

cow is changed, as shown in Fig. 5(b).
Thus, for the particular sequence of processes investigated here using the specified
interfacial tensions and contact angles of case 1 or 2, we find thatPcgw is more
sensitive to the location of the oil-water AM than the gas-oil AM for the range of
capillary pressures where the displacements from configuration N to D occur.
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6.2 Saturation dependencies

The capillary pressure vs. saturation relationships computed from the bundle of
triangular tubes are compared with the results from a bundle of cylindrical tubes,
using the constraint that the total cross-sectional area of all tubes,A p, and the
capillary pressure curves for primary drainage are identical in both models. This
enables us to study the effect of pore geometry and contact angle hysteresis on
the subsequent invasion processes. van Dijke et al. (2001a,b) analyzed the satura-
tion dependencies of three-phase capillary pressures and relative permeabilities for
mixed-wet conditions without contact angle hysteresis using a bundle of cylindri-
cal tubes. They identified three regions in the saturation space where the capillary
pressures have different saturation dependencies. In each region one phase acts as
“intermediate-wetting” in the sense that only the capillary pressure between the
other two phases depends on more than one saturation. The regions remain un-
changed for all invasion processes, since there exists a unique relation between
saturation and pore occupancy. This is certainly not true if contact angle hysteresis
is assumed since different pore occupancies may occur for the same saturations.
Thus, the location, size, and existence of these regions depend in general on the
invasion processes and the saturation history for a given set of interfacial tensions
and contact angles. In accordance with van Dijke et al. (2001a,b), we take oil as
intermediate-wetting phase in region I, gas as intermediate-wetting in region II,
and water as intermediate-wetting in region III.

The bundle of cylindrical tubes is made comparable to the bundle of triangular
tubes in the following manner: a set of primary drainage data(Pcow, Sw)i , i =
1, . . . , m + 1, calculated from a model ofm triangular tubes, is used to calculatem
cylindrical pore sizesRi from the Young-Laplace equation:

Ri = 2σow cosθpd

Pcow,i
, i = 1, . . . , m. (68)

The frequencies of the cylindrical pore sizes,fi , are calculated from the relation

fiπ R2
i = −�Sw,i A p, i = 1, . . . , m, (69)

where the data are organized in the order of decreasing water saturation, and�Sw,i =
Sw,i+1 − Sw,i. The same contact angles and interfacial tensions are employed for
the respective geometries. The simulation procedures are similar for both mod-
els, except that in the bundle-of-cylindrical-tubes model the cross-sectional areas
are multiplied by the corresponding pore-size frequencies in the saturation calcu-
lations. Only four cross-sectional fluid configurations apply to the cylindrical ge-
ometry, of which one is equivalent to configuration A, representing cross-sections
that always have been occupied by water. The three other configurations represent
cross-sections occupied by gas, oil and water in cases where the wettability has
been allowed to change. Consistently with the assumptions for the triangular con-
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Figure 7. Capillary pressure curves for primary drainage and imbibition for the triangular
(in blue) and cylindrical (in green) geometries.

figurations, we do not allow gas to invade the waterfilled cylindrical cross-sections
where oil has never been.

Two-phase capillary pressure curves are shown in Fig. 7. The imbibition curves
from the two models are in good agreement for high values ofP max

cow , while pro-
nounced differences can occur ifPmax

cow is decreased. This is caused by the capillary
behavior in the triangular tubes demonstrated in Fig. 4. In the simulations with
contact angles of case 1, primary drainage is terminated whenPmax

cow = 15 kPa.
At this capillary level some of the smallest pore sizes remain waterfilled. During
imbibition of the bundle of triangular tubes, the configurations may be arranged as
A–D–C–D–E in order of increasing pore size at a certain capillary level. The imbi-
bition process for the bundle of cylindrical tubes is much simpler. Starting with the
largest pore size, water invades successively smaller pores. Thus, the discrepancies
observed in the shape of the two imbibition curves in Fig. 7 is explained by differ-
ent entry pressures, which results in different invasion orders of the pore sizes in
the two models.

Displacement paths for the subsequent gas invasion are shown in Fig. 8(a). The
simulations by both models are generated from equal initial saturations. This im-
plies that the corresponding trajectories calculated by the two bundles represent
oil-water “iso-caps” (capillary pressure iso-lines) at different levels ofPcow since
the imbibition curve for the triangular and cylindrical geometry generally differs,
as shown in Fig. 7. In the bundle-of-triangular-tubes-model, the displacements are
in general from configuration C to I and N in the smaller pores, from configuration
D to I in the medium-sized pores, and from configuration E to I and N in the larger
pores. A deviation from this scenario occurs for the gas invasion atSw = 0.1, where
configuration D has not yet formed, and for gas invasion atSw = 0.9, where the
displacement D to I occurs in some of the smallest pores as well. The trajectories
generated from the bundle of cylindrical tubes show that gas first invades most of
the pores occupied by oil, representing a large region in the saturation space where
Pcow depends only onSw, followed by simultaneous invasion into pores occupied
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by oil and water, representing a small region II wherePcow depends on two sat-
urations. The corresponding results generated from the bundle of triangular tubes
agree fairly well, except that the region wherePcow depends on two saturations is
larger. This can be explained by different entry pressure in the models, as shown in
Fig. 9(a) for gas invasion atSw = 0.1 where the deviation in region II is conspic-
uous. Since the gas-oil capillary pressure required for gas to enter configuration E
is lower than for corresponding gas-water displacements in the cylindrical tubes,
larger oil-filled pore sizes are invaded simultaneously, resulting in a larger region
for the triangular geometry wherePcow depends on two saturations. The displace-
ments E to I and N occur at entry pressures increasing with pore size, as opposed
to similar displacements in cylindrical tubes. This effect may also yield further de-
viations in region II. However, smaller deviations are expected for gas injections at
larger water saturations sincePcgw for gas into configuration E increases asPcow

decreases, as demonstrated in Fig. 6(a).

The following waterfloods are initiated from various saturations on the gas invasion
path starting atSw = 0.1. Since the gas invasion paths for the two models differ
slightly, waterfloods for the triangular tubes are generated in such a way that the
displacement paths meet the initial point on the corresponding trajectories for the
cylindrical tubes, as shown in Fig. 8(b). The displacement paths calculated from the
two bundles represent gas-oil iso-caps at different levels ofPcgo since the capillary
pressure in gas invasion for the two geometries generally differs. In all the water-
floods of the triangular tubes the displacements are from configuration C to D in
the smaller tubes and from configuration N to D in the larger tubes. The oil-water
capillary pressure for these displacements are plotted in Fig. 9(b) as a function of
pore size. The capillary behavior in the displacement C to D is equivalent to the
behavior shown in Fig. 4. Clearly, gas first invades all pores occupied by bulk oil,
except for the waterfloods initiated from the two lowerPcgo values, where the dis-
placements C to D occurs simultaneously in some of the smaller pores. Moreover,
in the displacements N to D, oil in layers are displaced in addition to the bulk gas,
which further explains why the trajectories does not follow the lines of constant
oil saturations exactly. However, these effects are absent in the cylindrical tubes,
and thus the trajectories traces lines of constant oil saturations, implying thatPcgo

depends only onSo.

Because of contact angle hysteresis, different saturation dependencies may occur in
the different invasion processes. To investigate this, we calculate iso-caps for the re-
maining two capillary pressures from the gas and water invasion data, by employing
thecontour function in MATLAB † . This function uses an interpolation method
to calculate iso-lines, and thus small oscillations may occur in the results due to
possible abrupt changes in the directions of the displacement paths. Nevertheless,
general trends can be read from the results, and consequently regions of different
saturation dependencies can be detected. Lines of constantPcgo andPcgw for gas in-

† MATLAB is a registered trademark of TheMathWorks Inc.
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Figure 8. Results for triangular tubes (in blue) and cylindrical tubes (in green) using contact
angles of case 1. (a), (b) Displacement paths for gas and water invasion. (c), (d)Pcgo and
Pcgw iso-lines calculated for gas invasion. (e), (f)Pcow and Pcgw iso-lines calculated for
water invasion.
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Figure 9. Capillary pressure as a function of pore size with case 1 parameters. (a)Pcgo for
the displacements occuring in the gas invasion starting atSw = 0.1. Triangular tubes (in
blue) are compared with cylindrical tubes (in green). (b)Pcow for displacements occuring
in the triangular tubes during the waterfloods.

vasion are shown in Fig. 8(c), (d) providing additional evidence of the existence of
region I in most of the saturation space for the cylindrical tubes. The results for the
triangular tubes exhibit the same general trends, and thusPcow is a function ofSw,
Pcgo is a function ofSo, while Pcgw depends on two saturations. However, because
of the possibility of simultaneous displacement of the phases occupying a triangu-
lar cross-section, these dependencies are only approximate, although the deviations
caused by displacement of fluid layers may not be visible in the plots. Other rea-
sons whyPcgo is not unique with respect toSo are addressed when the simulation
results for contact angles of case 3 are discussed. The level ofPcgo agrees fairly
well for both models, while the level ofPcgw is generally higher for the triangular
tubes. This is explained by the increased difference of imbibition capillary pressure
at largeSw, resulting in different levels ofPcgw by Eq. (5). Lines of constantPcow

and Pcgw during the waterfloods are shown in Fig. 8(e), (f). In this case bothPcow

andPcgw are higher for the triangular tubes. This is explained by the effect of water
in the corners in displacements from C to D and N to D, as demonstrated in Fig. 4
and Fig. 5(b), respectively. During waterflooding of the cylindrical tubes, region II
occurs, and thusPcow has become a function of two saturations, whilePcgw depends
only on Sw, and Pcgo depends only onSo. As in gas invasion, these dependencies
are only approximate for the triangular tubes although the results display the same
qualitative trends. The different saturation dependencies appearing in the gas and
water invasion processes are caused by significant hysteresis between receding and
advancing oil-water and gas-water contact angles.

We have shown that the capillary entry pressures, and thereby the level of capillary
pressure, may be strongly affected by the value ofPmax

cow . To investigate if a changed
reversal point after primary drainage can result in different saturation dependencies
as well, we simulate the gas and water invasion processes with contact angles of
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Figure 10. Results for triangular tubes (in blue) and cylindrical tubes (in green) with contact
angles of case 3 andPmax

cow = 15 kPa. (a), (b) Displacement paths for gas and water invasion.
(c), (d) Pcgo and Pcgw iso-lines calculated for gas invasion. (e), (f)Pcow and Pcgw iso-lines
calculated for water invasion.
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Figure 11. Gas-oil capillary pressure as a function of pore size for gas invasion with contact
angles of case 3 andPmax

cow = 15 kPa. Results for triangular tubes (in blue) and cylindrical
tubes (in green) are compared.

case 2 and 3 for two very different values ofPmax
cow . The gas invasion trajectories for

contact angles of case 3 withPmax
cow = 15 kPa are shown in Fig. 10(a). During gas

injection, the displacements are from configuration D to I in the smaller pores, from
C to I and N in the medium-sized pores, and from D to I in a few large pores. The
arrangement of displacements is different in the model of cylindrical tubes where
gas invasion into waterfilled pores exlusively occurs in the large pores and invasion
into oil occurs in the smaller pores. This feature causes large differences in the
displacement paths at smallSo for the two models. Fig. 11 shows a comparison of
Pcgo for the displacements occuring in the bundles when gas is injected atSw = 0.3.
In the range ofPcgo where simultaneous invasion into medium-sized oilfilled pores
and large waterfilled pores occurs, the water saturation exhibits a more pronounced
decrease for the cylindrical tubes, as shown in Fig. 10(a). This is caused by the
different water distributions in the bundles, and thus the contribution ofSw from the
large cylindrical pore sizes is larger than from the corresponding triangular tubes.
At higher Pcgo, gas displaces bulk water in the triangular tubes while gas displaces
oil in the cylindrical tubes, as demonstrated by Fig. 11.

The gas invasion trajectories and the calculated gas-oil and gas-water iso-caps, pre-
sented in Fig. 10(a), (c), (d), respectively, reveal that region I occurs for the cylin-
drical tubes at highSo, and thusPcgw depends on two saturations, whilePcgo is a
function of onlySo. However, the corresponding results from the triangular tubes
show that bothPcgw and Pcgo depend strongly on two saturations. The different
saturation dependencies ofPcgo are caused by different water distributions in the
bundles. This is illustrated in Fig. 12(a), (b), where the pore occupancies in the
bundles are indicated for gas injection at two different inital water saturationsSw1

and Sw2. The corresponding largest oilfilled pores prior to gas invasion isR1 and
R2. In the bundle of cylindrical tubes, gas invades successively smaller oilfilled
pores, and thusR2 is invaded at the same oil saturation in both cases, implying that
Pcgo2 = Pcgo(R2) corresponds to a unique oil saturationSo2. Thus,Pcgo depends
on only the oil saturation, which is in agreement with similar analysis made by van
Dijke et al. (2001a,b). However, this dependency is violated for the triangular ge-
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Figure 12. Sketches of the bulk pore occupancies during gas invasion with contact angles
of case 3 andPmax

cow = 15 kPa. Gas is injected at initial water saturationsSw1 andSw2, and
the largest oilfilled pore size before gas invasion isR1 andR2 in the two cases. For clarity,
waterfilled pores of configuration A are not shown. (a) Cylindrical tubes. (b) Triangular
tubes. (c) CorrespondingPcgo − So curves.

ometry since water also invades the smaller pore sizes in the preceding imbibition,
as depicted in Fig. 12(b). Consequently, gas invades pore sizeR2 at different oil
saturations in the two gas invasion processes, implying that the oil saturation is not
unique with respect toPcgo2, as shown in Fig. 12(c). IfPmax

cow is reduced, water may
only invade the smaller triangular tubes during imbibition, by Fig. 4. In that case, a
similar reasoning based on pore occupancies implies thatPcgo becomes a function
of only Sg. At smaller oil saturations, gas starts to invade the large waterfilled pores
in order of decreasing pore size, as illustrated in Fig. 12(a), (b). This can occur
at different saturation combinations in both models, and thusPcow and Pcgw are
functions of two saturations in the bundle of cylindrical tubes, while allthree cap-
illary pressures are functions of two saturations in the triangular tubes, as shown in
Fig. 10(a), (c), (d). Such regions where more than one capillary pressure depends
on two saturations occurs because of contact angle hysteresis and were therefore
not identified by van Dijke et al. (2001a,b).
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Figure 13. Gas-water capillary pressure as a function of pore size for the waterfloods with
contact angles of case 3. (a) Results for triangular tubes (in blue) and cylindrical tubes
(in green) are compared whenPmax

cow = 15 kPa. (b) Results for triangular tubes when
Pmax

cow = 150 kPa.

The displacement paths for the subsequent waterfloods, presented in Fig. 10(b), ex-
hibit conspicuous differences between the two models. The configurations for the
triangular tubes are in general arranged as A–D–C–N–D in order of increasing pore
size at the different stages where the preceding gas invasion was terminated. The
oil layers in configuration N collapse at early stages of the waterfloods because of
increased water content in the corners. This results in sudden increases of the gas
and water saturations before the piston-like displacements take place, as shown for
the waterflood originating from the highest gas saturation in Fig. 10(b). Thus, the
displacements are from configuration N to I to D and from C to D. The differences
in the behavior ofPcgw during waterflooding of the two bundle models are illus-
trated in Fig. 13(a). Clearly, the deviations are caused by the displacements from
configuration C to D.

Fig. 10(b), (e), (f) reveal that region III occurs for the cylindrical tubes during wa-
terflooding, and thusPcgo depends on two saturations, whilePcow is a function of
only So, and Pcgw is a function of onlySg. However, the dependency ofPcgw is
violated for small oil saturations since two of the waterfloods are originating from
smaller water saturations, and thus gas has started to invade the largest pores before
the preceding gas injection was terminated. This is illustrated by the pore occupan-
cies shown in Fig. 14(a). The results for the triangular tubes exhibit two regions
where the capillary pressure have different saturation dependencies. The pore oc-
cupancies at early stages of the waterfloods, where water only invades configuration
C, are shown in Fig. 14(b) (top). The water saturation is more or less constant in the
preceding gas injection, implying thatPcow is a function ofSw in this region, while
Pcgw is a function of two saturations. These dependencies are further demonstrated
by Fig. 10(e), where thePcow iso-lines track constant water saturations, while the
iso-lines ofPcgw are curved, as shown in Fig. 10(f). Moreover,Pcgo is a function of
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Figure 14. Sketches of the bulk pore occupancies during waterflooding for contact angles
of case 3 andPmax

cow = 15 kPa. The largest pore size occupied by oil before waterflooding is
denotedR1. For clarity, waterfilled pores of configuration A are not shown. (a) Fluid distri-
bution during waterfloods from different initial gas saturations for the cylindrical tubes. (b)
Fluid distribution at different stages of the waterfloods for triangular tubes.

Sg, since water only invades oilfilled pores. These saturation dependencies does not
occur in the corresponding simulations with cylindrical tubes as water invades both
oil- and gasfilled pores initially, as demonstrated by Fig. 13(a) and Fig. 14(a). At
larger water saturations, the scenario shown in Fig. 14(b) (bottom) occurs, and thus
Pcgo depends strongly on two saturations. In this region, water invasion into the
medium-sized pores contributes significantly to to the increase of water saturation,
implying thatPcow becomes strongly dependent onSo in this region. A comparison
with Fig. 14(a) shows that this relation is exact for cylindrical tubes since water
invasion of the small oilfilled tubes does not occur in order of increasing pore size,
as for the triangular geometry. The boundary between the large gas- and waterfilled
tubes in Fig. 14(b) remains stationary, implying thatPcgw behaves as a function of
only Sg. Furthermore, the calculated iso-caps show that the level ofPcow andPcgw

is higher in waterflooding of the triangular tubes, which is caused by the capillary
behavior in Fig. 13(b).

Similar experiments are performed for the contact angles of case 3 withPmax
cow =

150 kPa. In this case, the water content in the corners is very small, and thus we
expect that the two models show better agreement. The same configuration changes
occur in the triangular tubes as in the previous simulations withP max

cow = 15 kPa.
However, the bulk pore occupancies in the bundle has become equal to the scenario
for the cylindrical tubes shown in Fig. 12(a) and Fig. 14(a). Selected results are pre-
sented in Fig. 15. The gas-oil iso-caps calculated for gas injection reveal thatPcgo

has become strongly dependent onSo since bulk water is only present in the largest
pores as in Fig. 12(a). The displacement paths and the gas-water iso-caps for the
gas injections match correspondingly. The displacement paths for the waterfloods
in Fig. 15(b) also show a better agreement. However, the triangular tubes yield a
region at smallSw where Pcgo behaves as a function of onlySo. Thus, water in-
vades some of the larger gasfilled pores before successively smaller oilfilled pores
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Figure 15. Results for triangular tubes (in blue) and cylindrical tubes (in green) with contact
angles of case 3 andPmax

cow = 150 kPa. (a)Pcgo iso-lines calculated from the gas injections.
(b) Displacement paths for the waterfloods.

are invaded as well. This is caused by slightly higher entry pressures in the smaller
gasfilled pores than in the larger oilfilled pores, as shown in Fig. 13(b). Notice also
the large difference in capillary levels for the displacement from configuration C
to D as compared to the case withPmax

cow = 15 kPa in Fig. 13(a). The calculated
iso-caps for the waterfloods are not shown here, but a good agreement between the
two models is obtained, except for smallSw, wherePcow derived from the triangular
tubes depends strongly on two saturations.

Results for the gas and water invasions with contact angles of case 2 andP max
cow =

6.0 kPa are shown in Fig. 16. Because of the smallPmax
cow value, configuration A

remains present in a large amount of the smaller tubes in the invasion processes.
At the different stages of imbibition where gas is injected, the configurations in the
bundle of triangular tubes are arranged in order of increasing pore size as A–C–D
for small Sw and as A–D–C–D for largerSw. Gas invasion into configuration D is
always a displacement to I, while water into configuration C is a displacement to I
in the smaller tubes and to N in the larger tubes. Gas invades successively smaller
oilfilled pores first, until invasion proceeds into successively larger waterfilled pores
simultaneously, as demonstrated by the displacement paths in Fig. 16(a), and by the
entry pressures in Fig. 17. The triangular tubes show a stronger decrease ofSw than
the cylindrical tubes since the entry pressure for the displacement D to I does not
decrease as much with decreasing pore size as the entry pressure for the equivalent
displacements in the cylindrical tubes. Thus, a smaller range of capillary pressure is
required for gas to invade large tubes of configuration D than for similar displace-
ments in the bundle of cylindrical tubes. The displacement paths for the cylindrical
tubes in Fig. 16(a) together with the calculatedPcgo and Pcgw iso-lines, presented
in Fig. 16(c), (d), respectively, reveal the existence of region I for smallSg, where
only Pcgw depends on two saturations, and region II for largerSg, where onlyPcow

depends on two saturations. Thus,Pcgo is a function of onlySo in both regions.
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Figure 16. Results for triangular tubes (in blue) and cylindrical tubes (in green) with contact
angles of case 2 andPmax

cow = 6.0 kPa. (a), (b) Displacement paths for gas and water invasion.
(c), (d) Pcgo and Pcgw iso-lines calculated for gas invasion. (e), (f)Pcow and Pcgw iso-lines
calculated for water invasion.
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Figure 18. Gas-water capillary pressure as a function of pore size during waterflooding of
the triangular tubes with contact angles of case 2 andPmax

cow = 6.0 kPa.

As in previous simulations, the saturation dependency ofPcgo is violated for the
triangular tubes since water also invades the smaller pore sizes in the preceding
imbibition. This also causesPcgw to become strongly dependent on two saturations
in the entire saturation space. Furthermore, the level ofPcgo is slightly higher for
the cylindrical tubes, while the level ofPcgw is higher for the triangular tubes, as in
the previous simulations of gas injection.

Displacement paths for the waterfloods generated from different stages of the pre-
ceding gas injection are presented in Fig. 16(b). After the gas injections are termi-
nated, the configurations are arranged in order of increasing pore size as A–C–N–I
for small Sg. The displacements occuring are from configuration C to D, from I to
D, and from N to I to D. The latter displacement represents collapse of the oil layers
in configuration N before piston-like invasion, which is caused by increased water
content in the corners during early stages of the waterfloods. The configurations
are arranged as A–C–I–N–I when gas injection is terminated at largeSg, and the
corresponding displacements are from C to D, from I to D, and from N to I to D. As
shown in Fig. 16(b), the displacement paths from the bundle of triangular tubes can
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Figure 19. Bulk pore occupancies sketched at different stages of the waterfloods for contact
angles of case 2 andPmax

cow = 6.0 kPa. (a) Scenarios for cylindrical tubes. (b)–(d) Scenarios
for triangular tubes when the initial gas saturation are (b) small, (c) medium, and (d) large.
Waterfilled tubes of configuration A are not shown.

have a variety of shapes corresponding to different invasion orders. This is further
manifested by Fig. 18 where the variations ofPcgw for the piston-like displacements
occuring in the waterfloods are shown. In the bundle of cylindrical tubes, water first
invades all the gasfilled pores in order of decreasing pore size, as illustrated by the
pore occupancies in Fig. 19(a). Thus,Pcgo depends only onSo, while Pcgw depends
only on Sw in the cylindrical tubes. These dependencies agree approximately with
the triangular tubes only for the waterfloods initiated from small gas saturations.
This is because the change of water saturation by invasion into large gasfilled pores
is more significant than the corresponding change by invasion into the smallest oil-
filled pores, as illustrated in Fig. 19(b). The saturation dependencies derived from
the triangular tubes change dramatically when waterflooding is initiated at interme-
diate and high gas saturations. Typical pore occupancies in these cases are shown
in Fig. 19(c), (d). Since the positions of the gas-water and oil-water boundaries
in Fig. 19(c) (bottom) may vary differently relative to each other for different ini-
tial gas saturations, the designated pore sizesRo andRg may be invaded by water
at different saturation combinations, implying that all three capillary pressures are
functions of two saturations. This is unlike the scenario depicted in Fig. 14(b),
where the boundary between gasfilled and large waterfilled pores does not move,
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Figure 20. Results for waterflooding of triangular tubes (in blue) and cylindrical tubes (in
green) with contact angles of case 2 andPmax

cow = 150 kPa. (a) Displacement paths. (b)
CalculatedPcow iso-lines.

and hencePcgw behaves as a function of onlySg in that case. At high gas satura-
tions, a larger amount of the small oilfilled pores are invaded first, as illustrated in
Fig. 19(d) (top). This results in a small region wherePcow behaves as a function
of only Sw, while Pcgo behaves as a function of onlySg. These significantly dif-
ferent behaviors of the two models during waterflooding are further elucidated by
the calculated iso-caps presented in Fig. 16(e), (f). Differences are most noticeable
in Fig. 16(f) where thePcgw iso-lines for the cylindrical tubes track constantSw,
whereas the triangular tubes clearly deviate from this dependency at small oil sat-
urations. As in the previous simulations, we find that the level ofPcow and Pcgw is
significantly higher for the triangular tubes during waterflooding.

Corresponding experiments are simulated for case 2 whenPmax
cow = 150 kPa, and

some selected results are shown in Fig. 20. After imbibition, configuration C has
formed in the smaller tubes, while configuration E has formed in the larger tubes.
Configuration A is absent since all tubes were invaded by oil in primary drainage.
The displacements occuring in gas injection are from configuration C to I and N in
the smaller tubes and from E to N in the larger tubes. In the subsequent water inva-
sions the displacements C to D and E occur in the small tubes, while displacements
N to E occur in the larger tubes. The pore occupancies at different stages of the
waterfloods are compatible with the scenario shown in Fig. 19(a) for both models,
resulting in an excellent agreement between the saturation dependencies and the
level of capillary pressure during the sequence of invasion processes.

The results indicate that the presence of water in the corners of mixed-wet tubes
may have a pronounced effect on the saturation dependencies of three-phase capil-
lary pressures when contact angle hysteresis is assumed. The effect of hinging AMs
in the corners duringtwo-phase displacements is identified as the main reason why
different saturation dependencies can occur in the triangular and cylindrical ge-
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ometries. The fractions of water-wet and oil-wet area in a triangular tube vary with
pore size. As a consequence, the saturation dependencies generated from the tri-
angular tubes, withPmax

cow fixed, may display trends similar to those derived from a
bundle of cylindrical tubes with distributed contact angles (van Dijke and Sorbie,
2002a). Furthermore, the fraction of water-wet area in the triangular tubes, quan-
tified in terms ofbpd, decreases asPmax

cow is increased. Ma et al. (1996) derived the
critical contact angle corresponding to zero entry pressure in the displacement from
configuration C to D whenθowa > π

2 :

θcrit
owa = arccos

[−bpd sinα

R
tanα

− bpd

]
. (70)

Thus, for smallPmax
cow , which corresponds to largeθ crit

owa, we expect the saturation
dependencies to agree more with water-wet conditions, e.g., withPcgo as strongly
dependent onSg, see Fig. 10(b), (c). Similarly, for largePmax

cow , which corresponds
to smallerθ crit

owa, we expect the saturation dependencies to agree more with oil-wet
conditions, e.g., withPcgo as strongly dependent onSo, see Fig. 15(a), (b). On the
other hand, ifθowa < π

2 , we do not expect the saturation dependencies to change
according toPmax

cow , since water always starts to invade the smallest pores. Thus, a
good agreement between the saturation dependencies from cylindrical and triangu-
lar geometry is expected when contact angle hysteresis is absent, as in the work by
van Dijke and Sorbie (2005).

7 Summary and conclusions

A bundle-of-triangular-tubes model has been developed for simulation of three-
phase capillary pressure curves for mixed-wet conditions. Contact angle hysteresis
leads to a diversity of different fluid configurations that can occur in the cross-
sections during different sequences of the invasion processes. Algorithms are for-
mulated to determine the actual displacements occuring for all combinations of
receding and advancing contact angles, including the possibility of simultaneous
displacement of the fluids present in the cross-section. Expressions for the corre-
sponding capillary entry pressures are derived, accounting for hinging interfaces at
fixed positions in the corners while the contact angle changes according to capil-
lary pressure. This is an extension of the method proposed by van Dijke and Sorbie
(2003) who considered three-phase entry pressure in angular tubes of uniform wet-
tability.

The sequence of processes primary drainage, imbibition, gas injection and water-
flooding are simulated for a specific set of interfacial tensions and three different
combinations of contact angles representing oil-wet conditions with variable con-
tact angle hysteresis. In these invasion processes, gas may invade configurations
with oil layers bounded by bulk water and water in the corners (configuration E),
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while water may invade configurations with oil layers bounded by bulk gas and wa-
ter in the corners (configuration N). We have investigated if the three-phase entry
pressures for such displacements are sensitive to the capillary pressures at the end
of the preceding invasion process and to the capillary pressure at the end of primary
drainage,Pmax

cow . The specific conclusions are as follows:

(i) The gas-water capillary pressure,Pcgw, for gas invasion into configuration E,
is more sensitive to variations of the oil-water capillary pressure,Pcow, than
to variations ofPmax

cow . Furthermore,Pcgw increases with decreasingPcow if
θgwr < π

2 , while Pcgw decreases according toPcow if θgwr > π
2 .

(ii) The gas-water capillary pressure for water invasion into configuration N is
less sensitive to variations ofPcgo than to variations ofPmax

cow for the range of
capillary pressures where configuration N occurs.

The three-phase capillary pressure vs. saturation relationships calculated for the
gas and water invasion processes are compared with corresponding results from a
bundle-of-cylindrical-tubes model, using the constraint that the capillary pressures
in primary drainage and the pore volumes are identical for both geometries. The
specific conclusions are as follows:

(i) For moderate levels ofPmax
cow , the two models may yield different saturation

dependencies of three-phase capillary pressure. In the bundle of triangular
tubes,two or even allthree capillary pressures may depend strongly on two
saturations in the same region of the saturation space, while the corresponding
results from the bundle of cylindrical tubes often show that only one of the
capillary pressures depend on more than one saturation in the same region.

(ii) The different saturation dependencies derived from the bundle of triangular
tubes result from capillary entry pressures that are affected by hinging in-
terfaces in the corners when contact angle hysteresis is assumed. In general,
these entry pressures predict different bulk pore occupancies than the simple
Young-Laplace equation which is valid for the cylindrical geometry.

(iii) The saturation dependencies derived from triangular tubes withP max
cow small,

agree more with expected behavior for water-wet conditions, e.g., withPcgo

strongly dependent onSg, while for high Pmax
cow , the results agree more with

expected behavior for oil-wet conditions, e.g., withPcgo strongly dependent
on So. This is explained by a reduced area of water-wet surface whenPmax

cow is
increased.

(iv) The level ofPcgw andPcow is generally higher for the triangular tubes than for
the cylindrical tubes during the gas and water injections.

(v) The saturation dependencies, capillary levels and bulk pore occupancies cal-
culated from triangular tubes approach the corresponding results calculated
from cylindrical tubes when the capillary level at the end of primary drainage
is increased.

The results from this work indicate that three-phase capillary pressure correlations
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for mixed-wet reservoirs should be formulated as functions of two saturations, as
proposed by Helland and Skjæveland (2004b).

Nomenclature

A Cross-sectional tube area
A p Total cross-sectional tube area in the bundle

b Position of arc meniscus
Cs Spreading coefficient

C1, C2, C3 Coefficients in polynomial, see Eqs. (37)–(39) and Eqs. (61)–
(63)

f Pore-size frequency
I Indicator notation, see Eq. (14)

Ls Cross-sectional fluid-solid length
L f Cross-sectional fluid-fluid length
N Total number of AMs present in a corner
P Pressure
r Radius of curvature
R Radius of the inscribed circle
S Saturation

W Virtual work
x Random number between 0 and 1
α Corner half angle
β Angle defined from geometry of the AMs in the corners

�F Change of surface free energy
δx Virtual displacement
η Parameter in the Weibull distribution
θ Contact angle
ξ See Eq. (56)
σ Interfacial tension

Subscripts

a Advancing
c Capillary

ch Characteristic
g Gas
h Hinging

max Maximum
min Minimum

o Oil
pd Primary drainage

r Receding
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w Water

Superscripts

col Collapse
crit Critical
fin Final
init Initial
(k) AM number counted in order from corner towards center

max Maximum
X → Y Displacement from configuration X to Y

Abbreviations

AM Arc meniscus
MS–P Mayer and Stowe – Princen
MTM Main terminal meniscus
WAG Water alternate gas
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