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Abstract

We consider analytical and numerical solution of NMR, relaxation under the con-
dition of surface relaxation in an equilateral triangular geometry. We present an
analytical expression for the Green’s function in this geometry. We calculate the
transverse magnetic response for the CPMG sequence, single-phase, both analyt-
ically and numerically. There is a very good match between the analytical and
numerical results.
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1 Introduction

In the oil industry there has been a great interest in using NMR as a tool
for improved reservoir characterizing. NMR can be used as an in situ tool for
measuring oil and brine content in saturated porous rocks(1,2,3,4]. The wet-
ting state of a porous rock is a parameter of great importance in oil recovery.
Wettability is the ability of a phase to adhere to the surface of the rock. NMR
is a very promising tool in order to obtain in situ information about wetta-
bility. Wettability is related to the enhanced relaxation felt by the confined
spins. This effect was first considered in the classical papers by Brownstein
and Tarr by studying classical diffusion [5,6]. For a completely water wet rock,
saturated with oil and water, only the water phase will experience enhanced
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surface relaxation. If oil enters a porous rock, initially water filled and water
wet, the oil can change the wetting state of the rock from water-wet to more
oil-wet. Surface active components in the oil can adsorb on the rock phase
and change the wettability. The change of surface properties of the rock will
produce a measurable effect on the NMR signal, this has been studied in nu-
merous publications, see [7] and the references therein. Experiments on porous
rocks is well suited for showing an effect of enhanced surface relaxation due
to wettability change. However, by studying more simple systems, more infor-
mation can be gained in order to understand how wettability will affect the
magnetic signal. For this purpose an equilateral triangular geometry is well
suited. This is because two or more phases can form a stable configuration
inside the triangle. A great deal of attention have been devoted to triangles in
order to understand the multi phase behavior of porous rocks[8,9,10]. Trian-
gles are the basic building blocks in pore network models[11] and also bundle
of equilateral triangular tubes models have been studied extensively [12,13].
Attempt of using a bundle of equilateral triangular tubes in interpreting NMR
signal from porous rocks have also been done[14].

Experiments on triangular tubes single-phase and two-phase are in progress
at our group. In order to interpret experiments properly one needs a good
theoretical understanding of the magnetic response from equilateral tubes. In
this paper we will present an analytical solution and a numerical (random
walk) solution for the CPMGJ[15] sequence in an equilateral triangular geom-
etry. Calculations and simulations for the PFGSE sequence[16,17,18], will be
presented in a forthcoming paper.

2 Theory

The equilateral triangular geometry is a true two dimensional system, con-
trary to plate, cylinder and sphere geometry, first considered by Brownstein
and Tarr[6]. This problem is much harder to solve, the technical reason for
this is that it is not possible to choose a coordinate system where the axes are
parallel to the sides of the triangle. Fortunately the calculation greatly simpli-
fies because of a series of recent papers by Mccartin, which solves the diffusion
equation in an equilateral triangular geometry[19,20,21]. The magnetization
as a function of time is given by the following equations[5,6]:

OM (r,t) M (r,t)

= DV*M(r,t) — =
2b

(1)

T5, is the bulk relaxation and D the diffusion constant. At the surface, 3, we
have we have the following boundary condition:
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where 1 is the outward normal and p the surface relaxivity. The magnetization
of the sample is :

M(t) = /A drM(r, 1), (3)

where the integral is taken over the triangular domain. By introducing the
Green’s function we can write the magnetization as:

M(r,t) = e /T /A dr' p(r')G(r'|r;1) (4)

where p(r’) is the initial spin density. G(r’|r;t) is the Green’s function or the
propagator. It is defined as the probability for a particle at position r’ at time
0 to diffuse to point r during a time t. The propagator satisfies the diffusion
equation at the interior of the pore space:

OG (r|r';t)

5 — DV?G(r|r’;t) =0 and G(r|r';t)],—o = o(r — 1), (5)

where D is the diffusion constant. The boundary condition at the surface % :

Dn-VG(r|t';t) + pG(rlr'st) = = 0. (6)

3 The Green’s function in an equilateral triangular geometry

By using the standard eigenfunction expansion of the propagator:
G(rlr'st) = Z ¢i(r) gy (x')e T, (7)
i=0

where {¢;} are an orthonormal set of eigenfunctions with corresponding eigen-
values T;. From equation (5) and (6) it then follows:

DV?6,(r) = —:6,(x) and Div-Vo(r) +po(e)ees =0 (8

This equation needs to be solved in an equilateral triangle, shown in figure
1.The solution is in terms of unnormalized eigenfunctions[21] :
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Fig. 1. Equilateral triangle of side length a and inscribed radius R
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R = a/(2V/3) is the radius of the inscribed circle in an equilateral triangle of
side a. The index s, a of the eigenfunctions refers to symmetric,antisymmetric
about the line x = a/2, respectively. The constants p, v, A, 1, 2, d3 are de-
termined by solving the following three transcendental equations originating
from the boundary condition (8):

2L — M — N — (i + j)r]tan L = 37,—%<L§O
2M — N — L —ir]tan M = 3 ,O<M§g
2N — L — M — jr]tan N = 3y ,O<N§g, (11)
where v = Rp/D,i=0,1,...,7=14,i+1,... and
Si=L-M-N ,6=—L+M—-N ,83=-L—M+N
u:—QM_WN_LH,u:—QN_L_MH,Az—u—w (12)



Finally, the eigenvalues are given by:

p1_ 2D

7= (7) bt ] 3

R

When ¢ = j we have M = N, 05 = 03, p = v and 2w = 09 — 07 + 2im. The
eigenfunctions simplifies:

2T
T — cos |ZTH,
zz($7 y) COs [ 3R Yy 52}
+2 cos [\;T;R(\/gR — x)} cos {%(y —3R) + 09

Ti(z,y) =0

_ 4D (7?2

Tl == <_> , 14
o= (14

The complete set of orthogonal eigenfunctions is then {T}5(i > j); T35(i > j)},
for further details on this point see[21].

In order to obtain explicit expressions for the propagator we need to normalize
the eigenfunctions over the triangular domain i.e. :

i 3R —y/V3+2V3R
Nt [T s Tl Taey) 15)

in an obvious notation, the subscript ¢, j has been suppressed. After a rather
lengthy manipulation, the result can be written:

N2 _9V3R?
o 16u2r2
—8c0s[20; — 2] — Ay sin[205] + 16 sin[26, — 2ur] } (16)

{ — 8 — 8p*m? + T cos[28,] + 8 cos[2um] + cos[20y — 4uT]

for : = 7 and
NS2:Na2 :F[:u7ya51a52]+F[V>/J“a61753]+F[V?_/J“_Va52>53]
+Q[/~L762] +Q[V7 63] _'_Q[_/J’_ v, 61]7 (17)

for i # j, where F' and @) are given in equation (A.3) and (A.5) respectively.
More details are given appendix A. The propagator can then be written:
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4 The CPMG amplitude in an equilateral triangle

From equation (4) it is obvious that the antisymmetric modes do not con-
tribute. It actually turns out that only the diagonal modes (i = j) give non
vanishing contribution to the magnetic signal !, for further details on this
point see Appendix A. From equation (3), (4) and (18) we find :

M(t) — o /T2 Z//drdr’p(r') iz’(r) f,i(r/)e_t/Ti’i
=0
— 86_t/T2b Z 6—t/TM /dr/p(r/)j—;:fi(r/)
=0

X (cos[ds] — cos[dy — 2um] + 2p sin|[d5])
X {8(1 + p27?) — 7 cos[285] — 8 cos[2um] — cos[20, — 4ur]

-1
+8 cos[20 — 2] + Ap sin[205] — 16y sin[26, — 2]} (19)

We need to know the initial excited spin density. We will consider two cases
one with uniform spin density, p(r) = 1/(3v/3R?) and one with all the excited
spins in the center of the triangle p(r) = §(z — v/3R)d(y — R). For a uniform
spin density, the magnetization is:

oo —t/Ti;
M(t) = 12e~4/Te0 > e( E (cos[8a] — cos[dy — 2um] 4 2pum sin[d,])?
— (um

X{S(l + p27?) — 7 cos[285] — 8 cos[2um] — cos[20, — 4ur]

-1
+8 cos[20; — 2] + Ay sin[20,] — 16pm sin[20, — 2urr]} . (20)

And for all the excited spins in the center of the triangle:

I This is only the case for the CPMG sequence, for the PFGSE sequence all the
modes contribute.



Table 1

Characteristic decay times as a function of surface relaxtivity , pore radius R and
diffusion coefficient D in an equilateral triangle. Note that the lowest mode is inde-
pendent of the diffusion constant in FDL, while the higher modes are independent
of the surface relaxtivity

Fast Diffusion Limit

D >> 7, (pR/D << 1)

Slow Diffusion Limit

D << 7, (pR/D >> 1)

(T2)oo o 1he
R2 R?
(T2)ii Ve 4D7r%(1+i)2
0 2
M(t) _ 246—t/T2b Z e—t/Tii COS[(SQ _ %]

i=0
X (cos[da] — cos[0y — 2um] + 2p sin[ds])

x{8(1 + p27?) — 7 cos[285] — 8 cos[2um] — cos[20, — 4ur]

-1
+8 cos[2dy — 2um] + 4pm sin[269) — 1647 sin[26 — 2,u7r]} . (21)

5 Fast Diffusion and Slow Diffusion Limit

There are two different time scales of interest. The relaxation time which is
dependent on the surface relaxivity, 7, ~ R/p and the diffusion time which is
dependent on the diffusion constant 7p ~ R?/D. If 7p >> 7, then we are in
the fast diffusion limit (FDL). On the contrary, if 7, >> 7 then we are in
the slow diffusion limit(SDL). In these two limiting cases the eigenvalues and
the analytical expression for the magnetic signal simplifies considerably. In the
FDL the spins traverse the triangular domain many times before they relax
and the magnetic decay is dominated by one mode. By simply replacing tan
with its argument in equation (11), we regain the famous result by Brownstein
and Tarr[6], by direct calculation:

1 2 S

= g = g 22

n, "R™"V (22)

We write the magnetic signal from the equilateral triangle as M (t) = >-2° I;; exp(—t/T};),
the coefficients and eigenvalues are summarized in the table 1 and 2. As seen

from table 2, the FDL is dominated by one mode and hence a single decay

time. In figure 2 we have plotted the eigenvalues as a function of ~.

As seen from figure 2 and 3 the eigenvalues, compared to the intensities, first
deviate from the FDL value for increasing . This means that the magnetic
decay is still mono exponential, but the simple relation Ty ' = pS/V is vi-



Table 2

The intensities in the fast and slow diffusion limit. Note that the sum of the in-
tensities add up to one as they should, 322 1/(1 +14)? = 7%/6 and Y o, sin[2(1 +

i /3)/(1 +14) = /6

Fast Diffusion Limit

D >> 7, (pR/D << 1)

Slow Diffusion Limit

D << 7, (pR/D >> 1)
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Fig. 2. Left: The eigenvalues as a function of v, Trpr, = r/(2p). Right: same as left
but log-log plot. For v = 0.1 there is a 10% deviation and at v = 0.4 there is a 20%

deviation from the FDL.
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Fig. 3. Left: the first four intensities for uniform initial spin density. Right: the
first four modes for all spins initially at the center of the triangle. Note that the
asymptotic limit for the intensities are Iy = 0.61,1.65, I; = 0.15,—-0.83, I = 0.07,0
and I3 = 0.04,0.41 for the uniform and delta densities respectively.

olated. The deviation in the intensities from the FDL happens faster in the
case where all the spins start in the center. This should be no surprise as the
spins must transverse a larger area, in this case, before they relax.



Fig. 4. Grid for random walk simulation, lattice spacing ¢ and side length a, unit
outward normal vectors np s 3,

6 Numerical Algorithm - Random Walk

One way of numerically studying the NMR signal from a pore is by random
walk simulations[22]. For random walk simulation in an equilateral triangle we
choose a hexagonal grid, see figure 4. A random walker is placed at random
at a lattice point in the equilateral triangle. The number of random walkers
at an interior point r ( see figure 4) when the clock advance one step 7 is then
given by :

1 . .
M(r,t+7) = M(r,t)=¢ [M(r + €i,t) = M(r,t) + M(r — ei,t) — M(r,1)
+ {id. with (¢ — j)} + {id. with (i — k) }|
—KkM (7, t) (23)
The probability for a random walker to take a step in each direction is 1/6,

the probability for a random walker to die during the timestep 7 is x. Dividing
by 7, we find:

= 2

M(r,t+7)— M(r,t) € [M(r%—e%,t)—2M(r,t)+M(r—e;ﬁ,t)
€

. 67
+ {id. with (3 — )} + {id. with (i — &)}]
—SM(r,t) (24)

The lattice spacing is given by e. Taking the limit 7 — 0, € — 0, kK — 0:

oM € [82M FPM M

K
ot or o of aﬁ]‘?M(’"’t)' (25)



Changing from lattice coordinates to Cartesian coordinates:

a_2+a_2_|_a_2—§ 0_2_'_0_2 (26)
o 05 Ok* -2\ 922 oy? )’
we finally arrive at :
oM M
—— = DV’M — — h 2
T \Y T where (27)
€ 1 K

This is the same equation as (1). Consider the surface normal to the ns-vector
(in figure 4), at a lattice point at the boundary surface give the following
equation:

M(r,t+7)— M(r,t) 2 € [M(r+ek,t) — 2M(r,t) + M(r — ek, t)

€ =-€e— 5

T 3 At €
26 M(r —ei,t) — M(r,t)
341 €
2 M(r—ej,t) — M(r,t)

+__
341 €
1Ce
———M(r,t
3 T (/r" )
e M(r,t) (29)
T

We have assumed that the walkers have a probability ¢ of being killed when
hitting the wall. If a walker is not killed it is assumed to return to the interior
point in the same timestep. In the limit 7 — 0, € — 0, the fractions involv-
ing M are recognized to approach M /0t, * M /de*, —OM/di and —OM /D7,
respectively. Using the following relation:

g 0 "

and as the LHS and the first term on the RHS in equation (29) are of higher
order in €, they can be neglected compared to the others, hence :

1 Qe
P T
By symmetry the other boundary sides give the same answer and we then
regain equation (2).

Dn;-VM+ pM =0 and (31)

10



Using the fact that number of lattice points from corner to corner along an
edge is
N=1+a/e, (32)

from equation (28) and (31) we find the following important relation:

pr 1
=—=—-(N-1 33
1= =2V 1) (33)
For a given ~ the probability for a random walker to die when it hits the wall
can be calculated from equation(33).

The magnetic signal can then be calculated numerically by placing a number of
random walkers inside the equilateral triangular domain. For uniform initially
spin density the walkers are placed at random and for the delta density all
the walkers start in the center of the triangle. At each timestep the walkers
take one step of length € and dies with a probability x. If the walkers hits the
wall it dies with probability (. The magnetic signal will then be proportional
to the number of walkers at each timestep 7. The lattice spacing and time is
related to the physical length and time by using equation (28).

6.1 The relative importance of relaxation types

Let 6 denote the ratio of bulk relaxation and boundary relaxation rates. In
the fast diffusion limit, with a comparatively flat distribution of walkers, ¢ can
be estimated by combining the ratio of bulk lattice points? (N(N +1)/2) to
boundary lattice points (3(N — 1)) with the appropriate ratio of relaxation
probabilities (a boundary walker will suffer relaxation with probability (/3 on
this lattice except in the very corner positions, where the probability is 2¢/3):

N 1+1/N & 1 a N)(N+1)
2 (1-1/N)2C  4V3pTay (N —1)°

2

— 1 e _lip (34)

O 4B pTy, 67Ty

As follows from inspection of equation (27) and (31), and implicitly stated by
Brownstein and Tarr[5,6] the solutions for the average magnetization M will
be three-parameter functions. In addition to v and @, one of the intrinsic time
scales, 7p for diffusion and 7, for relaxation at the boundary, respectively, may

2 The boundary points counted among them here, since both ( and x small in the
limit N — oo (e — 0). If not, (N — 2)(N — 3)/2 to be used; anyway no difference
in the limit e — 0.

11



be chosen as a parameter:

a? a 2 /2 x107° ecm?/s
T = 1 = 1255 x <0'1 mm) ( = ) (35)

a® a a 5 um/s
= gp/T=2V3, =173 SX(OImm)( ’ )

One such set of parameters may thus be

a2

{fy’ E’H}

From equation (34) it follows that, physically, # depends on the bulk sink
strength density measured in units of the inverse time scale for relaxation at
the boundary.

6.2 Scaling in random walk simulations

Eliminating e between equation (28) and equation (32) gives a relation between

the intrinsic time scale for diffusion and the time step length in a simulation
with a given N value:

2

2 _ 4

4D

If, for given ~ and @ values, the average magnetization is plotted not against

the actual time ¢ or the integer time step counter ¢/7 but in units of the

intrinsic time scale, viz., a plot against

(N —1) (37)

t

then the results for various {N,(} consistent with the given ~ value should
be expected to plot on top of each other, provided inaccuracies due to finite
N values are unimportant. This follows since t/7 oc (N — 1)?, where N is
not a physical parameter but an artificial one determined by the simulation
conditions. Technically, there would thus be a scaling property in the limit
N — o0, in that the magnetization should depend only on a certain algebraic
combination of simulation parameters.

The predicted scaling has been checked numerically for several v values, using
0 = 0 (no bulk relaxation), and has indeed been found to hold. (The origins
and magnitude of deviations from exact scaling will be discussed below.) Its
practical value is that for a given simulation, one may choose that set of values
for {N,(} which gives an optimally acceptable combination of accuracy and
computing time requirements.

12
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Fig. 5. (N, ¢)-dependency for v = 1, 105 walkers (Mersenne Twister). Note that as
N increases the numerical solution moves towards the analytical solution

6.3 Sources and estimates of simulation inaccuracy

Figure 5 shows the results of simulations of the average magnetization M for
~v = 1, in an interval of scaled time t/7p. The N values 26, 51, 101 and 201
were used; for each, 10 simulations with different random number generator
seeds have been plotted, with N,, = 10° random walkers released on the lat-
tice in each simulation. The lowermost line shows the analytical solution in
the same interval, plotted as the sum of 50 modes. The 'Mersenne Twister’
generator[23] was used in this plot as random number generator, but also runs
with single-precision versions of ran2 and ran3[24] were made. The simula-
tions organize themselves in bands corresponding to the four N values used,
with N increasing from above (the bands for N = 101 and N = 201 partially
merging).

Various sources of error in the simulations can be discerned:

e Random:

- Small fluctuations in the curves increase with increasing IV, for the same
number of random walkers.

- Generator seed / number of walkers: With each curve showing an average
over N, = 10% walkers, for each N value there is still a seed-dependent
spread within a band of the order of 0.7 %.

- Truncation errors do not give important random effects in these simula-
tions; curves for a single-precision ran3 (not shown) have about the same
variance as those shown here.

13
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Fig. 6. Left:Comparison of random walk simulation (points) and analytical solution
(line) for v = 4 and 100. N = 501 and 10° random walkers. The initial spin density
is uniform. Right: Same as left but log scale on the x-axis instead of the y-axis.

e Systematic:

- Finite € effects: Since € oc 1/(N —1), choosing N too small makes the order
e terms in equation (29) increase in importance, thus violating equation
(31) in addition to introducing inaccuracies in the representation of the
derivatives in equation (27) and (31). The simulation results averaged over
seed values show a deviation from the analytical solution as a monotonous
function of N, of order 1 % for N = 101 and rapidly increasing as N
decreases. (Technically, these N-dependent systematic deviations may be
considered a ’scaling violation’.)

- Truncation errors: For N = 26 the results for ran3 (not shown) and for
Mersenne Twister are very close, but for increasing N the average dif-
ference between the bands becomes larger for ran3 than for Mersenne
Twister, so that for large N the bands actually make an 'undershoot’
(not shown) of the analytical result. Such effects may arise from trun-
cation when a random generator is used to make a choice with a given
probability.

The level of accuracy may vary with v and with the range of scaled time used.
For the values treated above, we conclude that N < 200 and N,, <~ 10° should
be used to obtain an accuracy in one given run of order 1 % or better.

In figure 6 and 7 we have compared numerical and analytical results. There
is clearly a very good match. The largest deviation between numerical and
analytical results are for long times. This is natural as the number of walkers
is low and the statistic is poorer.Note that if one extrapolate the straight line
for high v values in figure 6 (left) and 7 (left), it crosses the y-axis at 6/72
and 6/m. We have also made some comparison with § # 0, i.e. with bulk
relaxation (see equation (34)). In figure 8, we have plotted results for § = 0.1,
1. 8 = 0.1,1 corresponds to a bulk relaxation of 1.7, 0.17 s respectively.
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Fig. 7. Left:Comparison of random walk simulation (points) and analytical solution
(line) for v = 0.1,1 and 10. The initial spin density is a delta density. N = 501 and
10% random walkers. Right: Same as left but log scale on the x-axis instead of the
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7 Conclusion

We have presented an analytical solution for the magnetic signal from an equi-
lateral triangular pore, with surface relaxation. To our knowledge this solution
has not been presented before. This solution will be used in theoretical studies
of single- and two-phase NMR response from equilateral triangles, which can
be used as basic building blocks for pore scale models. This solution is also
very important when interpreting experiments done at equilateral triangular
tubes, which is in progress at our group.

We have considered two initial conditions. In the first case the spin density is
uniform and in the second case all the excited spins are concentrated in the
center of the triangle. In both cases there is an excellent agreement between
theory and the random walk simulations.

In a forthcoming paper we will present results for the PFGSE sequence, the

single-phase result can be calculated from the Green’s function presented in
this paper. Two-phase results for any value of v must in general be solved by

15



a random walk algorithm, except for the limit v — 0 where analytical results
can be found. The analytical result will then serve to calibrate the numerical
random walk algorithms for two-phase.

Acknowledgments

The authors acknowledge ConocoPhillips and the Ekofisk Coventurers, includ-
ing TOTAL, ENI, Hydro, Statoil and Petoro, for financing the work and for
the permission to publish this paper from the research center COREC.

A Normalization and eigenfunction integral over the triangular do-
main

s,a2 SRR
N> = A /y/\/g Ts,a(xa y>TS7CL(x7 y) (A1>

in an obvious notation, the subscript i, j has been suppressed. After a rather
lengthy manipulation, the result can be written:

Ns2,a = F[u, v, 51, (52] :l: G[,u, v, (51, (52] + F[V, M, 51, 53] :l: G[V,,u, (51, (53]
FF v, —p — 1,80, 8] £ Glo, —p — 1,62, 6]
+ :U“752]j:P[:U“?V>52]+Q[V753]j:P[Va:uaé?)]

Ql
+Q[—p — v, 6 £ Pl—v — p, p, 61, (A.2)

the lower sign is for the anti symmetric mode and the upper sign for the
symmetric modes and:

3v/3r2
42 (p + v)m?
+(p + v)(—v cos|dy — b9 + 2]
—p cos[0y + o] + pcos[dy + O2 + 2vm] + 2pvm sin]dy + d9))
—sin[d; — do] sin[2(p + v)7] } (A.3)

Flu,v,01,00] = {v cos[o1 — do] (v + pcos2(p + v)7])
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27+/3r? (« 1
8(2u + v)m? u? + pv — 202

G[,u, v, 51,52] = —

(2(—=(2p + v) cos[d1 + 0] + (1 + 2v) cos[dy + 03 + ;(—,u + v)m)

+(p — v) cos[dy + b2 + g(u + 2v)7]))

3
_Acos[dy — b + %(25 + v)msin[3 (2u + v)m] ) (A4)
ptv
Qlu, 0] = %(008[2(52 — pm)] — cos[24s]
+2um(pum — sin[2(de — um)])) (A.5)
Plv. b)) = — 27+/3r?

32(p — v)(2p + v) (1 + 2v) 72
(e +2v)(( + 2v) cos|209) — (21 + v) cos|202 + %(—,u + v)m|

+ cos[20y — %(Q,u +v)m)) — 8(u—v)(2n + I/)sin[%(,u +2v)m] ) (A.6)

As a partial check on the calculation, we may consider the diagonal elements.
In this case equation (14) is valid and after a short calculation one finds:

N2 9v/3r2
T 16u2r2
—8 c0s[20, — 2] — Apurw sin[205] + 16 sin[25, — 2pur] } (A7)

{ — 8 — 8p*1? + 7 cos[28,] + 8 cos[2pum] + cos[20y — 4uT]

Using 05 — 03, 4 — v and 6 — 09 — 2wu + 2iw, we find from equation
(A.3-A.6)
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G[V7 Hy 517 53] - G[:uv v, 617 52] - F[Vv 22 617 53] - F[,uv v, 617 52]
3v/3r? cos[dy — ]
H
2u27?
x(cos[52 — pm] — cos[dg 4+ pm| — 2um sin[dy — ,Lm]) (A.8)

1

Plv, p, 03] = Plu, v, 03] — SFlv, —p = v, 03, 6]

3v/3r?
_ —

8u2m?

1 1
X (1 + cos[2d9) — 2 cos2um] — 2 cos[209 — 4]
+um sin[252]) (A.9)

1
Q[V7 63] - Q[/J’a 52] - +§G[V7 K=V, 527 53]
_ 3v/3r?
82
x(cos[252] — ¢08[209 — 2um] — 2pm(pum — sin[20y — 2,u7r])) (A.10)
Plop = v, 1,0] = Q[—p — v, 61]
3v/3r2
32u%m?
X ( co8[209] — cos[20 — 4um] + dpum(2um + sin[252])) (A.11)

Summing these equations, N =4 x (
find that N} is given by equation (A.
that when 7 # j, we have :

(A.8) + (A9) + (A.10) + (A.11)) we
7) and NZ = 0. Actually it turns out

1

st :Ntl2 :F[M7V761762] +F[V7M761753] +F[V7_:U’_V762753]
YO, 63) + Qv 8] + Q[—pt — 1,84] (A.12)

The last equation is verified by solving the boundary conditions (11) numeri-
cally for different values of v = pr/D.

Integrating the symmetric modes over the equilateral triangular domain, we
find:
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3r p—yvV3+2V3r
Acpmc = / / dadyT(z,y)
0 Jyv3

_ 27+/3r2
2w (p—v)(2u+v)(u+ 2v)
x{(,u — v) cos[dy] + (pu + 2v) cos|da] — (2 + v) cos[ds]

+(p + 2v) cos[ds + 2%(# —v)] = (2u + v) cos[dy + 2%(—# +v)]
+(p — v) cos[dy — Qg(u +v)] + (1 + 2v) cos[o, + 2%(2;1 +v)]
+(u — v) cos[dz — 2%(# + 2um)| — (2u + v) cos[d; + Qg(u + 21/)]} (A.13)

From equation (12), we find:

01 — 209 + 03 . 01 — 203 + 09
-+ V= ———

_ _ A14
I 5 o J (A.14)

We need to consider two cases separately, 7 = i, j = ¢ mod 3(i # j). For
j =1 we have in addition d3 = d2 (u = v). We then find:

i=j 9\/§T2

CEMG = W{cos[ég] — cos[dg + 2im — 2um] + 2 sin[do] } (A.15)

For j =1 mod 3(j # i), we write j =i+ 3k, k=1,2,...

n B 18+/3r2
CPMG ™5y — 03 — 2km) (=01 + 0y + 2(i + k)m) (=01 + 05 + 2(i + 2k)7)
X{ (=62 + 83 + 2km) cos[01] + (61 — 93 — 2(i + 2k)7) cos|0o]
+(—01 + 09 + 2(i + k)7) cos[ds] } (A.16)

For the other cases, we find Agpmg = 0. Using the constraints imposed by the
boundary conditions (11) it turns out that Afpye = 0, this has been verified
numerically by solving equation (11) for different values of v = pr/D. We are
then left with equation (A.15) as the final result for the CPMG sequence.
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