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ABSTRACT

A simple bundle-of-triangular-tubes model is employed to calculate specific interfacial area
for primary drainage, imbibition and secondary drainage for mixed-wet conditions. Accurate
expressions for the capillary entry pressures are employed, that include the possibility of hinging
interfaces in the corners due to contact angle hysteresis. Analytical expressions for specific in-
terfacial area as a function of saturation and capillary pressure are derived for primary drainage,
assuming that only the interfaces between bulk and corner fluid is contributive to interfacial
area. Approximate correlations for interfacial area as a function of saturation are suggested for
the subsequent imbibition and drainage processes. The correlations are fitted to the simulated
data, and good agreement is obtained. We also demonstrate that hysteresis remains present in
the relationship between interfacial area, capillary pressure and saturation when contact angle
hysteresis is assumed. Hysteresis may be significant for both water-wet and mixed-wet condi-
tions.

1. INTRODUCTION

Fluid-fluid interfacial area is recognized in the literature as an important parameter in un-
derstanding various multiphase flow processes in porous media. Mass transfer processes such
as dissolution, adsorption and volitalization occur across interfaces and are strongly related to
interfacial area. In particular, the coefficient for interfacial mass transfer rate is assumed to be
proportional to the interfacial area [e.g., Kennedy and Lennox, 1997]. It has also been observed
experimentally that surfactants and bacteria may preferentially accumulate at the fluid-fluid in-
terfaces and affect the subsequent fluid transport [e.g., Schäfer et al., 1998]. Thus the magnitude
of the interfacial area is needed to quantify the efficiency and consequences of these processes.

Specific interfacial area between phase i and j is defined as

aij = 1

V
∫
Sij

dS, (1)

where V is a representative volume including both phases and Sij is the total area of the inter-
faces in V .

Despite the difficulties involved in direct measurements of the parameter aij as a function of
saturation in porous media, progress has been made the last ten years to develop more reliable
experimental methods. Saripalli et al. [1998]; Schaefer et al. [2000a] and Faisal Anwar et al.
[2000] employed interfacial tracer techniques to determine the two-phase interfacial area using
water-soluble surfactants. The mass of surfactant adsorbed at the interfaces was determined,
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and the Gibbs adsorption equation was employed together with measurements of interfacial
tensions to calculate the interfacial area. Schaefer et al. [2000b] used the same approach to
determine three-phase interfacial area.

Pore-scale modelling represents an appealing approach to estimate the interfacial area explic-
itly and to study its functional dependencies. This is mainly due to the possibility of calculating
several key parameters for multiphase flow simultaneously which may be difficult or even im-
possible to obtain from experimental measurements. Reeves and Celia [1996] calculated the
specific interfacial area between bulk fluids in a network constructed by conical pore throats
of circular cross-sections. More recently, networks of angular pore shapes have been used to
include the contribution of interfacial area from fluid-fluid interfaces in the corners of the pore
space [Dillard et al., 2001; Dalla et al., 2002]. Or and Tuller [1999] and Gladkikh and Bryant
[2003] have in addition included the area of thin films coating the pore walls in the calculations.

Other methods to calculate the interfacial area focus on the relationship between capillary
pressure and saturation (Pc − S). Based on thermodynamics, Bradford and Leij [1997] esti-
mated two- and three-phase interfacial area from measured Pc − S data. Oostrom et al. [2001]
derived analytical expressions for free and entrapped interfacial area as functions of water sat-
uration by assuming the Brooks–Corey [Brooks and Corey, 1964] and the van Genuchten [van
Genuchten, 1980] correlations for the Pc − S relationship. The estimated expressions were in
good agreement with experimental measurements.

Hassanizadeh and Gray [1993] argue that there exists a formal constitutive relationship be-
tween capillary pressure, saturation and specific interfacial area. They hypothesized that hys-
teresis in the Pc − S relationship was an artifact of projecting the Pc − S − aij surface onto
the Pc − S plane. New macroscale theories for multiphase flow have subsequently been de-
veloped that require the Pc − S − aij relationship [e.g., Gray, 1999]. Reeves and Celia [1996]
investigated the conjecture of Hassanizadeh and Gray [1993] with their network model. The aij
surfaces plotted as a function of Pc and S displayed a characteristic convex shape which indi-
cated that the functional relationship is nonunique, e.g., for any value of capillary pressure there
corresponds at least two points on the surface with different saturations and the same specific
interfacial area. Held and Celia [2001] calculated the aij surfaces with another network model,
and the same convex shape was observed. They simulated imbibition and drainage scanning
curves to cover the entire area within the bounding hysteretic Pc − S loop and found a small
separation between the imbibition and drainage surfaces. Thus they concluded that hysteresis
was essentially eliminated in their numerical experiments. However, they only calculated in-
terfacial area between the bulk fluids for water-wet conditions and hence neglected the impact
mixed wettability and corner fluid occupancy have on the capillary pressure.

In this paper we use a physically-based bundle-of-triangular-tubes model to calculate two-
phase specific interfacial area for mixed-wet conditions. The model is programmed in MAT-
LAB† and has been shown to reproduce main features of two-phase capillary pressure curves for
mixed-wet rock, scanning loops included [Helland and Skjæveland, 2004]. We derive analyti-
cal expressions for the specific interfacial area as a function of saturation and capillary pressure
for primary drainage and propose approximate correlations for the specific interfacial area for
subsequent imbibition and drainage processes. The correlations are compared with simulated

†MATLAB is a registered trademark of TheMathWorks Inc.
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FIGURE 1. Fluid configurations for primary drainage, imbibition, secondary
drainage, and secondary imbibition, with water in blue, and oil in red. The bold
lines along the sides represent lengths of the pore walls where the wettability
may have changed.

data. Finally, we challenge the conjecture of [Hassanizadeh and Gray, 1993] and explore if hys-
teresis can be eliminated for mixed-wet drainage and imbibition Pc − S curves when specific
interfacial area is incorporated in the relationship.

2. MODEL DESCRIPTION

In this work we employ a pore-scale model with a bundle-of-tubes representation of the pore
network, the tubes having equilateral, triangular cross-sections. This triangular geometry is
readily described by the half angle of the corner, α = π

6 , and the inscribed radius R. The
angular pore shape allows for representation of physical processes such as the establishment
of mixed wettability within a single pore and drainage through fluid layers in the corners of
the pore space [e.g., Kovscek et al., 1993; Hui and Blunt, 2000]. In this section we review the
aspects of the model which is relevant for the calculation of the specific interfacial area. The
model is described in detail elsewhere [Helland and Skjæveland, 2004].

The cross-sectional fluid configurations that may occur in a tube for the sequence of processes
primary drainage, imbibition, secondary drainage and secondary imbibition are shown in Fig.
1. The curvatures across the interfaces in the corners are allowed to be positive or negative
depending on the contact angles and the capillary pressure. Configuration A shows a tube
that has always been waterfilled, while configuration B–G represent tubes that at some point
have been invaded by oil. The bold lines indicate the lengths of the pore walls that have been
contacted by oil and hence may have altered wettability after primary drainage. Configuration
B and C may occur for the first time during waterflooding when the water content in the corners
has started to increase after primary drainage. Water invasion into configuration B is always a
displacement to configuration D, while water invasion into configuration C is a displacement to
configuration D or E. Configuration F may occur during secondary drainage when oil invades
configuration E. Configuration G may occur for the first time during secondary imbibition when
configuration B is invaded by water. To restrict the number of possible configurations we do not
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allow additional formation of interfaces in configuration F and G during subsequent saturation
reversals. In theory, although not very likely, the number of interfaces in a cross-section could
increase constantly as saturation reversals proceed, provided that contact angle hysteresis is
large.

The capillary pressure across an interface in a corner is given by

Pc = σ

r
, (2)

where r is the radius of curvature measured through the oil phase. For convenience we introduce
the radius of curvature rb measured through the bulk phase:

rb =
{

r if bulk oil is bounded by water,

−r if bulk water is bounded by oil.
(3)

To account for contact angle hysteresis and wettability alteration we use a receding contact
angle θpd in primary drainage, an advancing contact angle θa in imbibition, and a receding
contact angle θr in secondary drainage. The contact angles satisfy θpd ≤ θr ≤ θa. The angle
between an interface and the pore wall measured through the corner phase is given by

ψ =
{
θ if bulk oil is bounded by water,

π − θ if bulk water is bounded by oil.
(4)

For later use we apply the notation ψi = ψ(θi ).
After a reversal of saturation change, the interfaces in the corners, if present, may be stuck

at fixed positions while the contact angle changes with capillary pressure. The angle ψh hinges
according to

ψh = arccos
(b sinα

rb

)
− α, (5)

where b is the distance from the apex of the corner to the interface, and α is the half-angle of
the corners. If the advancing or receding contact angle is reached prior to piston-like invasion,
the interfaces in the corners begin to move at constant contact angles during a further change of
capillary pressure. The distance b is then changing according to

b = rb
cos(α + ψ)

sinα
, (6)

where ψ is equal to ψpd in primary drainage, ψa in imbibition, and ψr in secondary drainage.

2.1. Capillary entry pressures. The capillary entry pressures for piston-like invasion are cal-
culated from an energy balance equation which equates the virtual work with the associated
change in surface free energy for a small displacement of the invading interface in the direction
along the tube length. The energy balance equation relates the effective entry radius of curva-
ture, expressed by r , to the cross-sectional area exposed to change of fluid occupancy, Aeff, the
bounding cross-sectional fluid-solid and fluid-fluid lengths, L s and L f , respectively, and the
contact angle θ [e.g., Ma et al., 1996; Øren et al., 1998; Helland and Skjæveland, 2004]. This
relationship may be formulated as follows using the notation from Eqs. (3), (4):

rb = Aeff

Ls cosψ + L f
, (7)
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where ψ is equal to ψpd, ψa and ψr for primary drainage, imbibition and secondary drainage,
respectively. Furthermore,

Aeff = 3R2

tanα
− 3rbb sin(α + β)+ 3r 2

bβ, (8)

Ls = 6R

tanα
− 6b, (9)

L f = 6rbβ, (10)

and
rb sinβ = b sinα, (11)

with β defined as

β(ψh) = π

2
− α − ψh. (12)

If invasion occurs while the interfaces in the corners hinge at fixed positions b, then ψh �= ψ ,
and Eqs. (7)–(11) are solved iteratively to obtain a converged value of r . Whenψh = ψ , explicit
expressions for r are derived by combining Eqs. (7)–(12). This is always the case in primary
drainage since ψh = ψpd = θpd. The capillary entry pressure is finally calculated from Eq. (2).

2.2. Layer formation. Formation of fluid layers is only possible if the following condition is
satisfied:

ψ <
π

2
− α. (13)

Oil layers may form during imbibition if ψa satisfies Eq. (13), i.e., when a displacement from
configuration C to E or from B to G is possible. Similarly, water layers may form during
drainage if ψr satisfies Eq. (13), i.e., if a displacement from configuration E to F is possible.
A second requirement for layer formation is that the capillary presssures associated with these
displacements must be favourable compared to the collapse capillary pressure calculated when
the interfaces surrounding the layer meet at their midpoints[e.g., Øren et al., 1998; Hui and
Blunt, 2000; Helland and Skjæveland, 2004]. According to van Dijke et al. [2004] and Piri
and Blunt [2004] these two geometric conditions are necessary but not sufficient conditions for
layer formation. They argue that even if the above conditions are satisfied, one should also
calculate the entry pressure for the displacement without layer formation, e.g., the displacement
from configuration C to D, and compare it with the entry pressure for the displacement with
layer formation, e.g., the displacement from configuration C to E. The actual displacement is
the one associated with the most favourable capillary pressure. Hence, layers form if and only
if the two geometric conditions are satisfied and the displacement is the most favourable one. In
this work we follow van Dijke et al. [2004] and Piri and Blunt [2004] and employ all the three
conditions to determine if layers form, as opposed to Helland and Skjæveland [2004] who only
used the necessary geometric conditions.

3. CALCULATION OF INTERFACIAL AREA

Since we assume a model of straight triangular tubes, it suffices to consider the cross-sections
when calculating saturation and specific interfacial area. The cross-sectional area A of a tube is
related to the radius of the inscribed circle, R, by

A = 3R2

tanα
. (14)
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To calculate the area of oil and water occupied in corners and layers we use combinations of the
following equation with appropriate arguments ψ :

Ac(ψ) = 3r2(ψ + α − π

2
+ cosψ(

cosψ

tanα
− sinψ)). (15)

As an example, the area of water in the corners of configuration C is given by Ac(θh), whereas
the area of oil in layers of configuration E is calculated from Ac(π − θa)− Ac(θh) when the in-
terfaces bounding bulk water are advancing towards the corners. Thus, Eqs. (14), (15) constitute
the expressions required to calculate the saturation.

Specific interfacial area is calculated from Eq. (1) by adding the lengths of all oil-water
interfaces in the corners of the tubes and dividing by the total cross-sectional tube area in the
bundle. The interfacial lengths are readily expressed in terms of Eq. (10) with the appropriate
values for rb and ψ determined from Eqs. (3), (4), respectively:

L f = 6rbβ(ψ). (16)

As an example, the interfacial length in configuration C with hinging interfaces is 6rβ(θh).
The interfacial length in configuration E is given by 6rβ(θh) − 6rβ(π − θa) if the interfaces
surrounding bulk water advance towards the corners. Since the model only accounts for cross-
sectional configurations, it is not possible to calculate interfacial area between bulk phases.
Moreover, we neglect the contribution to interfacial area from possible thin films along the
sides of the tubes.

3.1. Analytical correlations for primary drainage. To develop analytical expressions for
specific interfacial area in primary drainage, we assume the simple pore-size density

f (R) = νR−ν
max Rν−1, (17)

which includes the adjustable parameter ν > 0. The uniform case corresponds to ν = 1.
Helland and Skjæveland [2004] have shown that this pore-size density is compatible with the
Brooks-Corey correlation if no water is residing in the corners after oil invasion, or if a bundle-
of-cylindrical-tubes model is assumed. The water saturation was expressed as a sum of two
terms,

Sw = Swb + Swc, (18)

where Swb is the contribution from the tubes completely filled with water, and Swc is the contri-
bution from the tubes with water residing in the corners after invasion. It was found that

Swb =
( c

Pc

)ν+2
, (19)

and

Swc = ε
ν + 2

ν

( c

Pc

)2[
1 −

( c

Pc

)ν]
, (20)

where ε is a geometry factor given by

ε = g1

g2
, (21)

with

g1(θpd) = cos θpd −
√

tanα

2
(sin 2θpd − 2θpd − 2α + π), (22)
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and

g2(θpd) = cos θpd +
√

tanα

2
(sin 2θpd − 2θpd − 2α + π). (23)

The capillary entry pressure c for the largest pore size Rmax is found by combining Eqs. (7)–(12)
with ψh = ψ = θpd and rb = r . This results in the relation

c = σ

Rmax
g2. (24)

By Eq. (19), capillary pressure may be expressed in terms of the bulk saturation as

Pc = cS−a
wb , (25)

where the pore-size distribution index a is related to ν by

a = 1

ν + 2
. (26)

If Swc = 0, which corresponds to the case when no water is residing in the corners after oil
invasion, the Brooks-Corey correlation [Brooks and Corey, 1964],

Pc = cS−a
w , (27)

is valid.
To derive analytical expressions for the specific interfacial area, we employ the definition

given by Eq. (1) as a starting point. For the bundle of triangular tubes, Eq. (1) yields

aow = Lf
∫ Rmax

Ro
f d R∫ Rmax

0 f Ad R
, (28)

since the length Lf is independent of pore size. The pore size invaded by oil at capillary pressure
Pc is denoted Ro. By combining Eqs. (7)–(12), we find that Pc is related to Ro by

Ro = σ

Pc
g2. (29)

Furthermore, with Lf = 6rβ(θpd) and r = σ/Pc, Eq. (28) may be written as

aow = 2cβ tanα

σg2
2

ν + 2

ν

c

Pc

[
1 −

( c

Pc

)ν]
. (30)

Eq. (30) relates specific interfacial area to capillary pressure. Eq. (25) may be inserted into
Eq. (30) to provide an equation which relates specific interfacial area to bulk water saturation:

aow = 2cβ tanα

σg2
2

ν + 2

ν
S

1
ν+2
wb

[
1 − S

ν
ν+2
wb

]
. (31)

Moreover, a comparison between Eqs. (20, (30) shows that corner water saturation is related to
specific interfacial area by

aow = 2Pcβ tanα

g1g2σ
Swc. (32)

We have solved Eqs. (18)–(20) and calculated specific interfacial area from Eq. (30) for different
combinations of Rmax and ν. The results are presented in Fig. 2. The level of specific interfacial
area and capillary pressure is more sensitive to variations of Rmax than to variations of ν. The
level of interfacial area is increased if the range of pore sizes is reduced. The aow(Sw) curves
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FIGURE 2. Primary drainage aow(Sw), aow(Pc) and Pc(Sw) curves calculated
from Eqs. (18)–(20), (30) using three different combinations of ν and Rmax.

exhibit the same general trends as measured data [Faisal Anwar et al., 2000; Schaefer et al.,
2000b; Oostrom et al., 2001].

3.2. Approximate correlations for the bounding hysteresis loop. Since the bulk water satu-
ration is much larger than the corner water saturation in most of the saturation range, we propose
to formulate interfacial area as a function of total water saturation by employing the same func-
tional form as in Eq. (31). Different rock and fluid properties are accounted for by including
adjustable parameters. Thus, for water-wet media we propose the correlation

aow = uwSvw
w (1 − Sqw

w ), (33)
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where the three parameters uw, vw and qw have to be determined. Obviously, uw has the same
dimension as specific interfacial area, whereas vw and qw are dimensionless.

For water invasion into a complete oilfilled and oil-wet bundle of triangular tubes with
Eq. (13) satisfied for θa, it can be shown that Eq. (31) is valid with the angle β(θpd) replaced
by β(θa), and with the bulk water saturation replaced by the bulk oil saturation. For mixed-wet
conditions we propose to formulate the interfacial area as a sum of two terms where one term
is expressed by the water saturation, as in Eq. (33), while the other term is expressed by the oil
saturation. This results in the correlation

aow = uwSvw
w (1 − Sqw

w )+ uoSvo
o (1 − Sqo

o ), (34)

where the two sets of the parameters u, v, q have to be determined. The oil saturation term is
intended to dominate at small oil saturations, while the water saturation term should dominate at
small water saturations. For mixed-wet conditions, interfacial area may decrease at small water
saturations in imbibition because of the displacement from configuration C to D. The interfacial
area may start to increase at larger water saturations due to the formation of oil layers in the
displacement from configuration C to E. When the oil layers collapse, interfacial area decreases
abruptly. Eq. (34) accounts for such behavior since the proposed correlation may yield a local
minimum and a local maximum of interfacial area.

To investigate the flexibility of Eqs. (33), (34), we have fitted the correlations to simulated
data. For this purpose we assume that the pore-size density is described by a truncated Weibull
distribution, which is a much more general distribution than the one defined by Eq. (17). The
pore sizes R are generated in the following manner: Pick random numbers x ∈ [0, 1] and
calculate inscribed radii from

R = Rch
( − ln[(1 − x) exp(−

[ Rmax − Rmin

Rch

]η
)+ x]) 1

η + Rmin, (35)

where Rmin, Rmin and Rch are the inscribed radii of the largest, smallest and characteristic pore
sizes, respectively, and η is a dimensionless parameter. In the simulations we set Rmin = 0μm,
Rmax = 100μm, Rch = 15μm and η = 1.5. Furthermore, σ = 0.050 N/m and θpd = 0◦.
Primary drainage is terminated at Pc = 25 kPa. In the subsequent imbibition and drainage pro-
cesses, we consider randomly distributed contact angles. For water-wet conditions we assume
θa ∈ [50◦, 80◦], while for mixed-wet conditions we assume θa ∈ [90◦, 180◦]. The receding
contact angles are calculated by θr = 0.5θa for both water-wet and mixed-wet conditions.

Eq. (33) is fitted to the primary drainage curve, while Eq. (34) is fitted to the main imbibition
and secondary drainage curves. A standard curvefitting method is employed to determine the
correlation parameters. The results are shown in Fig. 3, and the correlations agree fairly well
with the simulated data. A better match may be obtained using appropriate error weighting. A
comparison between Eqs. (33), (34) and Eq. (31) indicates that all parameters are likely to be
positive. However, to obtain a good match beetween the correlations and the simulated data,
one or two of the parameters in Eq. (34) turns out to be slightly negative in some cases.

There is a paucity of measured imbibition and secondary drainage interfacial area data in
the literature. However, the imbibition curve in Fig. 3(b) seem to display similar trends as
imbibition measurements [Fig. 5, Schaefer et al., 2000a]. Nevertheless, more data is required
to validate the correlations and to determine the applicability of the model to predict general
trends in interfacial area for various conditions.
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FIGURE 3. Specific interfacial area plotted against water saturation for primary
drainage, imbibition and secondary drainage. Simulation results are shown by
broken lines, while the proposed correlations fitted to the simulated data are
represented by the solid lines.

4. THE CONJECTURE OF Hassanizadeh and Gray [1993]

To investigate if hysteresis is absent in the Pc − Sw − aow relationship, as proposed by Has-
sanizadeh and Gray [1993], we employ our simple bundle-of-tubes model to perform the same
exercise as Held and Celia [2001]. They utilized a network model and generated a drainage aow
surface from drainage scanning curves initiated from different reversal points on the main imbi-
bition curve. Similarly, an imbibition aow surface was generated by imbibition scanning curves
initiated from different reversal points on the main secondary drainage curve. If the intersec-
tions of the two surfaces at constant Pc follow the same aow(Sw) curve, then hysteresis is absent.
Held and Celia [2001] found that the intersections essentially followed the same aow(Sw) curve,
and hence they concluded that the conjecture of Hassanizadeh and Gray [1993] could not be
rejected. However, Held and Celia [2001] only considered water-wet media and neglected the
contribution of interfacial area from interfaces present in corners of the pore space.

We explore if hysteresis can be eliminated when only interfaces between bulk and corner
fluids is contributive to interfacial area. The water-wet and mixed-wet cases modelled in Section
3 are both examined. After primary drainage, configuration A remains in a few of the smaller
tubes. Imbibition is terminated when Sw = 1 in the water-wet case. In the mixed-wet case,
imbibition is terminated when Sw = 0.995. At this stage, configuration E is still present in
some of the tubes.

The drainage and imbibition aow surfaces for the water-wet case are shown in Fig. 4(a), (b),
respectively, with the bounding hysteresis loop marked by bold lines. The surfaces display a
concave-convex shape, implying that for any value of capillary pressure there exists at least
two points on the surface with different saturations and equal interfacial area. Similarly, for
any value of saturation there exists at least two points on the surface with different capillary
pressure and interfacial area. The projections onto the aow − Sw plane show that the drainage
aow(Sw) scanning curves have a convex shape with a maximum value of aow at an intermediate
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FIGURE 4. Specific interfacial area aow plotted as a function of Pc and Sw for
water-wet conditions. Projections onto the Pc − Sw plane (green) and aow − Sw
plane (red) are also shown. The bounding hysteresis loop is marked by the bold
lines. (a) Surface created by drainage scanning curves. (b) Surface created by
imbibition scanning curves. (c) Planes at three constant Pc through the drainage
(dr) and imbibition (imb) aow surfaces.

value of Sw, similar to the primary drainage curves in Figs. 2, 3. These general trends are
in agreement with the simulations presented by Reeves and Celia [1996] and Held and Celia
[2001]. However, the corresponding imbibition scanning curves in the aow − Sw plane reveal
that aow decreases monotonically with increasing water saturation. This is different from the
results by Reeves and Celia [1996] and Held and Celia [2001]. The deviations are caused by
the significant contact angle hysteresis assumed in our simulations, which causes the interfaces
to hinge instead of moving with constant contact angles towards the center of the cross-sections
prior to piston-like water invasion.
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Intersections of the drainage and imbibition aow surfaces for three constant values of Pc
are shown in Fig. 4(c). Evidently, very different values of specific interfacial area occurs for
the different directions of saturation change, implying that hysteresis remains present in the
Pc − Sw − aow relationship. Notice also that the imbibition interfacial area is higher than the
drainage interfacial area for a constant value of capillary pressure. It should be emphasized that
this does not imply that interfacial area is higher in imbibition than in drainage for a specific
scanning loop. This feature is explained as follows: imbibition scanning curves are initiated
from the main secondary drainage curve where interfacial area may be large, while drainage
scanning curves are initiated from the main imbibition curve where interfacial area may be
small. Because of the significant contact angle hysteresis assumed, the different scanning curves
may reach the chosen level of constant capillary pressure before piston-like invasion results
in pronounced changes of interfacial area. The differences between drainage and imbibition
interfacial area decreases as water saturation increases. This is due to the shape of the projection
of the bounding hysteresis loop in the aow − Sw plane shown in Fig. 4(a), (b).

The corresponding results for the mixed-wet case are presented in Fig. 5. The projections
onto the aow − Sw plane reveal that the interfacial area is higher during main imbibition than
during main secondary drainage, as opposed to the results for water-wet conditions. The aow
surfaces display a more complex shape for the mixed-wet case because of oil layer formation
during imbibition. After primary drainage, the interfaces are hinging until the displacements
from configuration C to D occur, resulting in a decrease of interfacial area at small water satu-
rations in imbibition. For larger water saturations, the displacements from configuration C to E
occur, resulting in an increased interfacial area. The interfaces separating oil layers from bulk
water move towards the corners, resulting in a slight decrease of interfacial area. Eventually,
the oil layers collapse and the interfacial area decreases significantly. These trends are also
present in the imbibition scanning curves, as they display a concave-convex shape with a local
minimum and a local maximum. This is demonstrated in Fig. 5(b). In the drainage processes,
the displacement from configuration E to C dominates at large Sw, while the displacement from
configuration D to C dominates at small water saturations. Thus, the drainage scanning curves
display concave shapes in the aow − Sw plane, as shown in Fig. 5(a). Following the same reason-
ing as for the water-wet case, it is expected that the aow(Sw) curves produced by intersections
of the surfaces at constant Pc, result in higher interfacial area in drainage than in imbibition,
as shown in Fig. 5(c). Moreover, the differences between drainage and imbibition interfacial
area increases with water saturation. This is due to the shape of the projection of the bounding
hysteresis loop in the aow − Sw plane shown in Fig. 5(a), (b). Evidently, Fig. 5(c) indicates that
hysteresis in the Pc − Sw − aow relationship remains present for mixed-wet conditions as well.

5. SUMMARY AND CONCLUSIONS

We have used a simple bundle-of-triangular-tubes model to calculate interfacial area as a
function of saturation for primary drainage, imbibition and secondary drainage for mixed-wet
conditions. The model employs accurate expressions for the capillary entry pressures, account-
ing for the possibility of hinging interfaces in the corners due to contact angle hysteresis. Ana-
lytical expressions for specific interfacial area as a function of saturation and capillary pressure
are derived for primary drainage, assuming that only the interfaces between bulk and corner
fluid is contributive to interfacial area. Flexible correlations are suggested for the subsequent
imbibition and secondary drainage processes. We have also investigated if hysteresis occurs in
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FIGURE 5. Specific interfacial area aow plotted as a function of Pc and Sw for
mixed-wet conditions. Projections onto the Pc − Sw plane (green) and aow − Sw
plane (red) are also shown. The bounding hysteresis loop is marked by the bold
lines. (a) Surface created by drainage scanning curves. (b) Surface created by
imbibition scanning curves. (c) Planes at three constant Pc through the drainage
(dr) and imbibition (imb) aow surfaces.

the relationship between capillary pressure, saturation and interfacial area. The specific conclu-
sions are as follows:

(i) The proposed correlations are in agreement with the interfacial area data generated by
the model. Experimental measurements of hysteresis loops are required to validate the
correlations and to determine the applicability of the model for interfacial area calcula-
tions.

(ii) Hysteresis in the relationship between capillary pressure, saturation and corner fluid –
bulk fluid interfacial area remains present between imbibition and secondary drainage
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processes if contact angle hysteresis is assumed. Hysteresis may be significant for both
water-wet and mixed-wet conditions.

NOMENCLATURE

A Cross-sectional area
Aeff Cross-sectional area exposed to change of fluid occupancy during invasion

a Specific interfacial area
b Position of arc meniscus
f Pore-size density

g1 Geometry factor, see Eq. (22)
g2 Geometry factor, see Eq. (23)
Ls Cross-sectional fluid-solid length
L f Cross-sectional fluid-fluid length
P Pressure
q Correlation parameter, see Eqs. (33), (34)
r Radius of curvature
R Radius of the inscribed circle
S Saturation
S Total area of interfaces within a representative volume
u Correlation parameter, see Eqs. (33), (34)
V Representative volume
v Correlation parameter, see Eqs. (33), (34)
x Random number between 0 and 1
α Corner half angle
β Angle defined from geometry of the interfaces in the corners, see Eq. (12)
ε Geometry factor, see Eq. (21)
η Parameter in the Weibull distribution
θ Contact angle
ν Parameter in pore-size distribution
σ Interfacial tension
ψ Angle the interface makes with the pore wall measured through the corner

phase, see Eq. (4)

Subscripts.
a Advancing
b Bulk
c Corner or capillary

ch Characteristic
h Hinging

max Maximum
min Minimum

o Oil
pd Primary drainage
r Receding
w Water
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