
A well penetrates an oil bearing sand at -4010 ft subsea which has the following average properties:

porosity	0.117	permeability	2.62 md
oil-water interfacial tension	36 dynes/cm	contact angle	0 degrees
oil density	$55.5 \mathrm{lb_m/ft^3}$	water density	$65.5 \mathrm{lb_m/ft^3}$
acceleration due to gravity	32.174 ft/s^2	water saturation	0.4

A core sample having a porosity of 0.128 and a permeability of 5.5 md was used in a laboratory air-water displacement test (interfacial tension of 72 dynes/cm and a contact angle of 0 degrees) to determine the capillary pressure data shown below

HINT: 1. Use $J(S_w) = \frac{p_c}{\sigma \cos \theta} \sqrt{\frac{k}{\phi}}$ to relate height above free water level in the reservoir to the laboratory capillary pressure curve. You'll need this: 1 atm = 76 cm Hg = 14.696 psia.

2. Read Lab p_c from drainage curve above and calculate subsea depth to free water level.