Petroleum Engineering 311 Test 6

1. Match the following names in Column 1 with the definitions in Column 3. Place answer in Column 2.

Column 2.		
wettability	9	a. the pressure required to force non-wetting fluid into largest pores
saturation	d	b. the difference between two solid-fluid interfacial tensions
drainage	i	c. fluid flow process in which the saturation of the wetting phase increases and the non-wetting phase saturation decreases
capillary pressure	f	d. fraction of pore space occupied by a particular fluid (immiscible phases)
irreducible wetting phase saturation	h	e. the lagging of an effect behind its cause
adhesion tension	b	f. pressure difference existing across the interface separating two immiscible fluids in capillaries
displacement pressure	a	g. tendency of one fluid to spread on or adhere to a solid surface in the presence of other immiscible fluids
hysteresis	e	h. the limiting value in reduction of the wetting phase saturation
interfacial tension	j	i. fluid flow process in which the saturation of the wetting phase decreases and the non-wetting phase saturation increases
imbibition	c	j. the energy per unit area (force per unit distance) at the surface between phases

- 2. The height of a fluid rise in a capillary is given by, $h = \frac{2\sigma\cos\theta}{\rho gr}$.
- a. Calculate the height, in cm, for an air-mercury system where the interfacial tension is 480 dynes/cm, the contact angle is 140° , the density of mercury is 13.6 g/cm^3 , and the radius of the capillary is 0.01 cm.

$$h = \frac{(2)(cos 140°)(48 o dynes)}{cm} \frac{cm^3}{13.6g} \frac{s^2}{980 cm} \frac{9 \cdot cm}{0.01 cm} \frac{9 \cdot cm}{s^2 \cdot dyne}$$

$$= -5.6 cm$$

b. Interpret the result of your calculations.

h<0 ⇒ fluid level in capillary is depressed or lowered.