1. Sketch a graph of v_r vs dp/dr for the radial flow of a real gas. Indicate the laminar and turbu-

lent flow regimes. HINT: $v_r = \frac{k}{\mu} \frac{dp}{dr}$

2. Give two examples of non-darcy flow. List causes and practical implications of each.

a) Ges slippage - mean free path of - must account for in

gas molecules - Lub when determing

diameter of pores kair

b) Inertial of -acceleration/deceleration - must account for in

Turbulent of gas molecules in pour Lub and field in high

throats pores rate gas flow

- high pressure gradients

3. Flow is assumed to occur parallel to the bedding planes in a radial, layered system and wormal to the bedding planes in a radial, composite system.

4. Consider linear, parallel flow in a fractured formation. See sketch at right. Assume fluid flows into the front face of the cube and flows through the matrix and the fracture in parallel. Let the total cross-sectional area be the sum of the matrix and fracture cross-sectional areas; i.e., $A_t = A_{ma} + A_f$, and the permeability of the matrix and fracture be k_{ma} and k_f , respectively.

$$gt = g_{ma} + gf , \quad Spt = Dp_{ma} = \Delta PF$$

$$\overline{k} At Alt = k_{ma} A_{ma} Sp_{ma} + k_{s} A_{s} \Delta P_{s} \Rightarrow$$

$$\overline{k} = k_{ma} A_{ma} + k_{s} A_{s} \xrightarrow{k}$$

$$\overline{k} = k_{ma} A_{ma} + k_{s} A_{s}$$