1. A reservoir has a pore volume of 1×10^6 reservoir barrels at an initial fluid pressure of 4000 psig and the formation compressibility is 5×10^{-5} psi⁻¹. Calculate the pore volume when the fluid pressure has declined to 3500 psig. HINT: Separate the variables and integrate using the data and the definition of the

formation compressibility,
$$c_f = +\frac{1}{V_p} \frac{\partial V_p}{\partial p_f}$$

$$C_{5}\int_{4000}^{3500} dp = \int_{1\times10^{6}}^{\sqrt{p}} \frac{dV_{p}}{V_{p}} \Rightarrow V_{p} = (1\times10^{6})e^{-(500)(5\times10^{5})} = 0.975\times10^{6} \text{ rb}$$

2. A sandstone sample was cleaned, dried, and saturated with water. The saturated sample was placed in a copper jacket and subjected to increasing external pressures at a constant internal pressure to determine its pore volume compressibility. Calculate pore volume compressibility at 2000 psi from the following data:

Net compacting	Change in		
<u>pressure (psi)</u>	pore volume (cm ³)	Pore volume (cm ³)	
0	0.0	25.042	
1000	- 0.187	24.855	
2000	- 0.112	24.743	
3000	- 0.0815	24.661	
$C_f = -\frac{1}{\sqrt{2}} \frac{\partial V_p}{\partial p_m} \approx$	- 1 AV =	0.112 cm ³ (24.743 cm ³) (1000 psi)	= 4.53×10 psc

3. Given the generalized form of the Darcy equation, with dz/ds = 0, $v_s = \frac{q_s}{A} = -\frac{k}{\mu} \frac{dp}{ds}$, write the names and units of the various quantities below:

Symbol	Quantity	Darcy Unit	SI Unit	Oilfield Unit
		System	System	System
q_s	Volumetric flow rate	em³/s	m3/s	bolda, (ftdag)
A	flow X-sectional area	Cm ²	m ²	Ft ²
k	permeability	d	m ²	md
μ	dynamic viscos, ty	ер	Pa.s	ср
p	pressure	atm	Pa	psi (164 in
S	distance along How puth	Em	m	\$t