PROBLEM # 1

Several core plugs (same size: 2.54 cm diameter x 3.81 cm long) were cut from the core samples from a reservoir. Each was cleaned and porosity measured using a gas expansion porosimeter. Then, all were saturated with brine having a resistivity of 7.5 ohm-cm. Each was placed in a resistivity apparatus to measure the voltage drop under 0.01 ampere current. The porosity and voltage drop measured are listed below:

Sample Number	Porosity	Voltage (volts)
1	0.178	1.60
	0.188	1.46
3	0.165	1.96
4	0.220	1.09
5	0.155	2.14
6	0.145	2.41

Calculate F and determine the parameters a and m

THEORY

$$F = \frac{R_o}{R_w} = a\phi^{-n}$$

SOLUTION

S_w	E (volt)	r (ohm)	R _o (ohm-cm)	F
0.178	1.60	160	212.8	28.4
0.188	1.46	146	194.2	25.9
0.165	1.96	196	260.7	34.8
0.220	1.09	109	145.0	19.3
0.155	2.14	214	284.6	37.9
0.145	2.41	241	320.5	42.7

F vs Porosity

Slope = -1.956 = -M $\Rightarrow m = 1.956$ Intercept = 0.995 = a

TEXAS A&M UNIVERSITY

spe

PROBLEM # 2

The laboratory procedure was continued using Sample No. 1 of Problem 1. The brine saturation was reduced step-by-step by displacing with oil and the voltage drop measured.

Water Saturation	Voltage (volts)
1.00	1.60
0.70	3.06
0.52	4.86
0.43	7.30
0.35	10.63

Calculate the formation resistivity, R_t as a function of S_w, and determine n.

THEORY

$$I = \frac{R_t}{R_o} = S_w^{-n}$$

SOLUTION

S _w	E (volt)	r (ohm)	R _t (ohm-cm)	1
1.00	1.60	160	212.8	1.0
0.70	3.60	360	478.8	2.3
0.52	4.86	486	646.4	3.0
0.43	7.30	730	970.9	4.6
0.35	10.63	1063	1413.7	6.6

Slope = -1.759 = -n => M = 1.759

TEXAS A&M UNIVERSITY

spe

Use the information in Problems 1 and 2 to calculate the water saturation when the porosity is 0.17 and the ormation resistivity is 537 ohm-cm.

THEORY

TEXAS A&M UNIVERSITY

spe

$$S_{w}^{n} = \frac{aR_{w}\phi^{-m}}{R}$$

SOLUTION

$$Sw = \frac{(0.995)(7.5 \cdot \Omega \text{ cm})(0.17)^{-1.956}}{537 \cdot \Omega \text{ cm}}$$

$$Sw = 0.63$$