PROBLEM # 2

Consider the radial flow problem show in top view at right. Assume there are three layers and the permeability of the undamaged formation is 50 md in layers 1 & 3 and 5 md in layer 2. Further assume that the radius of damage is 2.5 ft, the permeability of the damaged zone (shaded area) is 1 md in all three layers, and the thickness of the layers are 10, 1, and 10 ft, respectively.

- (a) What is the average permeability in each layer if $r_w = 0.5$ ft and $r_e = 500$ ft?
- (b) What is the average permeability of the three lavers?

THEORY

$$\overline{k} = \frac{\sum_{j} h_{j} k_{j}}{\sum_{j} h_{j}} \text{(parallel)}, \quad \overline{k} = \frac{\ln \binom{r_{e}}{r_{w}}}{\sum_{j} \ln \binom{r_{j}}{r_{j-1}} / k_{j}} \text{(series)},$$

SOLUTION

SOLUTION
a) Layers
$$1 \neq 3$$

$$\overline{k} = \frac{\ln(500/0.5)}{\ln(\frac{2.5}{0.5}) + \ln(\frac{500}{2.5})} = 4.027 \text{ md } n + \frac{4}{500}$$

Layer 2
$$\bar{h} = \frac{\ln(500/0.5)}{\ln(\frac{2.5}{0.5}) + \ln(\frac{500}{2.5})} = 2.588 \text{ mb. } n \text{ 3 mb.}$$

$$\frac{1}{\sqrt{k}} = \frac{(4.027)(10) + (2.588)(1) + (4.027)(10)}{21} = \frac{3.95902}{4ml}$$

TEXAS A&M UNIVERSITY

PROBLEM #1

Given the following flow data on a cylindrical core:

$$p_{sc} = 1.0 atm$$

$$\mu_{Air} = 0.020 \text{ cp}$$

Absolute Upstream Pressure (atm)	Absolute Downstream Pressure (atm)	Flow rate of Air (cm ³ /s @ s.c.)
1.21	1.0	4.028
2.08	1.0	25.90
3.49	1.0	72.52
5.32	1.0	137.2
6.63	1.0	191.3

(a) Determine the absolute permeability by graphing $q_{ssc}p_{sc}/A$ vs $\Delta p^2/2L$.

(b) Determine the absolute permeability and non-darcy flow coefficient by graphing 1/kg vs q_{gsc}

THEORY

$$\begin{split} q_{g,sc} &= \frac{k}{\mu_g} \left(\frac{A}{p_{sc}} \right) \frac{\left(p_1^2 - p_2^2 \right)}{2L}, \quad \text{plot} \ \frac{q_{g,sc} p_{sc}}{A} \, \text{vs} \frac{\left(p_1^2 - p_2^2 \right)}{2L}, \quad \text{slope is} \ \frac{k}{\mu_g} \\ &\frac{1}{k_g} = \frac{1}{k} + \frac{\beta \rho_g}{\mu_g} q_{g,sc}, \quad \text{plot} \ \frac{1}{k_g} \, \text{vs} \ q_{g,sc}, \quad \text{slope is} \ \frac{\beta \rho_g}{\mu_g} \end{split}$$

SOLUTION (see pp 3 f 4 for delash)

(a)

=
$$12 \frac{\text{cm}^2}{\text{s-at}} = \frac{k}{n}$$
 $||s|| ||s|| ||s$

$$k = (12)(0.02) = 0.24 \frac{4p.cm^2}{5.at}$$

= 0.24 d

$$\beta = 0.95 \times 10^6 \text{ cm}' (0.93)$$

Sollege Station, TX

TEXAS A&M UNIVERSITY

spe

