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Abstract

This note presents a derivation of the Laplace equationwgjiies the rela-
tionship between capillary pressure, surface tensionpandipal radii of curva-
ture of the interface between the two fluids.

First, several mathematical results of space curves aridcgsgrwill be de-
rived as a necessary basis. It is shown that at each pointusface there are two
principal, normal sections (two planes) that are perpeaiovith the line of in-
tersection being the surface normal. The cuts of the twogslavith the surface
define two space curves that each have their centers of auevan the surface
normal.

The Laplace equation is derived (1) by the concept of vinualk to extend
the interface, and (2) by force balance on a surface element.

Introduction

The Laplace equation[1]

1 1
pC:O'(El—FEZ), ............................. (1)

gives an expression for the capillary presspgei.e. the pressure difference over an
interface between two fluids in terms of the surface tensiand the principal radii of
curvature,R; and R,. This expression is often encountered in the literatureioyg
the concepts of capillary pressure and wettability sinceduite general.

The expression in parenthesis in Eq. 1 is a geometry factbegailibrium, each
point on the interface has the same geometry factor. Thelsieypression reflects
the fact that for an arbitrarysmoothsurface, the curvature at any point is defined
by assigning radii of curvaturd®; and Ry, in two planes, callegrincipal curvature
sections The two planes are normal to each other and their line ofsatdion is the
surface normal at the chosen point. Also, the curvature @frhitrary normal section
may be expressed in terms of the principle curvatures.



With sufficient knowledge of the mathematical propertieswffaces, the Laplace
equation may easily be derived either by the principle ofiminm energy or by re-
quiring force equilibrium.

The nomenclature is only for the last section, the derivatibLaplace’s equation
from physical principles. In the first section, which coverathematical properties of
curves and surfaces, all entities are dimensionless anukedéfi the text.

Curvature of Surfaces

Surface and Curves

Most of this section follows the exposition of space curvethe textbook by Tambs
Lychel[2].

Let r denote the radius vector from the origin of the Cartesiarrdioate system
(X, Yy, 2) with unit vectorg(i, j, k). A surface S may be defined by the vector equation

r=fu,v) =, vV)i+y¥Uv)j+xU vk, ... .. (2)

or in parameter form

X=¢pU,v), Y=¢%U,v), Z=xMU0v), ... 3)

whereg, ¥ and x are functions of the two parametarandv. If the two first equa-
tions in Eqg. 3 are solved far andv and substituted in the third equation, we get
expressed as a function fandy, the usual way to represent a surface. However, the
parameter form is a very useful representation of a surfacedscription of curvature
characteristics.

If we setu = u(t) andv = v(t) we get the vector equatian= f(t) for a curve (a
space curve) on the surface, or in parameter form:

X=¢t), y=v¢@®), z=yx®),

wheret is a parameter. By assumption, all functions are twice hffgable with con-
tinuous second order derivatives. A curve or surface repitesl by functions fulfilling
this requirement is callesimooth

Definitions

Arc Length. If f(t) is differentiable with continuous derivative in the intalya,b],
then the arc length is defined by

b .
L:/ f(t)|dt,
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where the dot denotes differentiation with respect.tdf t € [a, b] and we set =
f; If(t)|dt, we get the arc differentials = |f(t)|dt = +|dr|. Thens is a continuous
function oft that increases from 0 tbh whent increases frona to b. Instead oft,
s could be used as a parameter to represent the curve. BiaKameterform, many
formulas are especially simple, elg!| = |dr /ds| = 1.

Tangent to a Curve. The vectort = dr/ds =r ' is defined as th&angent vectoof
the space curve = f(t). Since|t| = 1, t is a unity vector along the tangent of the
curve.

Curvature. Thecurvature Kof a curve is defined bX = |dt/ds| = |d?r/ds?| =
Ir”|, or simplyK = |f”(s)|, the curve being on taxameter form.

Radius of Curvature. The radius of curvatur® of a space curve C is defined by
R=1/K.

Principal Normal to a Curve. The principal normalh of a curve is defined by
h=r"/Ir"| =r”/K. Sincer > = 1itfollows thatr '-r 7 = 0, and hencé is normal
tot (and the curve).

Normal of a Surface. The surface normah to a surface at a point is defined by
n=ryxr,/|ry X ry|l. Herery andr, denotes partial derivatives ofwith respect to
u andv, cf. Eq. 2. The total differentiar is given by

dr =rydu+r,do,

and for the space curve on the surfages u(t) andv = v(t). From the definition of
t, dr is alongt, and it is easily seen thdr - n = 0. That is,n is normal to all curves
on the surface drawn through the selected point.

Normal Plane and Normal Section. A plane through the normal to a surface, i.e.
the normal is lying in the plane, is calledn@armal planeThe cut between a normal
plane and the surface is a curve on the surface and is catlethzal section

Curvature of a Normal Section
Again, letr = f(u, v) a surface S and = f(u(t), v(t)) a space curve C on S. From the
definitions, we hav&K h = dt/ds. Multiplying by n gives

dt
—n = K cosb,
ds



Figure 1: Surface S, curve C through point P, tangent to theegsurface normal and
principal normal to the curve

wheref is the angle between the principal normal to C and the suriaceal at the
chosen point P, Fig. 1.
Sincen -t = 0, we get by differentiation
dt dn

— 4+ —t=0,
nds+ds

and thereby g an
1 dn 1 dn-dr

~ cosH dst ~ cosh ds?
From the definition oh, we haveryn = 0, r,n = 0. Differentiating with respect ta
andv, we get
ryny + rgun = 0, ryNy +rugwh =0,

runy + ruyn =0, ryNy +rypuyn=0.
Since
dn = nydu+n,dv, dr =rydu+r,do,

we have

dn-dr = ryn,du®+ (ryn, + ryny)du dv + ryn,dv?

= —(rgundu? + 2ry,ndu dv + ryn dv?),

and we get

« L Ldw+2Mdudy 4 Ndv? @

= o EdP T 2Fdudb £ Gdu2’

when

ds® = dr? = (rydu+r,dv)?
= r2du? + 2ryr,dudv + r2dv?
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and
E=r2, F=ryry,, G=r2,
L=ryyn, M =ry,n, N =r,,n.

We note that the quantitids, F, G, L, M, N only depend on properties of the surface
S with no reference to the space curve C on the surface. Fourades C that start out
from point P in the same direction, determined by the rdtio du, the angeb is the
same according to Eq. 4. Conversely, all space curves thrBwgth the saméandh
has the same curvature at P.

If we choose = 0, K is the curvature of a normal section, i.e. the principal redrm
of the curve coincides with the normal to the surface,

_ Ldu?+2Mdudv+ N dv?
~ EdW@+2Fdudy+ Gdv?’

Principal Curvature Sections

If K is known, Eqg. 5 is a quadratic equation for the ratio: du, and may be written
(L-EK)du?+2(M — FK)dudv + (N —GK)dv>=0.  ...... (6)

If this equation has two distinct roots, there will be twomeait sections with curvature
K. Ifit has only one root, there exist only one normal sectiatihhe given curvature,
and if there are no roots, no normal section exists with dureeK. To discern these
alternatives, we consider the expression

(M — FK)? = (L — EK)(N — GK)

that is under the square root sign when solving Eq. 6. Thisssgion is generally equal
to zero for two values oK, theprincipal curvatures K andK,. The corresponding
normal sections are called tphencipal curvature sections

After simplifying the last expression, we have to investigie roots of

(EG—F)K?— (EN—2FM +GLK + (LN=M?»=0. ...... 7)
Solving this equation we have to find the square root of
(EN—2FM + GL)?> —4(EG — F?(LN — M?).

As will be shown, this expression is never negative. Let ssi@& chosen values for
E, F, G, L, N such that the last expression is a functiorMbfdenoted by (M). Itis
a polynomial of second degree with the derivative

¢'(M) = —4F(EN — 2FM + GL) + 8(EG — F?)M,

and¢’'(M) = 0forM = M; = F(EN + GL)/2EG. Then¢”(M) = 8EG > 0,
from the definition ofE andG, i.e. (M) has a minimum aM = Mj, and after some
calculation

(EG— F2)(EN — GL)?2 -
EG -
5

p(M1) = 0,



SiNCEEG — F2 = 12r2 — (ryry)? = (ry x ry)? > 0. Actually, we will assume that
EG — F2 > 0 since otherwise, or r, is the null vector or they are parallel. Then
¢(M) can only be zeroiEN = GL andM = My, i.,e.GM = FN. We then have

L N M

E G F’
and from Eq. 5 the curvaturi is independent oflu anddv and equal td_/E. A
point where the curvature is the same for all normal secti®oalled anavel pointof
the surface.
For a point P on the surface that is not a navel point, Eq. 7haMe two distinct
roots,K; andKo, as postulated above.

Principal Curvature Sections are Orthogonal

Substitution ofK = K; or K = K; into Eq. 6 results in a quadratic expression of the
general form(Adu+ Bdv)?, since the equation has single roots for these valu&s of
Its derivative with respect tdv then has to be zero for the same value&othat is

(M — FK)du+ (N — GK)dv =0,

or
Mdu + Ndv

~ Fdu+ Gdv’
Substituting this expression into Eq. 6, we get

(EM — FL)du? + (EN — GL)dudv + (FN — GM)dv? = 0.

From this equation we get the two directiathg; : du; anddwv;, : duy (or the inverted
ratios if FN — GM = 0), for the two principal curvature sections. Using rulestfe

sum and product of the roots of a quadratic equation, we get
dvy dvz_ EN-GL dvldvz_ EM-—-FL

du1+duz ~ FEN—-GM’  dujduy, FN-GM’
We also have

drq{ =rydu; +r,dvy, dro=rydus +r,dvo,
and hence
dri-dro = rﬁdulduz + ryry(durdvs + dupdvq) + rﬁdvldvg

— [E +F (% + %) +G%%} dudup
2

dug du; dup
EN—GL EM— FL
- [E_FFN—GM +GFN—GM]dulduz

E(FN-GM)-F(EN-GL)+G(EM—-FL)
— duldU2
FN-GM
= 0,




i.e. the principal curvature sections are orthogonal. (Careeasily show that this is
the case also foF N — GM = 0).

A Theorem of Euler

A theorem of Euler[3] states that the curvature of an arhjitreormal section may
be expressed by the curvatures of the principal sectionsdfeandds, be the arc
differentials of the two pricipal sections add the arc differential in a normal section
at an anglex with ds, Fig. 2.

2

8
ds,

P \a dsy Q

Figure 2: Arc differentials along a normal section and the pvincipal curvature
sections

Generally, if®(u, v) is a function ofu andv, we have
®(R) — ®(P) = ¢(R) — ®(Q) + ©(Q) — 2(P),

or
PR -2 2R -PQds n PQ —-2(Pdy
ds a ds ds ds ds’
and lettingds; andds, approach zero,
d_q> = d—q)d—sl+d—q)d—82 = d—®005a+d—q>sin
ds ds ds dsds dsg ds *
We now apply this general expressiorrtandn and get
d
t = ar = t1Cc0Sx + to Sina
ds
dn_ dn CoSsw + dn sin
_ = _ o
ds dsg ds ’
and by scalar multiplying these two expressions,
dn
—K = t—
ds
dn dn dny . dn .
= t;— -cofa+ (tj— +tr— | sinacosa + tp— - sifa
ds; de  “ds dsp
d d
— —Kjicofa — Kysifa + <t1—n + tz—n) sina cosa.
ds ds
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Sincen -t; =n -ty =0, we get

The curves ¢ and G are embedded in two orthogonal plangs, to = 0, andty is
independent of,. Thereforedt;/ds, = 0 and likewisedt,/ds; = 0, and we get
Euler’s result

K =Kicofa+ KoSiPa. oo (8)

Let us now choose another normal section at an asglerr /2 with ds; and denote
the corresponding arc differential laks; since it is at an angle /2 with ds. For the
corresponding curvatur€ ;| we get from Eq. 8

K. = KicoS(a+7/2) + Kosirf(a + 7/2)
= Kisirfa + Kycofa.

By summation, we the get
K+Kp=Ki+Ko, (9)

that is, the sum of the curvatures of two orthogonal normetices is constant, equal
to the sum of the curvatures of the principal sections.

The Laplace Equation

The Laplace equation may be derived either by minimizatiban@rgy or by sum-
ming all forces to zero. We will do both here although the @pof force in connec-
tion with surface tension may be somewhat obscure. The fgppeoach follows the
derivation of Defay and Prigogine[4] and the energy appnidad¢aken from the book
by Landau and Lifshitz[5]. In both cases it is assumed thatitiberface is without
thickness and that the interfacial tension is constant.

Force Equilibrium

Consider a point P on the surface, Fig. 3, and draw a curve ahstant distance
from P. This curve forms the boundary of a cap for which weldghmal the equilibrium
condition asp tends to zero.

Through P we draw the two principal curvature sections AB@bdbn the surface.
Their radii of curvature at P ar® and R,. At the point A, an elemenil of the
boundary line is subjected to a foreél whose projection along the normal PN is

o8l sing = ogsl = o L5,
Ro
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Figure 3: Equilibrium of a nonspherical cap.

since¢ by assumption is small.
If we consider four elemen® of the periphery at A, B, C, and D, they will con-

tribute with a force 1 1
2008l | — + — ).
po (Rl * Rz)

Since this expression by Euler’'s theorem, Eq. 9, is independf the choice of AB
and CD, it can be integrated around the circumference. $teerthogonal elements
are considered, the integration is made over one quarterevadution to give

np’o i + i
P Ri R/’
The force on the surface element caused by the pressureediffe over the surface

is given by(p1 — p2)7p?, and equating the last two expressions Laplace’s equation
follows.

Minimum Energy

Let the surface of separation undergo an infinitesimal dghent. At each point of
the undisplaced surface we draw the normal. The length adgbenent of the normal
lying between the points where it intersects the displacebuandisplaced surfaces is
denoted bys¢. Then a volume element between the two sufacég dsf, whered f



is a surface element. Lgt; and p2 be the pressures in the two media, andSlebe
positive if the displacement of the surface is towards madsay). Then the work
necessary to bring about the change in volume is

/(— p1 + p2)écdf.

The total work§W in displacing the surface is obtained by adding to this thekwo
connected with the change in area of the surface. This péneofiork is proportional
to the changéf in area of the surface, and és3f, whereo is the surface tension.
Thus the total work is

SW = — /(pl Co)sedf £ o8 (10)

The condition for thermodynamical equilibrium is, of coeyrthats\W be zero.

Next, let Ry and R, be the principal radii of curvature at a given point of the
surface. We seR; and R, as positive if they are drawn into medium 1. Then the
elements of length (the arc differentiald$; andds on the surface in its principal
curvature sections are increased® + §¢)ds; /Ry and(Rx + §¢)ds/ Ry when the
anglesds;/R; andds/ R, remain constant, i.e., an expansion normal to the surface
(ds is the arc length of a circle with radiu®;, and correspondingly fatls). Hence
the surface elemetf = ds;ds, becomes, after displacement,

ds (14 6¢/R)ds(1+65/Re) = dsids(1+ 85 /Ri+ 65 /Ry),

i.e. it changes by¢df(1/R; + 1/Rp). Hence we see that the total change in area of
the surface of separation is

5f :/5; (Ril+Ri2)df. ........................ (11)

Substituting these expressions in Eq. 10 and equating tn wex obtain the equilib-
rium condition in the form

1 1
/85{(pl_p2)_0(ﬁl+ﬁz)}df20.

This condition must hold for every infinitesimal displacarhef the surface, i.e. for
all §¢. Hence the expression in braces must be identically equartmand Laplace’s
equation follows.

Nomenclature, for last section

f
I

area, m
length of arc, m
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pressure, Pa

principal radius of curvature, m
work, J

surface tension, N/m

length along normal, m

radius of cap, m

angle, radians

‘&bV\QE;UU

Subscripts

capillary

constant

adsorption (kg surfactant/kg rock)
interfacial tension, N/m

X 1R o
I mn 1mnnu

Operators

s = infinitesimal change
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