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Response kinetics of controller m2 with antithetic integral
control.

Fig S1 shows the scheme of the m2 feedback loop with antithetic integral control [1–4]
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Fig S1. Controller motif m2 with antithetic integral control.

The rate equations are

Ȧ = k1 − k2·A− k4·A+
k3k8
k8+E1

(S1)

Ė1 = k5·A− k7·E1·E2 (S2)

Ė2 = k6 − k7·E1·E2 (S3)

Making the steady state assumption for E2, i.e. Ė2 = 0, we get that k6=k7·E1·E2 and
that

Ė1 = k5·A− k6 (S4)

Eq S4 shows that the rate of E1 becomes zero-order with respect to E1, like the rate of
E in Eq 12 becomes zero-order with respect to E when k7 values are low with respect
to E. Thus, E1 and E have identical dynamical behaviors. This is shown in Fig S2 when
a k2 1→ 5 step is applied in both m2 models with a background k4=0.
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Fig S2. Comparison between m2 (Michaelis-Menten) zero-order controller (Eqs 10-11)
and the m2 antithetic controller (Eqs 13-15). In both models a k2 1→5 step is applied
at time t=100 with background k4=0. Other rate constants, m2 (Michaelis-Menten)
zero-order controller: k1=0, k3=1×104, k5=1.0, k6=3.0, k7=1×10−6, k8=0.1. Other
rate constants, m2 antithetic controller: k1=0, k3=1×104, k5=1.0, k6=3.0, k7=1 or 100,
k8=0.1. Initial concentrations, m2 (Michaelis-Menten) zero-order controller: A0=3.0000,
E0=3.3323×102. Initial concentrations, m2 antithetic controller (both when k7=1
(thick blue line) or k7=100 (thin orange line)): A0=3.0000, E1,0=3.3323×102,
E2,0=9.0027×10−3.

We calculated ∆Amax and tmax for the m2 antithetic controller with rate constants
described in Fig S2, which proved to be identical to those of the m2 zero-order
controller (Eqs 10-11). Fig S3 shows the results.
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Fig S3. ∆Amax and tmax (Fig 2a) as a function of background k4 for the m2 antithetic
controller. Rate parameters and initial conditions as described in Fig S2 but k4 starts at
0 and ends at 1000 with increments of 5. The numerical data are identical to that of the
m2 controller described in Figs 8c and d.
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