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Determination of set-point and period length of the ATM* con-
troller

Fig S1 shows the pb3-ATM* negative feedback loop when ATM* is up-
regulated by DNA damage. With respect to p53 as the controlled variable we
have a motif 1 negative feedback loop (1). The active (phosphorylated) form
of ATM (ATM*) activates p53 via CHK2 (checkpoint kinase 2) (2, 3), while
p53 dephosphorylates ATM* via the activation of the phosphatase WIP1
(3-5).
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Figure S1. The feedback loop between p53 and ATM*. k3, represents the
stress level and K, is an activation constant.

When the stress level k3q is between 0.2 and 1.0 ATM* is the dominating
regulator of p53 (Fig 8) and the rate equations for ATM* and p53 can be
written as:
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The dependence/change of p534TM" as a function of the stress level ks is

an example of rheostatic regulation (6) where the set-point changes with the
stress level and is defended towards increasing degradation rates ko (Fig 10).

By setting Eq S1 to zero, the set-point for p53 (p53
(see also Eq 21):

) is calculated to

When the ubiquitin-independent proteasomal degradation of p53 (via NQO1,(7—
9)) is considered to be zero-order (low Ky, Fig S1) the system is described
as a harmonic oscillator and the period can be calculated by the double time
derivative of p53, pb3, i.e.,
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Eq S4 can be written in form of the following equation:
P53 ka6 k3o AT M~
CL)Q + p (k27) (Kas + k30 p set ( )
with w2:k27k29.
The solution of Eq S5 is
pH3(t) = P53 ™ + Asmpi sin(wt + ) (S6)
Thus, p53(t) oscillates with period
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and amplitude A,,,,;; around its set-point p53%;
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