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Derivation of the Transfer function Hp 4, (s) for motif S1, Eq. 5

Consider motif S1 (main paper):

k B k
ks (S1)

with the rate equations:

%Et) = A(t) = ku(t) — ka(H)A(t) + k_o(t) B(t) — k-1 (1) A(t) (A1)
di—it) = B(t) = ka(t) A(t) — k3(t) B(t) — k_o(t) B(t) + k_s(t) (A2)

and the rate constants(t), ko(t), ks(t), k_1(t), k_o(t) andk_5(t).

The steady state concentratioAg and B, are given by Eqg. A3 and no perfect adap-
tation can exist, because baoth), and B,, depend on all rate constants such that for all
k; we have nonzero control coefficients, i.@,;‘,‘;s # 0 andC,f_“ # 0.

 ka(k s+ k) + ik . B
ks(k_1 + ko) + k_1k—o >

k_s(k_1 + ko) + kiko

Ass =
ks(k_1 4+ ko) + k_1k_o

(A3)

However, by introducing an irreversibieput to the system (as indicated in the main
paper), for example by settirig ; = 0, robust perfect adaptation ig(¢) with respect
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to a step-wise change i (or k_,) can be observed. The reason for this is thét) is
now independent o, or k_,, becausds,, = % However,B(t) is still connected

to k, andk_, as can be seen by inspecting thé transfer fundtign, (s) for the entire
scheme S1, Eq. 5 (see below).

Ass, however, still depends on the remaining rate constantstar@fore shows no
perfect adaptation. Introducing irreversibility in sche®1 by setting_, = 0 or/and
k_3 = 0, will not lead to perfect adaptation for neithémor B, because also in these
casesA,, and By, still depend on all the other rate constants.

In order to find the transfer function matriX(s), the system is linearized around the
steady states values,, and B,,, and the rate constants, ko, k3, k_1, k_5 andk_s,
which gives the following linear model

AA(t) = — (ky + k_1)AA(t) + k_sAB(t)

+ Ak (t) — AgsAko(t) — Ags Ak_1(t) + Bss Ak_o(t) (A4)
AB(t) =k AA(t) — (ks + k_2) AB(t)

+ AgsAky(t) — BysAks(t) — BysAk_a(t) + Ak_3(t) (A5)

or, in matrix form

[AA(t)} _ {—(l@ + k1) k—s ] [AA(t)}

AB(t) ko —(ks+k_2)| |AB(t)
[ Ak (t) ]
Aksy(t)

1 Ass 0 Ass Bss 0 Ak3(t)
+ {0 Ay —Bs. 0  —B., 1} NG (A6)

Ak}_g(t)
Ak_3(1)

The transfer function matrix can be found from the relatiopgEq. 3, main paper):

Al(s)

") = 3k)

= (s[ —A)'B (A7)

WhereAk(S = [Akl(S), AkQ(S), Ak‘g(é’), Akfl(S), Ak,Q(S), Ak',g(S)]T, and
Al(s) = [AA(s), AB(s)]". Applying Eq. A7 to the linear model in Eq. A6 gives the



following transfer function matrix

-1
H(S) — |:$ + k2 + k,1 _k‘72 :| |:1 _Ass 0 _Ass Bss 0:|

—kg S+ k?3 + ]{3_2 0 Ass _Bss 0 _Bss 1
B 1
(st ket koq)(s+ ks + ko) — kok o
S + k?3 + k?_g k?_g . 1 _Ass 0 _Ass Bss 0
]Cg S+ k?g + ]C_l 0 Ass _Bss 0 _Bss 1
B 1
(st ket koq)(s+ ks + ko) — kok o
S+ kg + k_g —ASS(S + kg) —Bssk_g
k2 Ass(s + klfl) _Bss(s + k2 + kfl)
—ASS(S + k?3 + k?_g) BSS(S + kg) ki_g
—Agoko Bos(s+k_1) s+ ke +ky
from which the elemenii s , (s) is found as
AB(s Ags(s+ k_
Hp () o) _ ( ) (A8)

T ANko(s) (St ket ko1)(s+ ks + kg) — kok_s
which is identical to Eg. 5 in the main paper.

Amount of Released/AbsorbedB during Adaptation in Motif M1* (Fig. 4)

Setting Egs. Al and A2 (see above) to zero, with the additicmadition thatt_; =
k_o = k_3 = 0, we get the steady state concentrationd iandB asA,, = ki /k, and
Bss = k1/ks, respectively. At = 0 we assume that(0) = A,; andB(0) = B, and
thatk, undergoes a step-wise changefté, with f > 0 and f # 1.

Fort > 0 the response kinetics of and B are calculated as:

A(t) = A;S (1 +(f - 1)e_fk2t) (A9)
B(t) = By + 721({ ;kl) (eﬂ”t — ek3t) (A10)

The amount of released or absorbBdduring the robust perfect adaptation Bfis
calculated by using the integral

I(t) = / <B(t) - BSS> dt = ]213(]: }I:Q) (e;f — e}zt)jt(] (A11)
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Becauséim, .., I(t) = 0 and(0) = —%-k’;}% we get

/OOO (B(t) - Bus)dt = Jim 1(t) - 1(0) = b (A12)

Influence of Negative Feedback and Positive Feedforward ondaptation

Feedback and feedforward loops are common regulatory elsm@/e illustrate here
with a few examples how negative feedback and positive tedifrd can affect adap-
tation (a description of all possible combinations of negdpositive feedback/feedforward
loops is beyond the scope of this paper). First we considexgnsion of motif M2

in the main paper by including a negative feedback from mestiateB,, to k;:

r Ki-©@-----
L ) |
k 5 k k k k
-~ A —>B,>B,> B ™
1 2 n (M6)

with the inhibition term (to be multiplied with;) m. K7 is the inhibition constant.
The legends of Figs. S1a and b give the rate equations andritainalues forkK'; and
rate constants. The transfer function frépto B,, (n > 2), Hp, 1,(s), iS given by:

n+1
. Ages [ ] i
A-Bn S 1=
HBn,k’Q (8) = AkQ(S) = n+1 2 n+2 (A13)

mnki-l-n(s—i-ki)
i=1 i=2

From Eqg. A13 we get = 0 as the only solution to the numerator polynomié) =

0, i.e., a zero in origo independent of the rate constants. tidmsfer functions for
intermediates3; to B,,_; show slightly different structures, but they all have a zero
origo (data not shown). Hence, a steptinresults in robust perfect adaption for each
B;-intermediate Hg,, 1,(s) has both real and complex-conjugated poles, which results
in an underdamped response (over- and undershooting) ipetiect adapteds;’s

(Fig. S1a). For highi; values the response becomes overdamped (Fig. S1b), which is
due to the fact that the real pole dominates over the commejyigated poles a&;
increases. In case the negative feedback fig§ms acting downstream of,, at k;’s

with i > 2, all B;’s show robust perfect adaptation. If the perturbing stepislied to
k..2,1.€., at the end of the network, none of tBgs show perfect adaptation.



To illustrate the influence of positive feedforward, we ddestwo cases each shown
in scheme M7.

T~ "® K 71 r @K~~~
A \J [ \/
k; : ky ks £ ..B kuer 1y Kae2 LA H B ﬁ'B ke B Kyt th
- A - Blg’ B24> 1'1.14> n 1 2 n-1 n
(M7)

In the left scheme of M7 acts positively ork,, 1, while in the right schemé,; acts
positively onk,, ;. In each case the positive feedforward loop is realized bliphy+

ing in the rate equations, ., with the factorsk,.A or K,. B, respectively, where
K, IS an "activation constant”. In the caskacts positively ork,, ., concentration
B, _1 is not perfectly adapted, becaudaloes not show perfect adaptation. All other
B,’s show robust perfect adaptation. The transfer functiomft, to B,,, Hg, ,(s)
forn > 3, is given as:

n

_Kact'Ass'S'kn—i-l (Bn—l,ss (3 + kz) - Ass kz)
AB,(s) 11 11

e <ﬁ(8 + ki)) (5 + Kot Assbnra) (s + ko)

= (A14)
Hpg, 1,(s) has several zeros. Based on the fact that there is a zeroga @ri= 0)
to the solutiom(s) = 0, independent of the rate constani, shows robust perfect
adaptation. However, the total responseinwill be influenced by the other zeros as
indicated in Fig. 2 of the main paper.

Hp, k,(5)

In case intermediat&, acts positively ork,, ., (the right scheme in M7) alB;’s are
robust perfectly adapted. The transfer function frono B,,, Hg, 1, (s) forn > 4, is
given as:

Kact'Ass's'kn—l—l (Bn—l,ss's H(S + kz) + Bss H kz)

1=4 1=3

(H(S + kl)) (3 + Kact'Bss'kn-H) (S + kn+2)
- (A15)

~ AB,(s)
N AkQ(S)

HBn,kQ (S>

Figs. S1c and d show response kinetics of the two cases in M7 $04.
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Fig. S1.Perfect adaptation kinetics 8, to B, for negative feedback scheme M6 £ 4). The
step perturbation is applied te with (a) K; = 0 (strong inhibition) and (b)X; = 5.0 (weak
inhibition). The rate equations aréA /dt = Kl’f;& — koA, dBy/dt = ky-A — k3-Bj, and
dB;/dt = kiy1-Bi—1 —ki12-B;,i = 2, ... 4 with all rate constants equal to 1.0. (c) Adaptation
kinetics for left scheme in M7« = 4, and step-wise perturbation &§) where A is acting
positively onks; with rate equationsdA/dt = ki — ko-A,dB; /dt = ky-A — ks-By,dBs/dt =
k3-By — k4B, dBs/dt = ky-By — Kyt A-ky-Bs, dB4/dt = Kuet-A-ks-Bs — kg-By. All rate
constant values anl,.; are set to 1.0. (d) Similar system as in (c) Bytis acting positively
on k5 (right scheme in M7pn = 4). All rate constants and&,.; are set to 1.0. Note that af;
show robust perfect adaptation, B is the only intermediate which shows different adapta-
tion kinetics (undershooting).




Derivation of Eq. 9 for motif M5
From motif M5 the following relationship holds at steadytsta

A =k (A16)
ko

=" (A17)
ke

Moreover, the following differential equation can be foundthe dynamics of inter-
mediateR;:

dR(t) ks k1
=t = —ky— R (t) + ks —R;(t Al18
. s Ra) + kg R) (A18)
Assuming steady state, i.8%" — () gives
74327434]4?5}2;55 = klk?)kﬁRi,ss (A19)
Using the fact that
Riot = R oo + Riss (A20)
gives
k2k4k5RZ,SS == klkgk(‘,(Rtot - RZ,SS) (A21)
which again can be organized as
R bk (A22)

= R 0
0 kiksk + kokaks

Derivation of the Transfer functions for motif M5

According to Table 1 there are sks — k; substitutions that give perfect adaptation
in both R} and R;. In the following the individual substitutions and corresping
transfer functions for perfect adaptation sites are ptesen more detail.

1. Substitutiork, — k3 wherek, = aks produces the following transfer function
from Ak;(s) to ARX(s)

. ARZ(S) . AssRi,ss's

H = =
(S) Akg(S) (S + Oékg)(s + kgAss + k4]ss)

(A23)

As can be seen, this transfer function has a zero in origo.



2. Substitutiork, — kg wherek, = akg produces the following transfer function
from Akg(s) to AR (s)

AR (s
() = Akﬁ((s))
o (ksaR; o5 Ass + kalss(Riss — Rior))-s
T ( (s + ak) (s + ksAgg + kyLy) (s + k)
ksake R oo Ass + ksakelos(Riss — Riot)
(s + ake)(s + ksAgs + kalss)(s + ke) )
In order to show that this transfer function actually hasra ze origo, we have

to use Eqg. A19 and Eq. A20 such that the real part of the deraioriof Eq.A24
can be written as (usinky, = akg, Eq. A17 and Eq. A16)

(A24)

k k
kw%&&&ﬁwm%uume%a=@m&&ﬁ+mmfumfwﬁﬁ
2 [§]

- klk'gk'ﬁRi7ss - k2k4l€5R* (A25)

a,ss

Hence, by inserting Eg. A19 into Eq. A25, it is shown that teal ipart of the
denominator is zero, and the solutiomt@) = 0in Eq. A24 iss = 0. Therefore,
the transfer function in Eq. A24 can be written

o ARZ(S> (k?)aRi,ssAss + k4Iss(Ri,ss - Rtot))'s

()= Rho(®) ~ s+ ako)(s Rl § L)s k) 2O

which has a zero in origo.

3. Substitutiont, — k; wherek, = ak; produces the following transfer function
from Ak (s) to AR (s)

_ ARJ(s)

B Akl (8)

o a]ss(Ri,ss - Rtot)'s + k3Ri,ss + kQQIss(Ri,ss - Rtot)
B (5 + ko) (5 + ksAgs + aky L)

In order to show that this transfer function actually hasra ze origo, we have

to use Eqg. A19 and Eq. A20 such that the real part of the deraioriof Eq.A27
can be written as (usingy, = ak; and Eq. A17)

H(s)

(A27)

k3Ri,ss + kQQIss(Ri,ss - Rtot) - k3Ri,ss + kQQISS(Ri,SS - (Rz,ss + Ri,ss))
= kBRi,ss - kQQISSR*

= kiksR; o5 — akikol s R,

oo F
=h%%&&—bm§%w
6

a,ss

= k1k3k6Ri,ss - k2k4k5R*

a,ss

(A28)
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Hence, by inserting Eg. A19 into Eq. A28, it is shown that teal part of the
denominator is zero, and the solutioni@) = 0in Eq. A27 iss = 0. Therefore,
the transfer function in Eq. A27 can be written

_ARi(s) als(Riss — Riot)'s

H(s) — —
)= R005) ~ 51 ka)(s 1 koA + alil)

(A29)

which has a zero in origo.

. Substitutionk, — k¢ wherek, = akg produces the following transfer function
from Akg(s) to ARX(s)

_ARi(s) lss(Riss — Riot)s

H(s) = —
() Ako(s) (5 + ksAy, + akiolss)(s + ko)

(A30)

As can be seen, this transfer function has a zero in origo.

. Substitutionks — k; wherek; = ak; produces the following transfer function
from Ak, (s) to ARX(s)

_AR(s)
)= A s)
(k3R ss + aky(R;ss — Riot))-S + kskeRi ss + akoka(R; s — Riot)
(3 + k2)(3 + k?)Ass + k4Iss>(S + k6)

(A31)

In order to show that this transfer function actually hasra ze origo, we have
to use Eq. A19 and Eq. A20 such that the real part of the deratoriof Eq.A31
can be written as (usingy, = ak;)

kake R o5 + athoky(Ri g6 — Rior) = kskgRi g5 + ahoky(Riss — (R o + Riss))
= kgk(‘,RLss — Oékgk4R*

a,ss

== k1k3k6Ri,ss - Oék’lkgl{?glRiss
= kiksko Ry ss — kokaks IR,

a,ss

(A32)

Hence, by inserting Eg. A19 into Eq. A32, it is shown that teal part of the
denominator is zero, and the solutioni) = 0in Eq. A31iss = 0. Therefore,
the transfer function in Eq. A31 can be written

_ ARZ(S) _ (k?)Ri,ss + ak4(Ri,ss - Rtot))'s

0= Rha(s) ~ G+ k(s + Fadee + Ral) (5 + o)

which has a zero in origo.



6. Substitutiork; — k3 wherek; = ak; produces the following transfer function
from Aks(s) to AR (s)

o ARZ(S) o AssRi,ss'S + AssRi,sskﬁ + k4a(Ri,ss - Rtot)
B Akg(S) N (S + ]{?31453 + k4fss)(8 + k@)

H(s) (A33)

In order to show that this transfer function actually hasra ze origo, we have
to use Eq. A19 and Eq. A20 such that the real part of the deratoriof Eq.A33
can be written as (usinky, = aks and Eq.A16)

AssRi,sskﬁ + k4a(Ri,ss - Rtot) - AssRi,ssk(S + k4a(Ri,ss - (Rz,ss + Ri,ss))
= AssRi,ssk(’) - k4QR*

a,ss

k
= L R; oks — kyaRE .
ko ’
= klk3k6Ri,ss - k2k4@k3RZ,ss
= kikskeR; s — kokaks R (A34)

Hence, by inserting Eg. A19 into Eq. A34, it is shown that teal ipart of the
denominator is zero, and the solutioni@) = 0in Eq. A33iss = 0. Therefore,
the transfer function in Eq. A33 can be written

- AR;(S) . AssRi,ss's

= = A35
Akg(é’) (S -+ kgAss + ]{4[55)(8 + k‘ﬁ) ( )

H(s)

which has a zero in origo.
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