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ABSTRACT: Robust homeostatic mechanisms are essential for
the protection and adaptation of organisms in a changing and
challenging environment. Integral feedback is a control-engineer-
ing concept that leads to robust, i.e., perturbation-independent,
adaptation and homeostatic behavior in the controlled variable.
Addressing two-component negative feedback loops of a
controlled variable A and a controller molecule E, we have
shown that integral control is closely related to the presence of
zero-order fluxes in the removal of the manipulated variable E.
Here we show that autocatalysis is an alternative mechanism to obtain integral control. Although the conservative and marginal
stability of the Lotka−Volterra oscillator (LVO) with autocatalysis in both A and E is often considered as a major inadequacy,
homeostasis in the average concentrations of both A and E (⟨A⟩ and ⟨E⟩) is observed. Thus, autocatalysis does not only
represent a mere driving force, but may also have regulatory roles.

■ INTRODUCTION
Living organisms have the remarkable property to adapt to
external environmental changes by keeping their “internal
environment” at an approximately constant level.1 The
development of the concept of homeostasis, i.e., the presence
of coordinated physiological processes that maintain internal
stability in organisms is attributed to Cannon, who also coined
the term homeostasis during the 1920s.2,3

After Cannon, the concept of homeostasis broadened and
other terminologies were introduced, either related to
(circadian) set-point changes as in predictive homeostasis4 and
rheostasis,5 or, as for the concept of allostasis,6,7 by considering
both behavioral and physiological processes that maintain
internal parameters within certain essential limits.
During the 1920s, Lotka8 investigated the physicochemical

basis of homeostasis by considering the principle of Le
Chatelier. The principle states that upon an external
disturbance a chemical system in equilibrium will change to
that direction, which minimizes the external disturbance.9 Lotka
rejected the principle as a basis for homeostatic behavior and
made a clear distinction between an organism’s steady state and
chemical equilibrium.
With the developments within control and systems

theory,10−12 the description of homeostatic behavior by
feedback regulation came into focus13−15 with recent emphases
on reaction kinetic and genetic models and network
motifs.16−23

Some of the mechanisms that account for perfect adaptation
or homeostasis, including temperature compensation,24 are
based on a balance between various opposing components
within a reaction network.25

While a balancing-based approach does not guarantee a fixed
steady state of the controlled variable in the presence of
perturbations, the question arose how robust, i.e., perturbation-

independent, homeostatic mechanisms could be achieved.
From a control-engineering aspect integral control can keep
systems at a given set-point even under the presence of
uncontrollable perturbations.
Figure 1a illustrates the concept of integral control, where A

is the controlled variable with set-point Aset. The integral
controller is embedded within a negative feedback loop, which
is characterized by defining the error e between A and Aset as

26

= −e A Aset (1)

The controller integrates the error e over time, which results
in the manipulated variable E

∫= ′ ′E t K e t t( ) ( ) di

t

0 (2)

where Ki is a constant called the (integral) gain of the
controller.26 The variable E then feeds into the process that
generates A and adjusts the level of A in the presence of
(unpredictable) environmental perturbations. The advantage of
integral control is that the steady state value of A will approach,
without error, the set-value Aset. For a formal proof, see, for
example, ref 26. With respect to applying integral control to the
regulation of cellular and biochemical processes the question
arises how error sensing mechanisms can be achieved in
reaction kinetic terms.
The implementation of integral control to reaction kinetic

networks was emphasized by Yi et al.16 and others.22,23,27 We
have recently shown that zero-order kinetics in the removal of a
controller variable within negative feedback loops is a necessary
condition to obtain integral control.21 The principle is
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illustrated in parts b and c of Figures 1 on two of eight28

possible two-component molecular controller/network motifs
(negative feedback loops), where A is the (homeostatic)
controlled variable with set-point Aset, and E is the manipulated
variable. As indicated in the general scheme (Figure 1a), the
concentration of E in the two network motifs (Figures 1b and
c) is proportional to the error between A and its set-point Aset.
Because the controller action in Figure 1b is based on a E-
mediated addition of A, we term this type of controller motif for
an inf low controller. It may be noted that the homeostatic
performance of inflow controllers breaks down when an
uncontrolled inflow perturbation of A becomes larger than
the consumption of A21 in the system.
In Figure 1c, the representation of an outflow controller is

shown. In outflow controllers robust homeostasis of A at Aset
can be achieved by an E-mediated removal of excess A. As in
case of the inflow controller, integral control occurs when E is
formed and removed by zero-order kinetics.21 Also here it may
be noted that homeostasis by outflow controllers is lost when

an uncontrolled outflow of A from the system dominates over
the regular inflow of A into the system. The combination of
inflow and outflow controllers enables robust homeostasis by
allowing to integrate processes such as environmentally
dependent uptake and assimilation of A, its excretion, storage,
as well as remobilization from a store.28,29

In the following, we show that the requirement of zero-order
kinetics to achieve integral control can be replaced by
autocatalysis.

■ COMPUTATIONAL METHODS
Computations were performed in parallel using the Fortran
subroutine LSODE30 and MATLAB/SIMULINK (mathwork.-
com) together with the program PPLANE.31 Absoft’s Pro
Fortran compiler (absoft.com) was used together with the
random number generator RAN1 described by Press et al.32 To
make notations simpler, concentrations of compounds are
denoted by compound names without square brackets.
Concentrations and rate constants are given in arbitrary units
(a.u.).

■ INTEGRAL CONTROL BY AUTOCATALYSIS
Parts a and b of Figure 2 show the negative feedback loops of
the inflow and outflow controllers from Figure 1, respectively,
but instead of using zero-order degradation of E, E is formed
autocatalytically and the degradation with respect to E is first-
order. Because of the autocatalysis, d[ln(E)]/dt is now
proportional to the error e between the level of A and its set-
point Aset (Figure 2). Parts c and d of Figure 2 show the steady
state values of A (Ass) for the inflow and outflow controller,
respectively, at different inflow and outflow fluxes to and from
A described by the varying rate constants kpert

inf low and kpert
outf low,

respectively. Both show the typical behavior for inflow and
outflow controllers.28 For the inflow controller, homeostasis
breaks down (i.e., state steady values of A increase above the
set-point) when kpert

inf low dominates over the outflow fluxes
(Figure 2c). For the outflow controller, the homeostatic
behavior breaks down (i.e., state steady values of A decrease
below the set-point) when kpert

outf low becomes large relative to the
inflow fluxes (Figure 2d).
The steady state solutions for A and E of the inflow and

outflow controllers in Figure 2 show either stable nodes or
stable focus points (with or without saddle points), depending
on the rate constants; see Figure 3. As an example, we consider
the inflow controller in Figure 2a, which has two steady state
solutions:

= =A k k E1: / , 0ss pert
inflow

pert
outflow

ss (3)

= =
−

A k k E
k k k k

k k
2: / ,ss ss

pert
outflow

pert
inflow

6 8
6 8

1 8 (4)

In case kpert
inf low ≤ kpert

outf lowAset
in , homeostasis is preserved and eq 3

corresponds to a saddle point (green dots in Figure 3, parts a
and c), whereas eq 4 corresponds to either a stable node
(Figure 3a) or a stable focus (Figure 3c), determined by the
eigenvalues of the system33

λ =
− ± − +k k k k k k4 4

2
pert
outflow

pert
outflow

pert
outflow

pert
inflow

1,2
6 8

2

(5)

In case kpert
inf low > kpert

outf low Aset
in , homeostasis breaks down, and the

only physical realistic steady state solution is eq 3 (Figure 3b).

Figure 1. Integral control by zero-order kinetics. (a) Scheme of the
integral control concept. A is the controlled variable, which is regulated
to set-point Aset regardless of unpredictable perturbations of A. To
achieve this, the error e = Aset−A is calculated and integrated leading to
the manipulated variable E, which corrects the value of A such that A
will approach Aset. (b) Negative feedback loop showing robust
homeostasis in A when the manipulated variable E is removed by
zero-order kinetics. In this case Ė is proportional to the error e, which,
when integrated, leads to E and adjusts the level of A precisely to its
set-point Aset

in . Because the controller action is based on adding A by E,
we term this controller type for an inflow controller. (c) Kinetic
representation of an outflow controller with integral control by zero-
order removal of E.
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Hence, the manipulated variable E becomes zero, and the
steady state level of A is determined by the relationship of the
perturbation fluxes. Similar results are shown for the outflow
controller (Figures 3d−f).

■ CONSERVATIVE OSCILLATIONS

By neglecting outflow perturbation kpert
outf low in the dynamics of A,

the rate equations for the outflow controller in Figure 2b
becomes

̇ = −
+

A k
k AE

K Apert
inflow

M

3

4 (6)

̇ = −E k AE k E6 8 (7)

Moreover, when KM4 → 0 and making the substitution ξ =
ln(E), eqs 6 and 7 can be expressed as follows:

̇ = − ξA k k epert
inflow

3 (8)

ξ ̇ = −k A k6 8 (9)

From eqs 8 and 9, an ”energy-function” (H-function) can be
constructed

∫ ∫ξ ξ ξ= − ̇ + ̇H A A A( , ) d d
(10)

satisfying the equations

ξ
ξ∂

∂
= − ̇ ∂

∂
= ̇H

A
H
A (11)

showing that H is time independent and the system is
conservative

Figure 2. Integral control by autocatalysis. (a) Negative feedback loop of inflow controller with autocatalytic loop in E. d[ln(E)]/dt is proportional
to the error e between A and its set-point Aset

in = k6/k8. (b) Negative feedback loop of outflow controller with autocatalytic loop in E. d[ln(E)]/dt is
proportional to the error e between A and its set-point Aset

out = k8/k6. (c) Homeostatic behavior of inflow controller described in (a). Rate constants
kpert
inf low and kpert

outf low are allowed to vary between 0.5 and 50.0 with intervals by 0.5, while all other rate constants are kept at 1.0. Homeostasis in A steady
state levels (Ass) with Aset

in = 1.0 is observed when kpert
inf low ≤ Aset

in kpert
outf low, but lost when kpert

inf low > Aset
in kpert

outf low.28 The transition line kpert
inf low = Aset

in kpert
outf low separating

homeostatic and nonhomeostatic regimes is indicated in blue. (d) Homeostatic behavior of outflow controller. Rate constants are allowed to vary as
in part c, while the other rate constants are kept at 1.0. Homeostasis in A steady state levels (Aset

out = 1.0) is observed when kpert
inf low ≥ Aset

outkpert
outf low, but lost

when kpert
inf low < Aset

outkpert
outf low.
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When KM4 → 0 the trajectories of the system (eqs 8 and 9)
become closed orbits at constant values of H. Figure 4a shows
the numerically calculated trajectory of a closed orbit at a
relative low KM4 value. The same orbit as in Figure 4a is
obtained in Figure 4b (blue curve) by calculating the H-
function and finding the contour line at H = −5.65 au, which is
determined by the initial conditions for A and E in Figure 4a.
Despite its oscillatory character the system still shows

homeostasis in A, but now for the average value of A, defined as

∫τ
⟨ ⟩ =

τ
A A t t

1
( ) d

0 (13)

with ⟨A⟩ = Aset
out = k8/k6 and τ as the simulation (integration)

time, i.e., ⟨A⟩ is independent of kpert
inf low and k3.

The independence of ⟨A ⟩ from kpert
inf low is illustrated in Figures

4c and 4d, where kpert
inf low is successively increased. While a change

in the amplitude in A is observed, the change is symmetrical
around Aset

out such that ⟨A⟩ remains at its set-point Aset
out = 2.0.

Because of the homeostatic condition ⟨A⟩ = Aset
out, there is an

inverse relationship between the (integrated) amplitude of A
and the frequency ω of the conservative oscillations. Consider
that for a given set of rate constants the oscillator undergoes n
cycles during the time interval τ. For each cycle, we can
integrate A for one period length, which results in what we may
call an “integrated amplitude” A1. Using A1, the average of A for
n cycles can be expressed by ⟨A⟩ = nA1/τ. Because n/τ = ω, we
get ⟨A⟩ = A1ω = Aset

out, showing that the integrated amplitude A1
is inversely proportional to the oscillator’s frequency ω.
Because of the conservative character of the oscillations,
random changes in A and E lead also to changes in the
amplitudes of A and E as well as to the frequency, while keeping
the average value of A, ⟨A⟩, close to Aset

out (Figure 4, parts e and
f).
Correspondingly, by neglecting inflow perturbation kpert

inf low and
assuming zero order degradation of outflow perturbation
(Michaelis−Menten dynamics with low KM value) in the
dynamics of A, the rate equations for the inflow controller in
Figure 2a becomes:

̇ = −A k E kpert
outflow

1 (14)

̇ = −E k E k EA6 8 (15)

which also show conservative oscillations.
While for the outflow controller (eqs 8 and 9) the

trajectories move in an anticlock-wise manner, for the inflow
controller (eqs 14 and 15) the trajectories move clockwise with
⟨A⟩ = Aset

in = k6/k8. Homeostasis is kept as long as there is a
sufficient large outflow from A that the inflow controller can
compensate (data not shown).

■ LIMIT-CYCLE OSCILLATIONS

We wondered whether it would be possible to construct limit-
cycle oscillations with the inflow/outflow controller motifs
from Figure 2 such that the homeostatic condition ⟨A⟩ = Aset
would be still obeyed. For both motifs this can be achieved by
including an additional intermediate a to the network. Figure 5a
shows this for the inflow controller motif with the following
rate equations:

̇ = −a k E k a1 10 (16)

̇ = + −A k k a k Apert
inflow

pert
outflow

10 (17)

̇ = −E k E k AE6 8 (18)

Figure 5b shows projections of the 3-dimensional limit cycle
on to the A−E phase plane with different initial conditions. In
each of these cases ⟨A⟩ = Aset

in = k6/k8 is obeyed. Figure 5c
shows the time behavior when initial condition 3 from Figure
5b is used. The controller has the typically properties of an
inflow controller, i.e., breakdown of homeostasis when the
uncontrollable inflow of A is dominating over the outflows
(Figure 5d).

Figure 3. The inflow and outflow controllers can show stable nodes or
stable focus points (with or without saddle points) depending on the
inflow and outflow perturbations. Panels a−c: inflow controller from
Figure 2a with k1 = 2.0, k6 = 2.0, k8 = 0.5. (a) kpert

inf low = 8.0 and kpert
outf low =

5.0 showing stable node (red dot) at Ass = Aset
in = k6/k8 = 4.0 and Ess =

6.0 (eq 4). Green dot indicates a saddle point at Ass = kpert
inf low/kpert

outf low =
1.6 and Ess = 0 (eq 3). Homeostasis in A is preserved. (b) Example of
controller breakdown when kpert

inf low = 8.0 and kpert
outf low = 1.8 showing a

stable node (red dot) at Ass = kpert
inf low/kpert

outf low = 4.44 and Ess = 0 (eq 3).
Homeostasis in A is not preserved. The solution from eq 4 gives
negative and therefore unrealistic Ess values. (c) kpert

inf low = 2.0 and kpert
outf low

= 1.8 showing stable focus point (red dot) at Ass = Aset
in = 4.0 and Ess =

2.6 (eq 4). Homeostasis in A is preserved. Green dot indicates a saddle
point at Ass = kpert

inf low/kpert
outf low = 1.11 and Ess = 0 (eq 3). Panels d−f:

outflow controller from Figure 2b with k3 = 1.0, k6 = 1.0, k8 = 1.5. (d)
kpert
inf low = 8.0 and kpert

outf low = 0.8 showing stable node (red dot) at Ass = Aset
out

= k8/k6 = 1.5 and Ess = 4.6. Green dot indicates a saddle point at Ass =
kpert
inf low/kpert

outf low = 10.0 and Ess = 0. Homeostasis in A is preserved. (e)
Example of controller breakdown when kpert

inf low = 4.0 and kpert
outf low = 4.0

showing a stable node (red dot) at Ass = kpert
inf low/kpert

outf low = 1.0 and Ess = 0.
Homeostasis in A is not preserved. (f) kpert

inf low = 4.0 and kpert
outf low = 0.8

showing stable focus point (red dot) at Ass = Aset
out = 1.5 and Ess = 1.9.

Homeostasis in A is preserved. Green dot indicates a saddle point at
Ass = kpert

inf low/kpert
outf low = 5.0 and Ess = 0.
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In a similar approach, limit cycle oscillations with a
homeostatic outflow controller motif (Figure 2b) can be
obtained (data not shown).

■ LOTKA−VOLTERRA AND RELATED OSCILLATORS
The Lotka−Volterra oscillator (LVO) equations

̇ = −A k A k AE1 3 (19)

̇ = −E k AE k E6 8 (20)

have been formulated independently by Lotka and Volter-
ra34−36 and have been the subject of many studies especially
within chemical oscillator theory,37,38 predator−prey inter-
actions,39 as well as in economics.40 The LVO contains two
autocatalytic loops and can be viewed having an outflow
controller structure relative to A and an inflow controller
structure relative to E (Figure 6a). The oscillations are
conservative and any perturbation in A (via kpert,A

inf low, kpert,A
outf low) or

in E (via kpert,E
inf low, kpert,E

outf low) will lead to a new closed trajectory in the
A−E phase space. The conservative nature of the LVO may be
considered as unrealistic as it lacks the stability properties of

limit-cycles.36 However, any perturbation in A (or in k1 or k3) is
counteracted such that the average value of A, ⟨A⟩, returns to
its set-point Aset

out = k8/k6. The situation is analogous to that
shown in Figures 4c−f, but with the difference that in the LVO,
also perturbations in E (or in k6 or k8) are compensated and
⟨E⟩ (as defined in eq 13) is kept at the homeostatic set-point
Eset
out = k1/k3.
Interchanging A and E in eqs 19 and 20 leads to the negative

feedback shown in Figure 6b, where the system has now an
inflow control motif with respect to A and an outflow controller
motif with respect to E. Thus, the autocatalytic loop in A
controls the homeostatic behavior in E, while the autocatalytic
loop in E controls the homeostasis in A. The negative feedback
loops described in Figure 6, parts a and b, behave differently
when A or E are subject to perturbations in their inflow/
outflow fluxes to or from A/E. As the feedback in Figure 6a is
an outflow type of controller with respect to A, any outflow
perturbation (kpert,A

outf low) exceeding the (autocatalytic) inflow flux
to A will destroy the homeostatic behavior of the A-controller.
Similarly, any inflow perturbation to E (kpert,E

inf low) exceeding the
outflow flux mediated by k8 will destroy the homeostasis in E.

Figure 4. Conservative oscillations for the outflow controller described by eqs 6 and 7. (a) Numerical computation of closed phase orbit with rate
constants (in a.u.) kpert

inf low = 1.0, k3 = 2.0, KM4 = 1 × 10−6, k6 = 5.0, k8 = 10.0, and the initial concentrations A0 = 1.0, and E0 = 0.8333. The calculated
average of A (eq 13) is ⟨A⟩ = Aset

out = k8/k6 = 2.0. The trajectory runs counterclockwise in the A (abscissa) −E (ordinate) phase plane. (b) Calculated
H-function from eqs 8 and 9 taking the form H = −kpertinf lowξ + k3e

ξ + 0.5k6A
2 − k8A, where ξ = ln(E). Using the rate constants and initial conditions

from part a gives a value for H of −5.65, which leads to the same closed loop trajectory (blue line) as calculated in part a. (c) The successive increase
of kpert

inf low (black lines) from 1.0 to 5.0 leads to an increase in the oscillator’s frequency and a decrease in the amplitude of A (red lines). The blue line
is the integral of A, i.e. the value of (1/t)∫ 0

tA(t′)dt′ for time t. The apparent linearity shows that ⟨A⟩ is constant and equal to Aset
out . Oscillations in E

are shown in green and the E-integral as a function of time is given in purple. (d) Phase behavior of the system in part c. Numbers 1−5 indicate the
trajectories for the values of kpert

inf low changing from 1.0 to 5.0 as indicated in part c. (e) Same system as in part a, but concentrations in A and E are
changed randomly between zero and one at time units 0, 25, 50, and 75. Also here ⟨A⟩ is close to Aset

out, but due to the changes in A at the transitions
the global A-average (from t = 0 to t = 100) is not precisely at Aset

out. However, for each of the time intervals (0−25), (25−50), (50−75), (75−100) we
have that ⟨A⟩ = Aset

out = 2.0. Dashed lines 1, 2, and 3 indicate the random changes made in A and E. (f) Phase plane behavior of the system described
in part e. Numbers 1−3 relate to the (stochastic) changes made in A and E at time units 25, 50, and 75.
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In Figure 6b, the situation is reversed; i.e., any inflow
perturbation in A (kpert,A

inf low) exceeding the outflow flux mediated
by k3 will destroy homeostasis in A, while any outflow
perturbation from E (kpert,E

outf low) exceeding the autocatalytic inflow
flux mediated by k6 will destroy the homeostasis in E. We
illustrate these behaviors by one example using a first-order
outflow perturbation with rate constant kpert,A

outf low from A for the
LVO in Figure 6a. By including the term −kpert,Aoutf lowA to eq 19
(the other perturbation terms are kpert,A

inf low = kpert,E
inf low = kpert,E

outf low = 0),
the system remains conservative and by using the method
outlined above to calculate H, we get

= − + + −H A E k k E k E k A k A( , ) ( ) ln( ) ln( )pert A
outflow

, 1 3 6 8

(21)

As long as kpert,A
outf low < k1, homeostasis in ⟨A⟩ is maintained, and

the system shows oscillations. The (oscillatory/closed)
trajectory on the H-surface is shown in Figure 6c. However,
when kpert,A

outf low > k1, homeostasis breaks down and the steady state
value in A settles below its homeostatic set-point. The
trajectory on the H-surface is shown in Figure 6d.
By including an additional intermediate, the LVO schemes in

Figure 6, parts a and b, can be transformed into limit-cycle
oscillations. We show here the results for the “inflow-controller
version” with respect to A (Figure 7a). Species a, which is
induced by the autocatalytically formed E is a precursor to A on
which A itself is formed autocatalytically. A on its side induces
the removal/degradation of E causing a negative feedback
necessary to get oscillations and homeostasis. Limit-cycle

Figure 5. (a) “Extended” inflow controller showing limit-cycle oscillations. (b) Approach to limit-cycle at initial conditions: 1, a0 = 2.0, A0 = 3.5, E0 =
0.7; 2, a0 = 0.1, A0 = 1.0, E0 = 0.7; 3, a0 = 0.1, A0 = 2.0, E0 = 0.1. Rate constant values: kpert

inf low = 1.0, kpert
outf low = 3.0, k6 = 20.0, k8 = 10.0, k1 = 30.0, k10 =

10.0. (c) Time profile of oscillations in part b with initial conditions 3. ⟨A⟩ = Aset
in = k6/k8 = 2.0. (d) Breakdown of homeostatic control (⟨A⟩ = 6.0)

when kpert
inf low = 3.0 and kpert

outf low = 0.5 leading to kpert
inf low > Aset

in kpert
outf low. All other rate constants as in part b.

Figure 6. Lotka−Volterra oscillator. (a) The negative feedback structure defines an outflow-type of controller with respect to A and an inflow-type of
controller with respect to E. Rate constants kpert,A

inf low, kpert,A
outf low, kpert,E

inf low and kpert,E
outf low describe perturbative inflow and outflow fluxes. (b) The LVO with

negative feedback structure defining an inflow-type of controller with respect to homeostasis in A, and an outflow-type of controller with respect to
E. (c) The LVO from (a) with k1 = 1.0, k3 = 2.0, k6 = 1.0, k8 = 2.0, and kpert,A

outf low = 0.5. All other rate constants are zero. Initial concentrations are A0 =
1.0, and E0 = 0.5. The oscillations are shown as a closed orbit on the H(A,E)-surface with projection on to the A−E phase plane with ⟨A⟩ = Aset

out = k8/
k6 = 2.0. (d) Same system as in part c, but kpert,A

outf low = 1.5. Homeostasis in ⟨A⟩ is lost and the system approaches a steady state well below Aset
out.
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oscillations can be demonstrated (Figure 7b) for a variety of
rate constant values. Dependent on the rate constant values the
period length can vary considerably ranging from about 70 time
units (Figure 7c) to a fraction of a time unit. Because of the
inflow-type of controller relative to A, homeostasis in A is
observed as long as the environmental perturbative zero-order
inflow flux kpert,A

inf low to A is smaller than the perturbative outflow
flux from A determined by kpert,A

outf low. Homeostasis in A can be
observed both in oscillatory/pulsatile mode (Figure 7c) or in
nonoscillatory mode (Figure 7d).

■ DISCUSSION
We have shown that autocatalysis/positive feedback is an
alternative way to introduce integral control in homeostatic
controller motifs, while the inflow/outflow properties21 of the
motifs remain preserved. We have demonstrated this for two
controller motifs, but the method can be applied for other two-
component controller motifs that were recently identified.28

An interesting aspect when comparing integral control
between the zero-order kinetic (Michaelis−Menten) approach
(Figure 1) and the here described autocatalytic method (Figure
2) is related to the accuracy of the controller. In the zero-order
approach the KM value of the process removing the controlled
variable E serves as a measure for controller accuracy of the two
controllers addressed here. At low KM values the controller
accuracy is high, i.e., A is close to Aset, while at high KM values
the accuracy of the controller is low,28 and the steady state of A
is dependent upon the type of the controller. For the inflow
controller, a high KM will lead to a steady state in A which will
be higher than Aset (as indicated by the equation for Ė in Figure
1b), while in the outflow controller (Figure 1c) a high KM will
lead to a A steady state, which has a lower value than Aset. In the
autocatalytic approach the controller accuracy is intrinsically
perfect, because no requirements such as KM1/KM3 ≪ E (Figure
1) are necessary. While we considered a first-order reaction in
the A-mediated removal of E (Figure 2), the kinetics could also
be of Michaelis−Menten type or any other nonzero reaction-
order with respect to A, as long as the reaction-order with

respect to E for its autocatalytic formation and for its
degradation remains the same.
In this study we have focused on the two homeostatic inflow

and outflow controller motifs (Figure 1/Figure 2) with a close
relationship to the LVO and similar oscillators (Figure 6). In
1925, Lotka described his attempts to explain biological
homeostatic behavior on the basis of Le Chatelier’s principle.8

He concluded negatively, and ironically, it seems that he was
unaware that the equations that bear today his name have
homeostatic properties.
The LVO and derivative models are well-known for their

usage in ecological systems,36,39 which have generally been
thought of as homeostatic systems.41 While the conservative
nature of the LVO is mostly considered to be a drawback when
considering system stability we have shown that they already
contain, due to their autocatalytic nature homeostatic behavior
in ⟨A⟩ or ⟨E⟩ (Figure 4), which can be extended to limit-cycle
models (Figures 5 and 7).
There is an extensive literature showing that autocatalysis/

positive feedback in combination with negative feedback loops
can be the source for a variety of dynamic behaviors including
excitability,42,43 oscillations,38,44−46 spatial pulse propaga-
tion,38,43 bi- or multistability,38,47,48 as well as Turing
structures.49 While homeostasis is generally associated with
negative feedback regulation,21,50,51 combinations of positive
and negative feedback loops with respect to homeostasis have
also been addressed. An example is the hypothalamus-pituitary-
adrenal system,52 where the positive feedback is considered to
be a crucial component to self-stabilize the system. A related
behavior has been observed earlier by Cinquin and Demon-
geot,53 showing that a certain strength of the positive feedback
in a combined positive-negative feedback model is required to
obtain stability of the system. Maintenance of stem cell
homeostasis in the apical meristem in rice has recently been
reported to be due to a positive autoregulation of the KNOX
gene.54

Calcium is an important signaling molecule in all living cells
and its concentration is tightly regulated in the cytosol and

Figure 7. (a) Extension of the LVO from Figure 6b with variable inflow and outflow perturbations (kpert
inf low and kpert

outf low) in A. (b) Demonstration of
limit-cycle behavior. Rate constants: k1 = 11.0, k6 = 2.0, k8 = 2.0, k10 = 0.5, kpert

inf low = 1.0 and kpert
outf low = 10.0. Initial concentrations for 1: a0 = 10.1, A0 =

1.0, E0 = 0.1 and for 2: a0 = 18.0, A0 = 1.0, E0 = 0.8. The homeostatic set point for A is Aset
in = k6/k8 = 1.0, and confirmed by calculating ⟨A⟩. (c)

Pulsatile oscillations with period P = 69.7 time units. Rate constants as in part b except kpert
inf low = 1 × 10−6 and kpert

outf low = 1.0. Initial concentrations a0 =
20.0, A0 = 1.0, E0 = 0.8. Although A peak-values are above 60 au, the determined average of A is ⟨A⟩ = 1.04 and very close to Aset

in = 1.0. (d)
Nonoscillatory homeostasis of A. Rate constants as in (b) except kpert

inf low = 3.5 and kpert
outf low = 3.8. Initial concentrations as in part c.
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organelles.55 For example, disregulation of Ca-homeostasis is
involved in various neurodegenerative diseases.56 Both positive
and negative feedback loops have been identified in cellular Ca-
regulation showing behaviors such as sparks, waves, bursts or
oscillations.57−59 The observed positive feedback loops in
calcium regulation may be part of the homeostatic mechanisms
that maintain cytosolic and organellar calcium levels,55 but little
is presently known in this respect.
For certain neurons, iron uptake has been found to occur by

an oxidative-stress mediated positive feedback loop.60 The role
of the positive feedback is still unclear, but also here it could be
that the positive feedback participates in the regulation of iron
by possibly participating in the determination of the iron
homeostatic set-point.
The notion that autocatalysis (or positive feedback) is a

source of robust stability may appear counterintuitive.
However, it should be kept in mind that the autocatalytic
loop generating E (or A) is part of an overall negative feedback
loop (controller motif).21,28 Positive feedback is an important
driving force for growth and development,61 but needs to be
limited by negative feedback to avoid runaway states.41

■ CONCLUSION
We have shown that autocatalysis/positive feedback can be a
mechanism leading to integral control and thereby resulting
into robust homeostatic and adaptive behaviors. However, as
indicated by the biological examples above, we presently still
know little about how positive feedback loops are involved in
the cellular organization of homeostatic behavior.
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