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Stoichiometric Network Approach

A frequency domain approach to sensitivity analysis was formulated by Ingalls [1] based
on stoichiometric network theory [2], describing a kineticsystem as:

ṡ(t) = Nv
(

s(t),p(t)
)

(A1)

wheres(t), v(t) andp(t) are vectors of species concentrations, reaction rates, rate con-
stants and other internal/external parameters, respectively, and the matrixN describes the
stoichiometry of the system. The stoichiometric network model given by Eq. A1 can be
written as a linear time-invariant input-output system as by Eq. 3 in main paper with the
system matrixA = NR

∂v
∂s
L and the input matrixB = NR

∂v
∂p

. The matrixL is thelink
matrix andNR is thereduced stoichiometric matrixconsisting of the independent rows
of N, i.e.N = LNR [1, 2]. The inputs are the reaction rates.

The model output from Eq. A1 can be expressed similarly to thenetwork properties de-
scribed by Eq. 4 in main paper. If the stoichiometric networkmodel output is related to
concentrations, thenC = I andD = 0 in the generalized state space model. On the other
hand, if the stoichiometric network model output is relatedto fluxes, thenC = ∂v

∂s
L and

D = ∂v
∂p

. Hence, the calculation of the matricesC andD depends on the actual prop-
erty (flux or concentration) and is not generic as in our statespace approach. Therefore,
instead of one generic expression for the transfer function(as Eq. 5 in main paper), two
different expressions for the transfer functions are needed (please note that Eqs. 9 and 10
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in Ref. [1] contain misprints, which are corrected here):

Hsi(s) =

(

sI −NR

∂v

∂s
L

)

−1

NR

∂v

∂p
(A2)

Hv(s) =
∂v

∂s
L

(

sI −NR

∂v

∂s
L

)

−1

NR

∂v

∂p
+

∂v

∂p
(A3)

The transfer functionsHsi(s) andHv(s) are for concentration and flux model outputs,
respectively.

Furthermore, Ingalls [1] defines the transfer functions in Eqs. A2 and A3 to be the same
as frequency dependent unscaled (absolute)concentrationandrate response coefficients,
respectively, i.e.Rsi(s) = Hsi(s) andRv(s) = Hv(s). Based on these definitions and
the generic relationship between the absolute response coefficientsRx

p = ∂x
∂p

, the absolute

control coefficientsCx
v = ∂x

∂v
and the absolute elasticity coefficientsǫvp = ∂v

∂p
, defined as

Rx
p = Cx

vǫ
v
p in Ref. [3], Ingalls [1] relates the transfer function and the unscaled/absolute

control coefficients as:

Hsi(s) = Csi(s)
∂v

∂p
(A4)

Hv(s) = Cv(s)
∂v

∂p
(A5)

where the frequency dependent unscaled/absoluteconcentrationandflux control coeffi-
cientscan be found as:

Csi(s) =

(

sI −NR

∂v

∂s
L

)

−1

NR (A6)

Cv(s) =
∂v

∂s
L

(

sI −NR

∂v

∂s
L

)

−1

NR + I (A7)

In order to compare these specific results with the general result from Eq. 13 in main
paper, we need therelative concentration and flux control coefficient matrices given as
(from Hofmeyr [3])

C̃si(s) = (Dsi)−1·Csi(s)·D
v (A8)

C̃v(s) = (Dv)−1·Cv(s)·D
v (A9)

whereDv = diag
(

v(s0i , p
0)
)

andDsi = diag(s0i ), ands0i andp0 are the steady state values
of species concentration and parameters, respectively [1].
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As opposed to the state space approach, the dimensions of thetwo matricesHsi(s) and
Csi(s) (orHv(s) andCv(s)) may actually differ since∂v

∂p
may not be square (i.e. when us-

ing lumped reaction rates in the modeling), and therefore impossible to compare element-
wise. The steady state relative concentration/flux controlcoefficientsC̃si and C̃v are
found by settings = 0 in Eqs. A8 and A9, respectively.

To summarize, the state space approach described in main paper can findanyrelative sen-
sitivity coefficient by first identifying the transfer function matrix (Eq. 5 in main paper),
either by modeling or a system identification method, and then use the single relationship
in Eq. 13 shown in main paper. The stoichiometric network approach is an alternative way
to identify the relative concentration/flux control coefficient matrices. There are, however,
limitations (lack of generality) to the stoichiometric network approach compared to the
state space method:

• The choice of output (flux or concentration) determines which transfer function
(Hsi(s) orHv(s)) to be used.

• Only reaction ratesv are used as input.

• The stoichiometric network approach cannot be applied whennumerical (not sym-
bolic)A, B,C andD matrices or transfer functions have been obtained by a system
identification approach, because the matricesNR, Dv, Dsi and ∂v

∂p
require knowl-

edge of the model structure.

• Similarly, if only a transfer function (symbolic or numerical) exists for a reaction
network where an input is considered to be lumped by two or more reactions, the
matrix ∂v

∂p
is not invertible. Hence, the control coefficient matricesCsi(s) andCv(s)

cannot be found by using Eqs. A4 and A5.

Illustrating the principles

As mentioned in the main paper, we use three different motifsto illustrate the scenarios
describing the different kinds of adaptation. We use supscript 1, 2, 3, 4 or 5 to indicate
which matrix element is robustly disconnected (scenario 1), non-robustly disconnected
(scenario 2), robust perfectly adapted (scenario 3), non-robust perfectly adapted (sce-
nario 4) or near non-robust perfectly adapted (scenario 5),respectively.
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Motif M1

Motif M1 presented in the main paper is shown below
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6 (M1)

where each rate constant depends on temperature using the Arrhenius equation askn(t) =

An·e
−En
RT (t) . The nonlinear dynamic model for motif M1 becomes:

dx1(t)

dt
= A1·e

−E1
RT (t) −A2·e

−E2
RT (t) ·x1(t) (A10)

dx2(t)

dt
= A2·e

−E2
RT (t) ·x1(t)− A3·e

−E3
RT (t) ·x2(t)−A4·e

−E4
RT (t) ·x2(t) (A11)

dx3(t)

dt
= A3·e

−E3
RT (t) ·x2(t)− A5·e

−E5
RT (t) ·x3(t) (A12)

dx4(t)

dt
= A4·e

−E4
RT (t) ·x2(t)− A6·e

−E6
RT (t) ·x4(t) (A13)

producing the following linear state space matricesA andB:

A =











−A2·e
−E2
RT 0 0 0

A2·e
−E2
RT −

(

A3·e
−E3
RT + A4·e

−E4
RT

)

0 0

0 A3·e
−E3
RT −A5·e

−E5
RT 0

0 A4·e
−E4
RT 0 −A6·e

−E6
RT











(A14)

B =

















A1E1

RT 2 e
−E1
RT − A2x1E2

RT 2 e
−E2
RT

A2x1E2

RT 2 e
−E2
RT − A3x2E3

RT 2 e
−E3
RT − A4x2E4

RT 2 e
−E4
RT

A3x2E3

RT 2 e
−E3
RT − A5x3E5

RT 2 e
−E5
RT

A4x2E4

RT 2 e
−E4
RT − A6x4E6

RT 2 e
−E6
RT

















(A15)
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where the steady state values of the concentrationsxss are

x1 =
A1·e

−E1
RT

A2·e
−E2
RT

(A16)

x2 = A1·e
−E1
RT ·(A3·e

−E3
RT + A4·e

−E4
RT ) (A17)

x3 =
A1A3e

E5
RT

A5e
E1
RT e

E3
RT

(

A3e
−E3
RT + A4e

−E4
RT

) (A18)

x4 =
A1A4e

E6
RT

A6e
E1
RT e

E4
RT

(

A3e
−E3
RT + A4e

−E4
RT

) (A19)

Fluxes as model output

In this scenario, the input to the model is the scalar temperatureu(t) = T (t) and the
output from the model is the fluxes
y(t) = [k1(t), k2(t)x1(t), k3(t)x2(t), k4(t)x2(t), k5(t)x3(t), k6(t)x4(t)]

T . The non-
linear model in Eqs. A10-A13 is simulated using a step-wise increase of 10K in temper-
ature from 308K to 318K att = 1. The response in the fluxesJ1(t), . . . , J6(t) is shown
in Fig. S1. A comparison between the analytical (based on Eq.30 in main paper) and the
empirical (based on Eq. 10 in main paper and the responses in Fig. S1) steady state rela-
tive sensitivity coefficient matrices are shown in Eq. A20 (analytical to the left, empirical
to the right):

Cy
u =

















0.02616
0.02616
0.04806
0.00975
0.04806
0.00975

















, Cy
u ≈

















0.02535
0.02535
0.04653
0.00943
0.04653
0.00943

















(A20)

As wee see, the values differs, and these differences are dueto the relative large step of
10K in temperature increase. A smaller step-wise increase in temperature will reduce the
difference, and this actually demonstrates the non-linearity of the system.

5



Concentration as model output

Using concentrations as model output, i.e.y(t) = [x1(t), x2(t), x3(t), x4(t)]
T , the rela-

tive sensitivity coefficient matrix from temperature to concentration is

Cy
u =































E1−E2

RT

4

A3E1e
−E3
RT −A3 E3e

−E3
RT +A4 E1e

−E4
RT −A4 E4e

−E4
RT

RT

(

A3e
−E3
RT +A4e

−E4
RT

)

5

A4 E3e
−E4
RT −A4 E4e

−E4
RT

RT

(

A3e
−E3
RT +A4e

−E4
RT

) + E1

RT
− E5

RT

5

E1

RT
−

(

A3 E3e
−E3
RT −A3 E4e

−E3
RT

)

RT

(

A3e
−E3
RT +A4e

−E4
RT

) − E6

RT

5































(A21)

which shows a combination of non-robust and near non-robustperfect adaptation sites.
The conditions for near non-robust perfect adaptation of the elementsCy

u(2, 1), C
y
u(3, 1)

andCy
u(4, 1) are:

A3e
−

E3
RT (E1 − E3) + A4e

−

E4
RT (E1 −E4) = 0 (A22)

A3e
−

E3
RT (E1 − E5) + A4e

−

E4
RT (E1 + E3 − E4 −E5) = 0 (A23)

A3e
−

E3
RT (E1 − E3 + E4 − E6) + A4e

−

E4
RT (E1 −E6) = 0 (A24)

Comparing the 2 conditions from Eqs. 22 and 23 in main paper against the 3 conditions
in Eqs. A22-A24, shows that it is impossible to obtain adaptation in any flux and in any
concentration simultaneously.

Motif M2

Motif M2 (shown below) is used to illustrate and compare the generalized state space
model approach (based on the left scheme in M2) with the stoichiometric network model
approach (based on the right scheme in M2 wherek2 andk

−2 are lumped intov2) as
described by Ingalls [1] using both concentrations and fluxes as model outputs.
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Concentrations as Model Output

State Space Model Approach
Using the state space model approach, the rate equations become

dx1(t)

dt
= k1(t)− k2(t)x1(t) + k

−2(t)x2(t) (A25)

dx2(t)

dt
= k2(t)x1(t)− k3(t)x2(t)− k

−2(t)x2(t) (A26)

where the input vector isu(t) = [k1(t), k2(t), k
−2(t), k3(t)]

T and the state vector is
x(t) = [x1(t), x2(t)]

T . Focusing first on concentrations as model output, the output vec-
tor becomesy(t) = [x1(t), x2(t)]

T . This gives the following matrices for the linearized
state space model

A =

[

−k2 k
−2

k2 −(k3 + k
−2)

]

, B =

[

1 −x1 x2 0
0 x1 −x2 −x2

]

C =

[

1 0
0 1

]

, D =

[

0 0 0 0
0 0 0 0

]

Using the steady state expressions for the concentrations

xss = [x1, x2]
T =

[

k
−2k1 + k1k3

k3k2
,
k1

k3

]T

(A27)

and the steady state expressions for the outputs, i.e.yss = [x1, x2]
T , the transfer function

matrixH(s) becomes:

H(s) =
1

s2 + s(k2 + k3 + k
−2) + k3k2

·

[

(s+ k
−2 + k3)

−(s+k3)k1(k−2+k3)
k2k3

(s+k3)k1
k3

−k
−2k1
k3

k2
sk1(k−2+k3)

k2k3
−sk1

k3
−

(s+k2)k1
k3

]

(A28)
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The frequency dependent relative sensitivity coefficient matrixCy
u(s) becomes:

Cy
u(s) =H(s)◦

uss

yss

=
1

s2 + s(k2 + k3 + k
−2) + k3k2

·

[

(s+k3+k
−2)k2k3

k3+k
−2

−(s+ k3)k2
(s+k3)k−2k2

k3+k
−2

−k
−2k2k3

k3+k
−2

k2k3 (k3 + k
−2)s −k

−2s −(s + k2)k3

]

(A29)

where the functions of the numerator polynomialn
yp
un(s) of e.g. element (2,2) are

q(uss,α) = 1 (A30)

h1(uss,α) = (k3 + k
−2) (A31)

h0(uss,α) = 0 (A32)

fulfilling the conditions for scenario 3. Similar results are found for element (2,3), imply-
ing that componentI2 is robust perfectly adapted to step-wise changes in rate constants
k2(t) andk

−2(t). The steady state relative sensitivity coefficient matrix becomes:

Cy
u =

[

1 −1 k
−2

k
−2+k3

−
k
−2

k
−2+k3

1 03 03 −1

]

(A33)

The summation theorem applied to either of the steady state or frequency dependent rela-
tive sensitivity coefficient matrix matrices in Eqs. A29 or A33 gives (summed over allN
reactions):

∑

all N

Cy
u =

[

0
0

]

TheCy
u(s) matrix in Eq. A29 is presented in terms of Bode plots in Fig. S2, where the

steady state properties of Eq. A33 can be found by inspectingthe Bode plots as the fre-
quency approaches 0. For example, the element (1,1) of Eq. A33 has a relative ampli-
fication of 1, which corresponds to20· log10(1) = 0 dB as shown in Fig. S2. Another
example is the element (2,2) where the relative amplification approaches 0, i.e.−∞ dB,
whereas the element (1,3) has an amplification ofk

−2

k3+k
−2

= 1.3
1.4+1.3

= 0.48, i.e.−6.35 dB,

Stoichiometric Network Model Approach
In order to find the corresponding relative concentration control coefficient matrix from
the stoichiometric network model approach, we use the following velocity vector:

v =





v1
v2
v3



 =





k1
k2s1 − k

−2s2
k3s2



 (A34)
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wheres1 ands2 denote concentrationsx1 andx2, respectively. Using

∂v

∂s
=





0 0
k2 k

−2

0 k3



 , N = NR =

[

1 −1 0
0 1 −1

]

,
∂v

∂p
=





1 0 0 0
0 s1 −s2 0
0 0 0 s2



 (A35)

the transfer function matrixHsi(s) becomes

Hsi(s) =
1

s2 + s(k2 + k3 + k
−2) + k3k2

·

[

(s+ k
−2 + k3)

−(s+k3)k1(k−2+k3)
k2k3

(s+k3)k1
k3

−k
−2k1
k3

k2
sk1(k−2+k3)

k2k3
−sk1

k3
−

(s+k2)k1
k3

]

(A36)

As we see, this transfer function is identical to the one found from the state space method
(Eq. A28). However, there is no need to find this transfer function since the absolute
concentration control matrixCsi(s) is found directly as shown in Eq. A6. On the other
hand, if a transfer function as Eq. A36 is found from a system identification method, it is
not possible to identify the absolute concentration control matrix Csi(s) since ∂v

∂p
is not

invertible.

In order to find the frequency dependent relative concentration control coefficient matrix
C̃si(s) we use

Dsi =

[

k
−2k1+k1k3

k3k2
0

0 k1
k3

]

, Dv =







k1 0 0

0 k1 0

0 0 k1







to get

C̃si(s) =(Dsi)−1·Csi(s)·D
v

=
1

s2 + s(k2 + k3 + k
−2) + k3k2

·

[

k2k3(s+k
−2+k3)

k
−2+k3

−
k2k3(s+k3)
k
−2+k3

−
k2k−2k3
k
−2+k3

k2k3 k3s −k3(s+ k2)

]

(A37)

which exhibits robust perfect adaptation from reaction ratev2 to componentI2. The steady
state relative concentration control coefficient matrix becomes:

C̃si =

[

1 − k3
k
−2+k3

−
k
−2

k
−2+k3

1 03 −1

]

(A38)
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Although the dimension of the matrix̃Csi in Eq. A33 is different from the dimension of
Cy

u in Eq. A38, we note that the sum of the two middle columns in Eq.A33 results in the
middle column of Eq. A38.

Fluxes as model output

State space model approach
When the model output is given by the fluxes of the system, the output vector is changed
toy(t) = [k1(t), k2(t)x1(t), k−2(t)x2(t), k3(t)x2(t)]

T , giving newC andD matrices for
the linearized state space model as

C =









0 0
k2 0
0 k

−2

0 k3









D =









1 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x2









Using the steady state expressions given in Eq. A27 togetherwith the steady state expres-
sions for the outputs, i.e.yss = [k1, k2x1, k−2x2, k3x2]

T , we get the following transfer
function matrixH(s)

H(s) =
1

s2 + s(k2 + k3 + k
−2) + k3k2

·













1 0 0 0

k2(s+ k3 + k
−2)

k1(k−2+k3)(s+k3+k
−2)s

k2k3

k2k1(s+k3)
k3

−
k2k−2k1

k3

k2k−2
k
−2k1(k−2+k3)

k2k3
s

k1(s2+s(k2+k3)+k2k3)
k3

−
k
−2k1(s+k2)

k3

k2k3,
k1(k−2+k3)

k2
s −k1s

sk1(s+k
−2+k2)

k3













(A39)

where the frequency dependent relative sensitivity coefficient matrixCy
u(s) becomes

Cy
u(s) =

1

s2 + s(k2 + k3 + k
−2) + k3k2

·











1 0 0 0
(s+k3+k

−2)k2k3
k3+k

−2
s(s+ k3 + k

−2)
(s+k3)k−2k2

k3+k
−2

−k
−2k2k3

k3+k
−2

k2k3 (k3 + k
−2)s s2 + s(k3 + k2) + k3k2 −(s+ k2)k3

k2k3 (k3 + k
−2)s −k

−2s s(s+ k
−2 + k2)











(A40)
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By inspecting the numerator polynomialsnyp
un(s) of Eq. A40 we find 3 robustly discon-

nected elements and 5 robust perfectly adapted elements, asindicated in Eq. A41. The
only element which is nonzero and frequency independent is the element (1,1), since the
output is exactly the same as the input. TheCy

u(s) matrix in Eq. A40 is presented in terms
of Bode plots in Fig. S3 showing a wide range of filtering characteristics, e.g. low-pass
in element (2,1), high-pass in element (4,4), band-pass in element (4,2) and all-pass in
element (3,3).

A time domain based visualization of the results in element (4,4) is presented in Fig. S4,
where both a step and different sinusoidal perturbations inu4(t) = k3(t) are plotted
together with the outputy4(t) = J3(t). The high-pass filter characteristics observed as
the frequency of sinusoidal perturbation ofk3(t) increases, is due to the fact that the level
of the componentx2(t) becomes less and less affected (see element (2,4) in Fig. S2)and
therefore exhibit almost steady state behavior at high frequencies. This again implies
that the fluxJ3(t) which is calculated asJ3(t) = k3(t)·x2(t) would follow the sinusoidal
behavior ofk3(t) (shown in plot (2,2) of Fig. S4).

The opposite behavior is found when the sinusoidal frequency of k3(t) approaches zero.
Then the level ofx2(t) is highly affected by the variation ink3(t) (the low frequency
amplification of element (2,4) in Fig. S2 is 0 dB, i.e. 1). Simultaneously, the low frequency
amplification of element (4,4) in Fig. S3 is−∞dB, i.e. 0, which means that the fluxJ3(t)
is unaffected by low frequency changes ink3(t) (shown in plot (1,1) of Fig. S4 using a
step).

The steady state relative sensitivity coefficient matrix becomes

Cy
u =











1 01 01 01

1 03 k
−2

k3+k
−2

−
k
−2

k3+k
−2

1 03 1 −1

1 03 03 03











(A41)

where both matrices in Eqs. A40 and A41 satisfies the summation theorem for fluxes.
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Stoichiometric network model approach
Using the matrices in Eq. A35, the transfer functionHv(s) becomes

Hv(s) =
1

s2 + s(k2 + k3 + k
−2) + k3k2

·







1 0 0 0

k2(s+ k3)
(s+k3)k1(k−2+k3)

k2k3
s −

k1(s+k3)
k3

s −
k
−2k1
k3

s

k2k3
k1(k−2+k3)

k2
s −k1s

k1(s+k2+k
−2)

k3
s






(A42)

and as we see, this transfer function isnot identical to one found from the state space
approach (Eq. A39). This is due to the lumping of reactions, and thereby different matrix
size. In order to find the frequency dependent relative flux control coefficient matrix
C̃v(s) we use

Dv =







k1 0 0

0 k1 0

0 0 k1







to get

C̃v(s) =(Dv)−1·Cv(s)·D
v

=
1

s2 + s(k2 + k3 + k
−2) + k3k2

·





1 0 0
k2(s+ k3) (s+ k3)s k

−2s

k2k3 k3s s2 + (k2 + k
−2)s



 (A43)

From this matrix we identify 2 robustly disconnected elements and 4 robust perfectly
adapted elements. The steady state version becomes

C̃v =







1 01 01

1 03 03

1 03 03






(A44)

which is, as expected, different from the state space approach results in Eq. A41. It is
interesting to note the elements representing the relativeflux control coefficient fromk3
to the fluxesJ2 andJ

−2 in Eq. A41, i.e. elements (2,4) and (3,4), do not subtract up to a
non-robust perfectly adapted0 as in Eq. A44, i.e. element (2,3).
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In order to obtain the same result as in Eq. A41 by the stoichiometric network approach,
the fluxv2 in M2 must be divided into two separate fluxes where the stoichiometric matrix
N becomes

N =

[

1 −1 1 0

0 1 −1 −1

]

Motif M3

To show a relative sensitivity coefficient matrix includingnon-robust perfect adaption
sites, we consider the following network,

k
6
 

k
2
 

k
-4

k
-6

k
-2

k
4

k
1
 

k
3
 

k
5
 

I
2

I
3

I
1

(M3)

studying the cases where either concentrations or fluxes aremodel outputs.

Concentrations as model output

The input include all the rate constantsu(t) = [k1(t), . . . , k6(t), k−2(t) k−4(t), k−6(t)]
T

and the output consists of the concentrationsy(t) = [x1(t), x2(t), x3(t)]
T . In [4] it was

found that this network has no zero element in the steady state relative sensitivity matrix
Cy

u, and hence no robustly disconnected or robust perfectly adapted sites. Furthermore it
was found that the network exhibit non-robust perfect adaption fromk4 to the concentra-
tion of componentI1 if the following condition−k5k−2 + k6k3 = 0 is fulfilled.

Inspecting the numerator polynomials ofCy
u(s), two non-robustly perfect adapted sites

can be identified, i.e. both fromk4 andk
−4 to the concentration of componentI1. The

numerator polynomialny1
u4
(s) for element (1,4) ofCy

u(s) is given as

ny1
u4
(s) = k4

(

k2k−4 + k2k5 + k2k6 + k
−4k−6

)(

(k6 − k
−2)s+ (k6k3 − k5k−2)

)

(A45)
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where the functionsq(uss,α), h1(uss,α) andh0(uss,α) from Eq. 16 in main paper are
readily identified. From Eq. A45 we see that condition 3a) is already fulfilled, whereas
condition 3b) is fulfilled ifq(uss,α)·h1(uss,α) 6= 0, leading to

k4
(

k2k−4 + k2k5 + k2k6 + k
−4k−6

)

6=0 (A46)

k
−2 6=k6 (A47)

Condition 3c)cannotbe fulfilled, but condition 4c) is fulfilled since there exists a solution
to h0(uss,α) = 0 which is:

k5k−2 = k6k3 (A48)

Hence, scenario 4 of non-robust perfect adaptation can be observed. The steady state rel-
ative sensitivity coefficient matrixCy

u for an arbitrary set of chosen rate constants which
fulfills only condition 3b), e.g.uss = [1, 2, 3, 4, 5, 6, 7, 8, 9] (the parameter vectorα is
empty), becomes:

Cy
u =





1 −0.15 −0.22 −0.034 −0.40 0.32 0.25 0.084 −0.84
1 0.19 −0.46 −0.22 −0.61 0.07 −0.31 0.53 −0.19
1 −0.09 −0.26 0.11 −0.70 −0.03 0.15 −0.26 0.09





satisfying the summation theorem for fluxes.

If we model the same system as a stoichiometric network wherethe reversible reactions
are lumped together tov2, v4 andv6, the numeratorny1

u4
(s) of element (1,4) of the rela-

tive/scaled frequency dependent concentration control coefficient matrixC̃si(s) becomes

ny1
u4
(s) =

(

k2k4(k5 + k6)− k
−4k−6(k−2 + k3)

)(

(k6 − k
−2)s+ (k6k3 − k5k−2)

)

(A49)

where condition 2b) is fulfilled since there exists a solution to q(uss,α) = 0 which is:

k2k4(k5 + k6) = k
−4k−6(k−2 + k3) (A50)

Hence, the concentration of componentI1 is non-robustly disconnected to changes inv4
(i.e. bothk4 andk

−4 changes simultaneously). The functionq(uss,α) from Eq. A49 also
appears in the elements (2,4) and (3,4) ofC̃si(s).

By choosinguss = [1, 2, 3, 4, 5, 5, 7, 8, 1] the conditions 2b) and 2c) are fulfilled, whereas
the condition 4c) (Eq. A48) is not. Hence, from the state space approach, the relative
sensitivity coefficient matrixCy

u(s) indicates that these parameter values do not lead to

14



any kind of perfect adaptation

Cy
u =





1 −0.61 −0.36 −0.064 −0.26 0.19 0.43 0.064 −0.38
1 0.21 −0.61 −0.25 −0.35 0.10 −0.14 0.25 −0.21
1 −0.25 −0.47 0.30 −0.58 −0.12 0.17 −0.30 0.25





(A51)
whereas the steady state relative concentration coefficient matrix C̃si(s) indicates that all
three concentrations are non-robustly disconnected to theinputv4

C̃si =





1 −0.18 −0.36 02 −0.26 −0.19
1 0.06 −0.61 02 −0.35 −0.10
1 −0.07 −0.47 02 −0.58 0.12



 (A52)

We see that the sum of column 4 and 8 in Eq. A51 is[0, 0, 0]T , and hence, explains the
non-robust disconnection fromv4 to the concentrations in Eq. A52.

Fluxes as model output

Now, using the fluxes as model output and the same values foruss as in the previous
example, i.e.uss = [1, 2, 3, 4, 5, 5, 7, 8, 1], some of the elements of the relative flux con-
trol coefficient matrixC̃v actually contains the functionq(uss,α) from Eq. A49 in the
denominator, producing the following result

C̃v =

















1 01 01 01 01 01

1 0.24 0.21 02 −0.05 −0.41
1 0.06 0.39 02 −0.35 −0.10
1 ∞ ∞ 0.45 ∞ ∞

1 −0.07 −0.47 02 0.42 0.12
1 −0.29 −0.25 02 0.06 0.49

















(A53)

where some elements actually becomes infinity. The corresponding relative sensitivity
coefficient matrixCy

u(s) from the state space approach is

Cy
u =





























1 01 01 01 01 01 01 01 01

1 0.39 −0.36 −0.07 −0.26 0.19 0.43 0.07 −0.39
1 0.21 0.39 −0.25 −0.35 0.10 −0.14 0.25 −0.21
1 0.21 −0.61 0.75 −0.35 0.10 −0.14 0.25 −0.21
1 −0.25 −0.47 0.30 0.42 −0.12 0.17 −0.30 0.25
1 −0.25 −0.47 0.30 −0.58 0.88 0.17 −0.30 0.25
1 0.21 −0.61 −0.25 −0.35 0.10 0.86 0.25 −0.21
1 −0.25 −0.47 0.30 −0.58 −0.12 0.17 0.70 0.25
1 −0.61 −0.36 −0.07 −0.26 0.19 0.43 0.07 0.61




























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where such infinity elements are avoided. Hence, we argue that the modeling in general
should not include lumping of reactions when relative sensitivity coefficients are to be
found. This argument is supported by the fact that a step can in fact be applied to only
one of the reactions in an reversible reaction (as shown in [4]), and there is a need to
separate the reactions.
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Figure Legends

Figure S1.

Response in the fluxes of motif M1 for a step-wise increase in temperature from308K to
318K at time t = 1. The parameters values areα = [A1, . . . , A6, E1, . . . , E6, R] where
the vector of activation constants are[A1, . . . , A6] = [1.0274, 2.0276, 3.1488, 4.0356, 5.2017, 6.0291],
activation energies[E1, . . . , E6] = [67, 34, 120, 22, 98, 12] andR = 8.314. Figure ele-
ment (2,3) is the same as in Fig. 1 in main paper.

Figure S2.

Bode-plot (magnitude only) of the frequency dependent relative sensitivity coefficient
matrixCy

u(s) of motif M2 when the output is concentration, usingk1 = 1.1, k2 = 1.2,
k
−2 = 1.3 andk3 = 1.4.

Figure S3.

Bode-plot (magnitude only) of the frequency dependent relative sensitivity coefficient
matrixCy

u(s) of motif M2 when the output is flux, usingk1 = 1.1, k2 = 1.2, k
−2 = 1.3

andk3 = 1.4.

Figure S4.

Response to a step perturbation (upper left panel) and 3 examples of responses iny4(t) =
J3(t) to sinusoidal variations inu4(t) = k3(t) = sin(ωt), i.e. element (4,4) of the
frequency dependent relative sensitivity coefficient matrix Cy

u(s) of motif M2, using
k1 = 1.1, k2 = 1.2, k

−2 = 1.3 andk3 = 1.4. Note the different time scales.
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