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Stoichiometric Network Approach

A frequency domain approach to sensitivity analysis wasitdated by Ingalls [1] based
on stoichiometric network theory [2], describing a kinetystem as:

$(t) = Nv (s(t), p(t)) (A1)

wheres(t), v(t) andp(t) are vectors of species concentrations, reaction ratescoat-
stants and other internal/external parameters, respgctand the matrisN describes the
stoichiometry of the system. The stoichiometric networldei@iven by Eq. A1l can be
written as a linear time-invariant input-output system yagly. 3 in main paper with the
system matrixA = NRg—:L and the input matrixB = NRg—V. The matrixL is thelink
matrix andINg is thereduced stoichiometric matrigonsisting of the independent rows
of N, i.e.N = LNRgr [1, 2]. The inputs are the reaction rates.

The model output from Eq. Al can be expressed similarly tongteork properties de-
scribed by Eq. 4 in main paper. If the stoichiometric netwarddel output is related to
concentrations, thefi = 7 andD = 0 in the generalized state space model. On the other
hand, if the stoichiometric network model output is relai@duxes, therC' = g—‘S’L and

D = g—;. Hence, the calculation of the matric€sand D depends on the actual prop-
erty (flux or concentration) and is not generic as in our sspece approach. Therefore,
instead of one generic expression for the transfer fungasrEq. 5 in main paper), two
different expressions for the transfer functions are né€plkease note that Egs. 9 and 10



in Ref. [1] contain misprints, which are corrected here):
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The transfer function$y, (s) andH,(s) are for concentration and flux model outputs,
respectively.

Furthermore, Ingalls [1] defines the transfer functions gs.EA2 and A3 to be the same
as frequency dependent unscaled (absoldarentratiorandrate response coefficients
respectively, i.eRq, (s) = Hg,(s) andR,(s) = H,(s). Based on these definitions and
the generic relationship between the absolute responffece@s Ry, = g—z, the absolute
control coefficient<C* = 2* and the absolute elasticity coefficienfs= & defined as
R} = CJep in Ref. [3], Ingalls [1] relates the transfer function ané timscaled/absolute

P
control coefficients as:

H,(s) = csi<s>§—; (Ad)
H, (s) = Cu(s5) 2 (A5)

op
where the frequency dependent unscaled/absctuteentrationandflux control coeffi-
cientscan be found as:

—1

Csi(S) = (S] - NRZ—ZL) NR (A6)
ov ov_\ "

Cu(s) = 5 L (51 - NRgL) Ng + I (A7)

In order to compare these specific results with the genesalltréom Eq. 13 in main
paper, we need theelative concentration and flux control coefficient matrices given as
(from Hofmeyr [3])

Cy(s) = (D*)"-Cy(5)-D" (A8)
C\(s) = (D*)-Cy(s)-D" (A9)

whereD" = diag(v(s?, p°)) andD* = diag(s?), ands? andp" are the steady state values
of species concentration and parameters, respectively [1]
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As opposed to the state space approach, the dimensions t¥dheatricesHy, (s) and
Cs,(s) (orH,(s) andC,(s)) may actually differ sinc% may not be square (i.e. when us-
ing lumped reaction rates in the modeling), and therefopssible to compare element-
wise. The steady state relative concentration/flux corteefficientsCs, and C, are
found by settings = 0 in Eqs. A8 and A9, respectively.

To summarize, the state space approach described in man gapfindanyrelative sen-
sitivity coefficient by first identifying the transfer funoh matrix (Eq. 5 in main paper),
either by modeling or a system identification method, and tiee the single relationship
in Eq. 13 shown in main paper. The stoichiometric networkapgh is an alternative way
to identify the relative concentration/flux control coeffict matrices. There are, however,
limitations (lack of generality) to the stoichiometric metrk approach compared to the
state space method:

e The choice of output (flux or concentration) determines Wwhransfer function
(Hg, (s) or Hy(s)) to be used.

e Only reaction rates are used as input.

e The stoichiometric network approach cannot be applied wiuenerical (not sym-
bolic) A, B, C'and D matrices or transfer functions have been obtained by arsyste
identification approach, because the matridgg, D", D* andg—; require knowl-
edge of the model structure.

e Similarly, if only a transfer function (symbolic or numeaig exists for a reaction
network where an input is considered to be lumped by two oremeactions, the
matrixg—; is notinvertible. Hence, the control coefficient matri€as(s) andC, (s)
cannot be found by using Egs. A4 and A5.

lllustrating the principles

As mentioned in the main paper, we use three different mtaifdustrate the scenarios
describing the different kinds of adaptation. We use supsér 2, 2, 4 or ® to indicate
which matrix element is robustly disconnected (scenarjanih-robustly disconnected
(scenario 2), robust perfectly adapted (scenario 3), obuast perfectly adapted (sce-
nario 4) or near non-robust perfectly adapted (scenarieSpectively.



Motif M1

Motif M1 presented in the main paper is shown below
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where each rate constant depends on temperature usingrttenirs equation &s, (t) =
—En . . .
A,-eFT@ | The nonlinear dynamic model for motif M1 becomes:
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producing the following linear state space matrigdeand B:
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where the steady state values of the concentratignare

Ai-eRT
o= (A16)
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Ty = Al.eﬁ.(A?’.eﬁ +A4.eﬁ) (A]_?)
Ex
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Ty = ———— - (A18)
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Eg
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2y = 1ACH (A19)

E1 By

By By —E3 it 278
AgeRT ¢RT (Ag@ RT + A e R’T )

Fluxes as model output

In this scenario, the input to the model is the scalar tentpezai(t) = 7'(¢) and the
output from the model is the fluxes

y(t) = [k’l(t), k’g(t)l‘l(t), k’g(t)[[’g(t), k?4(t)[[’2(t), k?5(t)[[’3(t), k?@(t)$4(t)]T The non-
linear model in Egs. A10-A13 is simulated using a step-wnsedase of 10K in temper-
ature from 308K to 318K at = 1. The response in the fluxes(¢), ..., Js(f) is shown
in Fig. S1. A comparison between the analytical (based or8&d main paper) and the
empirical (based on Eq. 10 in main paper and the responsag.i8F) steady state rela-
tive sensitivity coefficient matrices are shown in Eq. A20&(gtical to the left, empirical
to the right):

[0.02616]] [0.02535]
0.02616 0.02535
0.04806 0.04653
y Y ~
CL= 0.00975| CL~ 0.00943 (A20)
0.04806 0.04653
0.00975 | 0.00943 |

As wee see, the values differs, and these differences artodbe relative large step of
10K in temperature increase. A smaller step-wise incraatamperature will reduce the
difference, and this actually demonstrates the non-lityeaf the system.



Concentration as model output

Using concentrations as model output, ¥€t) = [z1(t), x2(t), x3(t), 24(t)]", the rela-
tive sensitivity coefficient matrix from temperature to centration is

Ei—E.4

RT

—Ej —E3 —Ey —Fy 5

A3FE1e RT —A3 F3e RT +A4 F1e RT —Ay E4e RT
—E3 —Ey

RT (Age RT +A4e RT )

y _ By — By
Cu - Ay FE3e RT —Ay Eqe RT + FEy _ Ej 5 (A21)
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RT(Ageﬁi—f—AzleTfl) RT  RT
—E3 —E3
Ey (Ag E3e RT —A3 Eqe RT ) Ee B
RT

6
—E —E Xl
RT(ASeT%” +A46Tf1> RT
which shows a combination of non-robust and near non-rgbeigect adaptation sites.

The conditions for near non-robust perfect adaptation @&llement<Y (2, 1), C¥(3,1)
andCy (4,1) are:

Age 7 (By — Ey) + Ase # (B, — Ey) =0 (A22)
Ase #t (B, — Bs) + Ase (B, + E3 — By — Ey) = 0 (A23)
Ase 7t (Ey — By + Ey — Bg) + Ase 7 (Ey — Eg) = 0 (A24)

Comparing the 2 conditions from Egs. 22 and 23 in main papainagthe 3 conditions
in Egs. A22-A24, shows that it is impossible to obtain adapitain any flux and in any
concentration simultaneously.

Motif M2

Motif M2 (shown below) is used to illustrate and compare tle@eyalized state space
model approach (based on the left scheme in M2) with thelstwitetric network model
approach (based on the right scheme in M2 whegrand k_, are lumped inta,) as
described by Ingalls [1] using both concentrations and 8uaeemodel outputs.

k v
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k2 (M2)



Concentrations as Model Output

State Space Model Approach
Using the state space model approach, the rate equatioosbec

d%f)zh@f‘@ﬁﬂﬂﬂ+k4@ﬂﬂw (A25)
dzﬁf D bty (t) — koD)2a(0) — k_a(t)as(t) (A26)

where the input vector is(t) = [ky(t), ko(t), k_o(t), k3(t)]” and the state vector is
x(t) = [z1(t), z2(t)]T. Focusing first on concentrations as model output, the dwem:
tor becomesy (t) = [z,(t), z2()]*. This gives the following matrices for the linearized
state space model

—kfg k?_g 1 —I i) 0
A — B =
|: k?g —(k’g + k?_g):| ’ |:0 T —XT9 —1‘2:|

1 0 00 0O
C—kly D‘h()oJ
Using the steady state expressions for the concentrations

(A27)

Xss = [l‘l,ZEQ]T - [— 7

T
k_oki + kiks Ey
ksky 7 ks

and the steady state expressions for the outputs;i.e= [z1, z5]7, the transfer function
matrix H(s) becomes:

1
"2+ s(ky + ks + k_p) + ksks
(3 +k o+ k3) —(s+k3)ki(k—at+ks)  (s+ks)k: ok ]

H(s)

koks k3 k3
k?g sk1 (k72+k3) _ sk (8+k‘2)k1

(A28)

k2k3 kg kg



The frequency dependent relative sensitivity coefficieatrin CY,(s) becomes:

C¥(s) =H(s)o=

SS

1
T 52+ s(ky + kg + ko) + ksko

s+ks+k_o)kok (s+k3)k_ok —k_okok

( 23+k,23 = (st ka)ks kai)kj ) Foths (A29)
k?gk’g (k?g + k?_Q)S —k’_gs —(S + k’g)k’g
where the functions of the numerator polynomig] (s) of e.g. element (2,2) are

q(ugs, @) = 1 (A30)
hl(uss, a) = (k’g + k’_g) (A31)
ho(ugs, @) = 0 (A32)

fulfilling the conditions for scenario 3. Similar resultedound for element (2,3), imply-
ing that component; is robust perfectly adapted to step-wise changes in ratstaots
ko(t) andk_5(t). The steady state relative sensitivity coefficient mategdmes:

1 -1 = b ]

k_otks  k_otks

CY =
B I RO A O -1

(A33)

The summation theorem applied to either of the steady stdtequency dependent rela-
tive sensitivity coefficient matrix matrices in Eqs. A29 oB&\gives (summed over aN

reactions):
0
§ CY = [0]

all N
The C¥(s) matrix in Eg. A29 is presented in terms of Bode plots in Fig, BRBere the
steady state properties of Eq. A33 can be found by inspettmg@ode plots as the fre-
quency approaches 0. For example, the element (1,1) of Eg.ha8 a relative ampli-
fication of 1, which corresponds @)-log,,(1) = 0 dB as shown in Fig. S2. Another
example is the element (2,2) where the relative amplificadipproaches 0, i.e-co dB,
whereas the element (1,3) has an ampI|f|catlo;gﬁ@j:}2 = 141—313 =0.48, i.e.—6.35 dB,
Stoichiometric Network Model Approach
In order to find the corresponding relative concentrationticd coefficient matrix from
the stoichiometric network model approach, we use thewiolig velocity vector:

U1 k?l
V= |Uy| = k’gSl - k_QSQ (A34)
V3 k’gSQ



wheres; ands, denote concentrations andzx,, respectively. Using

0 0 1 0 0 O
0 - 0
8—": ko kool N:NR:B 11 _OJ 6—": 0 s, —s, 0| (A35)
510 ks Podloo 0 s
the transfer function matrikg;(s) becomes
1
Hsi - :
(S) 82 + S(k’g + k’g + k’_g) + k?gk’g
—(s+k3)ki(k—a+k s+ks)k —k_2k1
L sky(k_o+4ks) sk _ (stko)k1
2 koks k3 k3

As we see, this transfer function is identical to the one tbinom the state space method
(Eq. A28). However, there is no need to find this transfer fimncsince the absolute
concentration control matri€s, (s) is found directly as shown in Eq. A6. On the other
hand, if a transfer function as Eq. A36 is found from a systéemiification method, it is
not possible to identify the absolute concentration cdmtratrix Cs, (s) sinceg—; is not
invertible.

In order to find the frequency dependent relative conceatraiontrol coefficient matrix
C,(s) we use

kokithiks ki 00
Dsi:[ ’ft’gz k_] D'=10 k 0
ks 0 0 kK
to get
Cyi(s) =(D*)™"-Cq(s)-D"
B 1
" 52+ 5(ko + ks + k_o) + ksko
koks(s+k—_otks)  koks(s+ks) _ kak_oks
[ k_o+k3 k_o+k3 k_o+k3 (A37)
koks kss —k3(s + ko)

which exhibits robust perfect adaptation from reactioa vato component,. The steady
state relative concentration control coefficient matrigdraes:

- 1 ——fs ke
CSi — k_:z;i’kg k_o+ks (A38)
1 0 —1




Although the dimension of the matré?Si in Eq. A33 is different from the dimension of
CY in Eq. A38, we note that the sum of the two middle columns inA2 results in the
middle column of Eq. A38.

Fluxes as model output

State space model approach

When the model output is given by the fluxes of the system, tity)pud vector is changed
toy(t) = [ki(t), ka(t)z1(t), k_o(t)zo(t), k3(t)x2(1)]T, giving newC and D matrices for
the linearized state space model as

0 0 10 0 0

_ kQ 0 o 0 T 0 0
C= 0 k’_g D= 0 0 ) 0
0 ]{Z3 0 0 0 )

Using the steady state expressions given in Eq. A27 togetitiethe steady state expres-
sions for the outputs, i.6.s = [k1, kw1, k_oms, ksxo]”, we get the following transfer
function matrixH(s)

1
H(s) = .
( ) 52+S(k’2+k33+k3_2)+k3k2
1 0 0 0
kg(s + k‘g + ]{3_2) k1(k—2+k3132(23+k3+k—2)8 k2k1l(;+k3) _k2kk732k1
ka_Q kfgkllifl;;-i—kg) s k1(52+s(k2k-;—k3)+k2k3) _k72k1]<:(38+k2)
kaks, Palkoatho) o —kys il okl
(A39)
where the frequency dependent relative sensitivity caefftanatrixC¥(s) becomes
Y (s) = L -
v s2 + s(ko + ks + k_g) + ksko
1 0 0 0
s+ks+k_o)kak s+k3)k_ok —k_okok
= li;kfz = s(s kst ko) : J/rfsi)k—j - Fath g
k?gk?g (k’g + k?_Q)S 82 + S(k?g + k?g) + k’gk’g —(S + k’g)k’g
k?gk?g (k’g + k?_Q)S —k?_QS S(S + k?_g + k’g)

(A40)
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By inspecting the numerator polynomial§, (s) of Eq. A40 we find 3 robustly discon-
nected elements and 5 robust perfectly adapted elementsliaated in Eq. A41. The

only element which is nonzero and frequency independehtiglement (1,1), since the
output is exactly the same as the input. T8¥s) matrix in Eq. A40 is presented in terms
of Bode plots in Fig. S3 showing a wide range of filtering cletgastics, e.g. low-pass
in element (2,1), high-pass in element (4,4), band-pas¢ement (4,2) and all-pass in
element (3,3).

A time domain based visualization of the results in elemép)(is presented in Fig. S4,
where both a step and different sinusoidal perturbations,in) = k;(¢) are plotted
together with the outpug,(t) = J3(¢). The high-pass filter characteristics observed as
the frequency of sinusoidal perturbation/gft) increases, is due to the fact that the level
of the component,(t) becomes less and less affected (see element (2,4) in Fign82)
therefore exhibit almost steady state behavior at highuieaqies. This again implies
that the flux.J;(¢) which is calculated ags(t) = k3(t)-x2(t) would follow the sinusoidal
behavior ofk;(t) (shown in plot (2,2) of Fig. S4).

The opposite behavior is found when the sinusoidal frequeiiés(t) approaches zero.
Then the level ofr,(t) is highly affected by the variation ikhs(¢) (the low frequency
amplification of element (2,4) in Fig. S2is 0 dB, i.e. 1). Sltaneously, the low frequency
amplification of element (4,4) in Fig. S3 isccdB, i.e. 0, which means that the fluf(¢)

is unaffected by low frequency changeskifit) (shown in plot (1,1) of Fig. S4 using a
step).

The steady state relative sensitivity coefficient matrigdraes

1 0t 0! 0t
1 03 k_2 ko

Cﬁ — ) 03 k:3+1k72 ki+1k72 (A4l)
1 03 03 03

where both matrices in Egs. A40 and A41 satisfies the summt#taorem for fluxes.
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Stoichiometric network model approach
Using the matrices in Eq. A35, the transfer functldg(s) becomes

1
H,(s) = .
(5) s? + s(kg + kg + k_2) + ksks
1 0 0 0
Bo(s + k) (tilplmatisly Rl ity (A42)
koks k1(k—2+ks3) s ks k1(s+ko+k_2) s

k‘z k?3

and as we see, this transfer functiomt identical to one found from the state space
approach (Eq. A39). This is due to the lumping of reactionsg, thereby different matrix
size. In order to find the frequency dependent relative fluxtrod coefficient matrix
C,(s) we use

By 0 0
D=0 k 0
0 0 K

to get

C,(s) =(D")"'-Cy(s)-D"
B 1
82 s(ky + ks + k_g) + ksko

1 0 0
ko(s+k3) (s+ k3)s k_as (A43)
k?gk?g ]{?38 82 + (k’g + k’_Q)S

From this matrix we identify 2 robustly disconnected eletseand 4 robust perfectly
adapted elements. The steady state version becomes

1 0ot ot
C,= |1 0% 03 (A44)
1 0% 03
which is, as expected, different from the state space approesults in Eq. A41. Itis
interesting to note the elements representing the relfitixecontrol coefficient fromk;

to the fluxes/; and.J_, in Eq. A41l, i.e. elements (2,4) and (3,4), do not subtracioug t
non-robust perfectly adaptédas in Eq. A44, i.e. element (2,3).
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In order to obtain the same result as in Eq. A41 by the stombtoc network approach,
the fluxvy in M2 must be divided into two separate fluxes where the stonshtric matrix
N becomes

1 -1 1 0

N =
0 1 -1 -1

Motif M3

To show a relative sensitivity coefficient matrix includingn-robust perfect adaption
sites, we consider the following network,

s (M3)

studying the cases where either concentrations or fluxamnade! outputs.

Concentrations as model output

The input include all the rate constant&) = [k (1), ..., ke(t), k_o(t) k_4(t), k_¢(t)]"
and the output consists of the concentratigif = [z, (¢), z2(t), 3(t)]7. In [4] it was
found that this network has no zero element in the steadg stdtive sensitivity matrix
CY, and hence no robustly disconnected or robust perfectlgtadasites. Furthermore it
was found that the network exhibit non-robust perfect adagtom k, to the concentra-
tion of component; if the following condition—ksk_5 + kgks = 0 is fulfilled.

Inspecting the numerator polynomials ©f,(s), two non-robustly perfect adapted sites
can be identified, i.e. both frorh, andk_, to the concentration of componeht The
numerator polynomiaty! (s) for element (1,4) olC¥(s) is given as

n¥ (s) = ka(kok_s + koks + koke + k_sk_g) (ks — k—_2)s + (ksks — ksk_3)) (A45)
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where the functiong(ugs, ), hi(uss, @) andhg(ugs, ) from Eq. 16 in main paper are
readily identified. From Eg. A45 we see that condition 3a)lieay fulfilled, whereas
condition 3b) is fulfilled if¢(uss, a)-hq (ugs, ) # 0, leading to

ka(kok_s + kaks + koke + k_sk_¢) #0 (A46)
k2 #ke (A47)

Condition 3c)cannotbe fulfilled, but condition 4c) is fulfilled since there exast solution
to ho(uss, @) = 0 which is:

ksk_o = keks (A48)

Hence, scenario 4 of non-robust perfect adaptation can $eredd. The steady state rel-
ative sensitivity coefficient matriC¥, for an arbitrary set of chosen rate constants which
fulfills only condition 3b), e.gu,, = [1,2,3,4,5,6,7,8,9] (the parameter vectat is
empty), becomes:

1 —0.15 —-0.22 -0.03* —0.40 0.32 0.25 0.08* —0.84
=111 019 -046 -0.22 -0.61 0.07 —0.31 053 —0.19
1 -0.09 -026 0.11 -0.70 —-0.03 0.15 —-0.26 0.09

satisfying the summation theorem for fluxes.

If we model the same system as a stoichiometric network winereeversible reactions
are lumped together to,, v, andvg, the numeratony! (s) of element (1,4) of the rela-
tive/scaled frequency dependent concentration contefficeent matrixCs, (s) becomes

n¥ (s) =(koka(ks + ko) — k_ak_g(k_o + k3)) (ke — k_2)s + (kks — ksk_2)) (A49)
where condition 2b) is fulfilled since there exists a solutiog(uss, &) = 0 which is:
kaoka(ks + ko) = k_sk_¢(k—2 + k3) (AS0)

Hence, the concentration of componénts non-robustly disconnected to changes.4n
(i.e. bothk, andk_, changes simultaneously). The functigiu,, o) from Eq. A49 also
appears in the elements (2,4) and (3,450f(s).

By choosingu,, = [1,2,3,4,5,5,7,8, 1] the conditions 2b) and 2c) are fulfilled, whereas

the condition 4c) (Eg. A48) is not. Hence, from the state spgaproach, the relative
sensitivity coefficient matrixC¥(s) indicates that these parameter values do not lead to
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any kind of perfect adaptation

1 —-0.61 —0.36 —0.06* —0.26 0.19 043 0.06* —0.38
=11 021 -061 —-025 -035 010 —-0.14 025 —0.21
1 —0.25 —047 030 —-0.58 —0.12 0.17 —0.30 0.25
(A51)
whereas the steady state relative concentration coeffigiatrix Cs, (s) indicates that all
three concentrations are non-robustly disconnected tmhe v,

_ 1 —0.18 —0.36 0* —0.26 —0.19
C,=1|1 006 —0.61 0* —0.35 —0.10 (A52)
1 —0.07 —047 0* —0.58 0.12

We see that the sum of column 4 and 8 in Eq. A510i$), 0]7, and hence, explains the
non-robust disconnection from to the concentrations in Eq. A52.

Fluxes as model output

Now, using the fluxes as model output and the same valueagfoas in the previous
example, i.eu,, = [1,2,3,4,5,5,7,8, 1], some of the elements of the relative flux con-
trol coefficient matrixC, actually contains the functiog(ugs, o) from Eq. A49 in the
denominatoyproducing the following result
[ 0! ot ot 0! 0!
0.24 0.21 02 —0.05 —0.41
0.06 039 0% —0.35 —0.10
00 oo 0.45 00 00
—0.07 —-0.47 02 0.42 0.12
1 —029 —0.25 0% 0.06 0.49

where some elements actually becomes infinity. The correlpg relative sensitivity
coefficient matrixCy,(s) from the state space approach is

C, = (A53)

—_ = = = =

1 0t 0t 0t 0t 0t 0t 0t 0t
1 039 -036 -0.07 —-0.26 019 043 0.07 —-0.39
1 021 039 -025 -0.35 0.10 -0.14 0.25 —-0.21
1 021 -061 0.7 -035 010 -0.14 0.25 —-0.21
Cr=11 —-025 —047 030 042 -0.12 0.17 —0.30 0.25
1 -0.25 —-047 030 —-0.58 088 0.17 —-0.30 0.25
1 021 -0.61 -0.25 —-035 0.10 0.86 0.25 —-0.21
1 -0.25 —-047 030 —-0.58 -0.12 0.17 0.70  0.25
| 1 -0.61 -0.36 -0.07 -0.26 019 043 007 0.61 |
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where such infinity elements are avoided. Hence, we arguettbanodeling in general
should not include lumping of reactions when relative dansi coefficients are to be
found. This argument is supported by the fact that a steprcéact be applied to only
one of the reactions in an reversible reaction (as shown]in §hd there is a need to
separate the reactions.
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Figure Legends

Figure S1.

Response in the fluxes of motif M1 for a step-wise increasenmperature from308K to

318K at timet = 1. The parameters values ane= [A;, ..., Ag, E1, . .., Eg, R| where

the vector of activation constants arfy, . . ., Ag] = [1.0274, 2.0276, 3.1488, 4.0356, 5.2017, 6.0291],
activation energie$F, ..., Es] = [67,34,120,22,98,12] and R = 8.314. Figure ele-

ment (2,3) is the same as in Fig. 1 in main paper.

Figure S2.

Bode-plot (magnitude only) of the frequency dependenttiveasensitivity coefficient
matrix C¥(s) of motif M2 when the output is concentration, usihg= 1.1, ky = 1.2,
k_o, = 1.3 andk; = 1.4.

Figure S3.

Bode-plot (magnitude only) of the frequency dependenttiveasensitivity coefficient
matrix CY(s) of motif M2 when the output is flux, usingy = 1.1, ks = 1.2, ko = 1.3
andk; = 1.4.

Figure S4.

Response to a step perturbation (upper left panel) and 3@raraf responses i (t) =
J3(t) to sinusoidal variations iny(t) = ks(t) = sin(wt), i.e. element (4,4) of the
frequency dependent relative sensitivity coefficient ira€?,(s) of motif M2, using
ki =1.1k =12,k_5 =1.3andk; = 1.4. Note the different time scales.
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