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Abstract

Stability and biological activity of proteins is highly dependent on their physicochemical environment. The development of
realistic models of biological systems necessitates quantitative information on the response to changes of external
conditions like pH, salinity and concentrations of substrates and allosteric modulators. Changes in just a few variable
parameters rapidly lead to large numbers of experimental conditions, which go beyond the experimental capacity of most
research groups. We implemented a computer-aided experimenting framework (‘‘robot lab assistant’’) that allows us to
parameterize abstract, human-readable descriptions of micro-plate based experiments with variable parameters and
execute them on a conventional 8 channel liquid handling robot fitted with a sensitive plate reader. A set of newly
developed R-packages translates the instructions into machine commands, executes them, collects the data and processes
it without user-interaction. By combining script-driven experimental planning, execution and data-analysis, our system can
react to experimental outcomes autonomously, allowing outcome-based iterative experimental strategies. The framework
was applied in a response-surface model based iterative optimization of buffer conditions and investigation of substrate,
allosteric effector, pH and salt dependent activity profiles of pyruvate kinase (PYK). A diprotic model of enzyme kinetics was
used to model the combined effects of changing pH and substrate concentrations. The 8 parameters of the model could be
estimated from a single two-hour experiment using nonlinear least-squares regression. The model with the estimated
parameters successfully predicted pH and PEP dependence of initial reaction rates, while the PEP concentration dependent
shift of optimal pH could only be reproduced with a set of manually tweaked parameters. Differences between model-
predictions and experimental observations at low pH suggest additional protonation-sites at the enzyme or substrates
critical for enzymatic activity. The developed framework is a powerful tool to investigate enzyme reaction specifics and
explore biological system behaviour in a wide range of experimental conditions.
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Introduction

Lab automation systems generate large amounts of experimen-

tal data in a short amount of time and substantially reduce costs

per data-point. The elimination of manual bench-work does not

only minimize time and expenses, it also provides very

homogenous datasets that facilitate comparison and the applica-

tion of statistical methods.

In the recent years, robotic systems have been successfully used

to automate a number of important experiments in biopharma-

ceutical research such as screening and synthesis of drug

candidates [1], genome wide RNAi screens [2], DNA sequencing

[3] and elucidation of protein-protein interactions [4]. While high-

throughput screens are almost exclusively carried out using some

kind of automated laboratory equipment, the development of new

methods and the in depth investigation of selected biological

systems has not profited from the benefits of automation to the

same extent yet. Implementing a protocol on an automated system

can be a tedious and time consuming task, and in a setting with

constantly changing experimental procedures, the time needed for

adapting programs often renders lab automation systems unat-

tractive. In order to be usable for changing experimental setups in

a science lab, they have to be flexible and must provide more

benefits than just a simple reduction of repetitive pipetting work.

One such benefit can lie in the ability of a computer-controlled

lab-automation-system to keep track of sample identities and

reagent volumes. This allows the use of complicated, computer

generated, experimental designs described by hundreds of decimal

numbers that would be difficult or even impossible to implement

manually. If data acquisition and analysis is integrated with

experimental design and execution, the lab-automation-system can

react to experimental outcomes immediately after the measure-

ment by modifying experimental parameters and carrying out the

additional experiments autonomously. As the connection between
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sample identities, experimental parameters and measurement

results is retained during the whole process, data-analysis and

interpretation is greatly facilitated.

The fully automated ‘‘Robot Scientist’’ demonstrated in [5] is a

particularly advanced example of a system for quantitative

phenotypic analysis that integrates all steps of the scientific

process, from hypothesis creation, through testing the hypothesis

and results interpretation to the planning of further experimental

steps based on the obtained results. While being an impressive tool

for next generation high-throughput experiments, such a system is

still expensive and not suitable for the relatively small batch sizes

and constantly changing protocols encountered in the daily work

of characterizing biological entities and developing new methods.

In this work, we describe a framework that was designed to bride

the gap between advanced high-throughput systems and manual

bench work. It integrates automated protocol execution with

computer-based data interpretation to allow reactions to measure-

ment outcomes in autonomous experiments, but at the same time it

has been designed to make it as easy as possible to use it for different

types of experiments without extensive reprogramming.

Our system is unique by the fact that it is based on abstract,

object oriented descriptions of experiments written in the R [6]

programming language that provides a wide range of statistical

tools for experimental planning and data-analysis. It allows to

carry-out experiments by specifying only abstract protocol

parameters such as component names, concentrations and

incubation times. The necessary calculations for translating this

information into volumes, pipetting patterns and commands that

can be executed by a robot are done automatically, greatly

reducing the effort for setting up new experiments and providing a

very convenient interface to computer-based experiment planning.

We implemented a variety of tools for generating experimental

designs, optimizing experimental procedures and for analyzing,

visualizing and interpreting experimental data. All of them interact

seamlessly with the automation framework, avoiding unnecessary

data-conversions and allowing their use in autonomous experi-

ments.

We applied the newly developed methods mentioned above on

a variety of biochemical systems and present a few examples of

how it can be used to collect the data for solving diverse scientific

problems. We used the system for optimizing buffer mixtures of

assays for determining the activity of several glycolytic enzymes.

By automatically testing systematic variations of the known

standard-protocols, we were able to determine buffer mixtures

that substantially increase the activity of the enzymes of interest

when compared to the protocols commonly found in literature

(data not shown).

One of the glycolytic enzymes, pyruvate kinase (PYK), was

investigated in more detail. After an initial experiment in which we

investigated the interplay of multiple different modulators of

enzyme activity, we became interested in the pH dependence of

enzymatic activity. We acquired data for a model of pH

dependence of enzyme activity, determined its parameters by

nonlinear regression and compared its predictions with our

measurement results.

Results

1. Optimization of buffer-mixtures for enzymatic activity
assays

In a setting where quantitative experimental parameters have to

be varied in order to achieve an optimization goal that can be

expressed in a single number, numerical methods allow to get

closer to an optimal set of parameters in a systematic manner.

Numerical optimization methods typically treat the relation

between input parameters and experimental outcome as a black

box function that satisfies a few general criteria like smoothness

[7,8]. Therefore, they can be applied even when no valid

mathematical model of the process under investigation is known.

In order to demonstrate how our framework can be used to find

optimal reaction conditions for enzymatic assays in an automated

iterative procedure, we performed an optimization of pH, KCl

and Fructose-1,6-bisphosphate concentrations for maximum PYK

activity in five rounds of experiments. In the first round, we

measured the activity of the enzyme in 20 different mixtures that

were chosen according to a space filling experimental design that

covered the complete allowed concentration/pH range of all three

variable components. The data from this experiment was used to

build an initial Kriging model of the concentration and pH

dependence of PYK activity.

In each of the remaining four rounds, the response-surface

model was refined with 19 additional measurements. The

parameters of these measurements were selected by our algorithm

to lie in those regions where the lower bound of the model estimate

is lowest, while keeping a user-specified minimum distance to

other measurements (see methods section).

The minimum distance between points in the first refinement

round was set to 0.25 with all parameters normalized to a [0,1]

interval. After each round, the minimum distance was multiplied

with 2/3 in order to allow a finer sampling of the area around the

estimated optimum. After each round of measurements, the

response-surface was updated with the new results and its

optimum was determined using R’s built in optimization method.

The complete experiment was carried out autonomously without

user interaction and ran for about two hours.

Fig. 1 shows the measurements of the five iterations and the

final response-surface model plotted together. The measurements

of the later iterations are clustered around the optimum of the final

response-surface model, providing much more information about

this region than 96 evenly distributed measurements could. The

optimal parameters estimated after the first iteration already lay

close to the centre of this region, showing that the algorithm is

capable of finding useful reaction parameters even from minimal

number of experimental conditions tested if the range of

conditions is selected correctly.

The quality of the optimum estimate is somewhat hard to assess

objectively because the true location of the optimum is unknown

and the measurements are subject to a substantial amount of noise.

To get some benchmark of the quality of the optimum in the

response-surfaces for the individual iterations, we selected the five

measurements closest to the estimated optimum and averaged

their measured activities. The results in Table 1 show the activity

of measurements close to the optimum increases from iteration to

iteration, reflecting an improvement in the quality of the estimate.

2. An investigation of the influence of pH, Fructose 1,6-
bisphosphate (fru 1,6-p2) and pho(enol)pyruvate (PEP) on
the enzymatic activity of PYK

The stability of biomolecules and the ability of proteins to

perform their specific tasks is highly dependent on their

physicochemical environment. In order to survive, living organ-

isms maintain internal conditions that stabilize their underlying

structures and allow the right biochemical reactions to take place.

The ability of an enzyme to perform its task is influenced by the

composition of its environment, like availability of certain ions and

metals or presence of allosteric inhibitors or activators. To

illustrate how our automated computer controlled framework

can be used to investigate the influence of the physicochemical

Automated Experiment Platform
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environment on enzyme activity, we investigated the effects of

KCl, pH and Fructose 1,6-bisphosphate on PYK activity while

keeping substrate (PEP) concentration constant at 1mM. We first

measured the activity of PYK in 80 different mixtures that were

chosen according to a space filling experimental design that

covered the complete allowed concentration/pH range of all three

variable components. Fig. 2 shows the measured data-points and

two different slices of a Gaussian Random Process Regression

model fitted to the data.

It can be seen that all three variables strongly influence enzymatic

activity. The optimum conditions determined from this model are

KCl 90.6 mM, Fructose 1,6-bisphosphate 4.1 mM and pH 7.06.

Enzymatic activity decreases quickly when deviating more than

half a pH unit from the optimum pH either to the acidic or basic

side. Sufficiently high salt concentration is needed for the enzyme

activity – the activity drops quickly at KCl concentrations below

50 mM. High salt concentrations also inhibit the enzyme, but to a

lesser extent. Fructose 1,6-bisphosphate is known as an allosteric

activator that influences the KM of pyruvate kinase by changing its

conformation when binding to it [9,10]. Enzymatic activity at the

substrate concentration used in this experiment decreases strongly

if the Fructose 1,6-bisphosphate concentration is below 3 mM.

Interestingly, high concentrations of Fructose 1,6-bisphosphate

inhibit the enzyme as well. This behaviour has been reproduced in

multiple similar experiments and, to our knowledge, has not been

described in literature until now.

We validated the quality of our response-surface models in a

second experiment in which we kept KCl concentration fixed at

90.6 mM while varying pH values and Fructose 1,6-bisphosphate

concentrations in eighty mixtures according to a space-filling

design. The data obtained from this experiment was compared to

the activities predicted for this KCl concentration by the first

model as an indicator of its predictive strength. Both datasets and

the models based on them are shown together in Fig. 3. Although

not completely identical, the models constructed form the two

different data-sets are very similar, indicating that the interpolation

from data points with different KCl concentrations provided a

reasonable estimate of the activity at 90.6 mM KCl.

In order to analyze the influence of substrate concentration on

the pH dependence and allosteric modulation of PYK, we

performed an experiment in which we tested five different PEP

concentrations (0.25, 0.5, 1, 2 and 4 mM) for each of the 17 points

of a space filling design with variable pH (4.75–9.2) and Fructose

1,6-bisphosphate (0–10 mM).

The 95 different activities determined in the experiment were

used to construct a Gaussian Random Process Regression surface

with logarithmic scaling of the PEP and Fructose 1,6-bisphosphate

axes for visualization. Fig. 4 shows the complex interaction of the

variable factors. The data indicates that the pH optimum of

pyruvate kinase depends on the PEP concentration with a shift

toward acidic pH at low substrate concentrations. The effect was

reproduced in multiple experiments, but the number of data-points

spread out over the three-dimensional parameter space was not high

enough to quantify the exact changes of the optimal pH-value.

3. Modelling of PYK activity dependence on pH
Systematic measurements of enzymatic activity at different pH-

values and substrate concentrations can help to reveal mechanistic

Table 1. Optimal condition estimates and average activity of the five measurements whose parameters are most similar to them
over the five iterations.

Iteration 1 2 3 4 5

Estimated Optimum Fru-1,6p2 (mM) 8.70 9.24 10.88 10.90 12.28

KCl (mM) 253.96 188.43 229.19 204.61 200.41

pH 7.00 6.92 6.76 6.86 6.81

Mean activity of 5 measurements closest to optimum estimate (mU) 6438 6660 7527 7648 7680

Notice how the activity of measurements close to the optimum increases from iteration to iteration, reflecting an improvement in the quality of the estimate.
doi:10.1371/journal.pone.0010727.t001

Figure 1. The final response-surface model and the measurements of the five optimization rounds (red, yellow, green, blue and
purple). Data are presented as enzyme activity dependence on (a) Fru1,6P2 concentration and pH or (b) KCl concentration and pH. The interpolated
response surface correspond to a slice of third variable (KCl in (a); Fru1,6P2 in (b)) at optimal condition. Note how the measurements of the later
iterations cluster around the optimum, providing additional information about this region.
doi:10.1371/journal.pone.0010727.g001
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details of substrate binding and the enzymatic reaction-steps

involved. In such a context, our framework is ideally suited to

provide large homogenous datasets for parameterizing and

validating quantitative models.

We investigated the pH dependence of PYK behaviour in a

dedicated experiment. The set of measurements consisted of

combinations of pH values (4.75, 5.39, 6.02, 6.66, 7.29, 7.93, 8.56

and 9.2) with PEP concentrations of (0.25, 0.5, 1, 2, 4 and 8 mM)

with two replicates per combination, resulting in a total of 96

measurements. The Fructose 1,6-bisphosphate concentration was

held fixed at 3.5mM, a value found to be sufficient for PYK

activation in the previous series of experiments.

The parameters for a diprotic model of pH-dependence of PYK

activity were determined from the measured data in a multistart

least squares procedure as described in methods. A comparison of

the measured data and the predictions given by the diprotic model

Figure 2. KCl, Fructose 1,6-bisphosphate and pH dependence of PYK activity. Each dot corresponds to a measurement conducted with one
of 80 conditions from the space filling design of the first round of the experiment described in 3.2. The four plots show two slices along different axes
of the parameter space from two different perspectives. In plot a) and b) the KCl concentration is held fixed at its optimum of 90.6 mM while Fructose
1,6-bisphosphate concentration and pH are variable, in plot c) and d), the Fructose 1,6-bisphosphate concentration is held fixed at its optimum of
4.1 mM with variable KCl concentration and pH. In all plots, the corresponding slice through the Kriging model fitted to the data is shown as a surface.
doi:10.1371/journal.pone.0010727.g002

Figure 3. Comparison of PYK activities determined with fixed and variable KCl concentrations. a) and b) show two different perspectives
of the same plot. The data shown in red is from the first round of the experiment described in 3.2 and identical to that shown in Fig. 9. The data in
green was measured directly at the KCl concentration of the slice of the Kriging model from round one. The fit-surfaces of two datasets are very
similar, indicating that the interpolation from the variable KCl model gives a good prediction of the activities at the optimal KCl concentration.
doi:10.1371/journal.pone.0010727.g003
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is shown in Fig. 5. The diprotic model with the set of parameters

we determined successfully predicts the influence of pH and initial

PEP concentration on the initial reaction rates at intermediate pH

values, but it does not show the PEP concentration dependent shift

in optimum pH that is visible in the measurements. In addition, it

fails to describe the substrate-concentration dependence at the

lowest pH value in the experiment, pH 4.75. Despite extensive

efforts, a single set of parameters that predicts all features visible in

the measured data at the same time could not be found.

The substrate-concentration dependent shift of the optimal pH

can be described by a diprotic model with a set of hand-fitted

parameters that satisfies K1E*K2E&K1ES*K2ES, but such a

solution does not minimize the sum of squared residuals. Fig. 6

shows a comparison of the observed pH-shifts and the predictions

of the hand-fitted model.

For a more detailed analysis, we determined the coefficients of a

Michaelis-Menten-Kinetic [11] for each pH value in the

experiment (see Fig. 7, 8). In the range from pH 5 to pH 9.2,

the apparent Km and Vmax values vary relatively smoothly, with

a clear Vmax optimum in the neutral pH range and a steady

decrease of Km from Km = 0.94mM at pH 5.39 to Km = 0.12 at

pH 9.2. At pH 4.75, the measured activities did not reach a

substrate saturation plateau (see Fig. 7). As the substrate-

concentration dependence of reaction speed in the measured

range was effectively first-order, it was impossible to determine a

meaningful set of Michaelis-Menten constants for pH 4.75. The

uncertainty of Km at pH 4.75 reported by the fitting procedure

was extremely high, but manual inspection of the residuals at

different Km values (data not shown) suggested a Km well above

4mM, a drastic change from the Km = 0.94 mM at pH 5.39.

Discussion

Combining the abstractive power and extensibility of estab-

lished object oriented programming environments with existing

lab-automation hardware opens up a wide range of new

applications beyond conventional high-throughput screens. It

greatly reduces the amount of programming necessary for

Figure 4. Influence of pH and Fructose 1,6-bisphosphate on PYK activity at different substrate (PEP) concentrations. a) and b) show
two different perspectives of the same plot. Each colour represents one PEP concentration. 0.25 mM is shown in red, 0.5 mM in yellow, 1 mM in
green, 2 mM in blue and 4 mM in purple. Note the complex pattern of interactions and how the pH optimum shifts toward a more acidic pH at low
substrate concentrations. Due to the relatively low number of measurements, it is not completely possible to exclude fitting artefacts as a source of
variability of the fitted surfaces.
doi:10.1371/journal.pone.0010727.g004

  
  
  
  
  
  
  
  

Figure 5. Dependence of PYK activity on pH and PEP concentration. In graph a), each colour corresponds to a slice through the parameter
space with a fixed PEP concentration, in graph b), each colour corresponds to a slice with a fixed pH value. The dots represent measured data, the
straight lines show the predictions of the diprotic model fitted to the data. The measured data indicates a shift of the pH optimum towards more
acidic pH values at low substrate concentrations, but the fitted model does not show this shift.
doi:10.1371/journal.pone.0010727.g005
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performing new variants of similar experiments and thereby

increases the usefulness of automated systems for small- to mid-

scale experiments such as the development of new methods and

the exploration biological system behaviour.

All these experiments took only between one and two hour to

carry out after the source stocks had been prepared. The

experiments on pH, KCl and Fructose 1,6-bisphosphate depen-

dence of PYK activity show how automated experimenting can be

used to gain quantitative understanding of the interplay for many

modulators of enzymatic activity that are present in the

intracellular environment.

In the context of systems biology, computer controlled

experimenting as we implemented provides an extremely effective

way of generating the large amounts of quantitative data needed

for parameterizing and validating complicated models with

numerous parameters.

A single two-hour experimental run was sufficient to generate

sufficient data to determine the eight unknown parameters of the

diprotic model we used to model the pH and substrate

concentration dependence of PYK activity. The large number of

data points helps to prevent overfitting and reveal insufficiencies in

the model. The dataset we used for determining the model

parameters shows a complex pattern of pH dependence of

substrate affinity that cannot be fully explained by a simple

diprotic model. The differences between model-predictions and

observations in the low pH-range suggest that additional

protonation-sites at the enzyme or protonation of the substrates

ADP and PEP would have to be included into the model in order

to make it more realistic. In a smaller or less homogenous dataset,

these differences would have been much harder to notice.

Most experimental restrictions of our system are posed by the

hardware we have to our disposal: Experimental procedures are

limited to pipetting, plate transfers and photometric measurements

and the dynamic range and number of components in the

mixtures is limited by pipetting precision. If a large number of

components are needed in a mixture, their individual volumes

become so small that there is little room for variation without

reducing them to values that are close to the absolute pipetting

error. In the future, we plan to include an automatic handling of

different stock concentrations to alleviate this problem.

In the course of developing our software, we had to implement a

connection to the laboratory hardware we use. The interfaces

provided by the manufacturers for this purpose are not very

powerful and rather user-unfriendly. More powerful, well-

documented and standardized interfaces for controlling laboratory

hardware would be highly desirable in the future.

Using our system requires basic programming skills. The

internals of the framework are encapsulated in classes that do

not have to be edited or understood by the average user, but for

defining new experiment types or parameterizing existing ones,

small R-scripts have to be written or edited. We found that users

without prior programming experience are able to use and modify

a ‘‘construction kit’’ of existing scripts after basic training, but

debugging and dealing with unexpected situations needs a lab-

member with some computer-science skills. As a solution, specific

applications that are needed for routine-purposes could be

‘‘hidden’’ under a graphical user interface that allows only editing

of the necessary parameters. Another, more flexible, but less

Figure 6. Optimum pH as a function of initial substrate
concentration. Solid grey line shows the calculated optimum pH
(Eq. 5) using a set of manually determined parameters. Solid dots show
experimental results.
doi:10.1371/journal.pone.0010727.g006

Figure 7. Substrate dependence of PYK activity at different pH-values and fitted Michaelis Menten curves. The small table in the figure
shows the Michaelis Menten constants and their estimated uncertainties as determined by the fitting procedure. Note the pH dependent trend in Km
and the drastically lower substrate-affinity at pH = 4.75.
doi:10.1371/journal.pone.0010727.g007
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simple approach would be an easy formal language for describing

experimental protocols that can be translated into hardware

instructions automatically by specialized compilers.

Despite these limitations, we are convinced that computer

controlled experimenting like that provided by our framework

provides a powerful, convenient and flexible way of using lab

automation equipment for innovative applications in method

development and systems biology.

Materials and Methods

System and Software
Our hardware setup consists of a Tecan Genesis RSP 159 liquid

handling robot and a Tecan Ultra II plate reader. The robot is

equipped with eight 1000ml Teflon-coated nondisposable steel

pipette tips and a gripper that can be used for transporting

standard microtiter-plates between the robot deck and the reader

located by its side. Both devices are controlled by R scripts, which

use a set of in-house R packages developed for this purpose.

Pipetting commands are passed to the robot by executing

program-generated worklists using the ‘‘named-pipe’’ interface of

the Tecan Gemini robot-control software. The plate reader is

controlled using an in-house modified version of the XFluor Excel

macros supplied by the manufacturer for manual measurements.

The modifications carried out by us allow configuring, executing

and exporting measurements without user-interactions.

Our R packages provide an abstraction layer for general fluid

mixture based experiments that allows carrying out variants of an

experiment by providing a table with concentrations of each

mixture component. Component volumes are calculated from the

concentrations and all necessary pipetting and measurement steps

are generated and executed automatically.

Interpolation and smoothing based on Gaussian Random
Process Regression

In order to visualize the multidimensional datasets that result

from assays with different mixture compositions, we needed a

method that provides two-dimensional interpolated slices through

the multidimensional parameter space.

The framework of Gaussian Random Process Regression

provides a powerful method for interpolation and smoothing of

noisy datasets [12]. It has been studied intensively for applications

in geostatistics, where it is often called Kriging [13]. Gaussian

Random Process Regression is based on the general assumption

that measurements at points that are close to each other in the

parameter-space co-vary in a way that can be described by some

covariance function. The form of the covariance function and its

parameters such as the maximum covariance, its characteristic

length-scale and the intrinsic noise of the measurements can be

estimated by maximum-likelihood or cross-validation, making it a

very flexible technique for regression without strong a-priori-

assumptions.

We developed an extension of the Gaussian Random Process

Regression implementation in the fields R package for visualizing

slices of multidimensional datasets and obtaining nonparametric

surrogate models of experimental systems that can be used for

optimization [14,15]. The fields implementation uses generalized

cross validation to obtain an estimate of the noise-level in the data

and find an optimal smoothing parameter. In addition, our

implementation performs an optimization of the length-scale

parameter of the covariance function in all dimensions of the

model using the Nelder-Mead method as implemented in the R

function optim with cross-validation results of fields as the objective

function. Our implementation allows scaling of the axes with

arbitrary functions that reflect a-priori assumptions about the

sensitivity of the system to parameter changes in different regions

of the parameter space. This allows switching to a logarithmic

scaling of certain axes, which is useful for many biochemical

systems that show a large variability at low concentrations.

Optimization of Experimental Parameters
We implemented a response-surface-model based algorithm for

optimizing parameters of experimental systems that uses smooth

surrogate models of the system behaviour obtained by Gaussian

Random Process Regression [14,15]. While optimization based on

noisy measurements is hard, the smooth surrogate models can be

optimized using conventional quasi-Newton methods such as those

provided in R. The algorithm is formulated as a minimization of

an objective function defined by the user. When maximization is

desired (i.e. of enzymatic activity in a buffer system), the sign of the

objective function can simply be reversed.

In a first round of experiments, our algorithm constructs a

coarse initial model of the system behaviour with a relatively low

number of measurements distributed evenly in the feasible region

of the parameter space. A suitable space-filling experimental

design is generated by the algorithm. After fitting the initial model,

it can be refined with additional rounds of measurements with

parameters chosen by the algorithm. The new measurement

points are chosen to lie in those regions where the lower bound of

the model estimate is lowest, while keeping a user-specified

 

Figure 8. A graphical representation of the apparent Km and Vmax-values determined at different pH. Note the shape of the pH-
dependence of Vmax and the high reported uncertainties at pH 4.75.
doi:10.1371/journal.pone.0010727.g008
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minimum distance to other measurements (similar to method 3 in

[14]). Specifically, parameters for a new round of experiments are

obtained by sampling from a large number of randomly generated

candidate points. The probability of choosing a point follows

Boltzmann-distribution with the lower bound of the model-

estimate as ‘‘Energy’’.

If a point violates the minimum distance requirement, a large

number of alternative points is generated from a multinomial

normal distribution centred at the candidate point. From these

points, the one that is closest to the original point while

maintaining the distance requirement is selected. If none of the

new points satisfies the distance requirement, the one that is

farthest away from other points is selected.

If the reagents are stable enough to allow multiple experiments

to be carried out in a row using the same stocks, the complete

optimization process including multiple rounds of model-refine-

ment can be performed automatically and without requiring user-

interaction.

Enzymatic Assays
Crude extracts were prepared from 20 OD600 units of

exponentially growing Saccharomyces cerevisiae wild-type cells

(FF18984 strain: MATa leu2-3,112 ura3-52, lys2-1, his7-1) with

1 g acid-washed glass beads (0.4–0.5 mm diameter) in 0.5 ml

20 mM Hepes, pH 7.1, 100 mM KCl, 5 mM MgCl2, 1 mM

EDTA and 1 mM DTT. All procedures were carried out at 0–

4uC. Samples were vortexed (365 min with cooling on ice in

between) in Mixer Mill MM 300 (Retsch). After centrifugation at

16000 g for 15 min at 4uC, the supernatant was immediately used

for enzymatic assays. Protein content was determined by the

method of Bradford [16]. All chemicals and enzymes for

enzymatic assays were purchased from Sigma.

Activity of pyruvate kinase (PYK, EC 2.7.1.40) in yeast lysate

was measured by coupling production of pyruvate from phos-

pho(enol)pyruvate and ADP to the consumption of NADH [17].

NADH consumption was monitored by kinetic absorption

measurements at 340 nm in the thermostatted reader at 30uC.

Lactic dehydrogenase (LDH, EC 1.1.1.27) acted as the coupling

enzyme and was added in extreme excess in order to minimize its

influence on the measured activities. The pH of the reaction

mixture was adjusted by adding different fractions of two TRIS/

MES pH-buffers adjusted to different pH-values. The necessary

volumes were calculated from a spline-fit of pH measurements of

16 different buffer mixtures. The reaction mixture consisted of

62.5ml TRIS/MES pH-buffer mixture (50mM, pH 4.75–9.2), 0–

30ml KCl (0–266.6 mM), 0–40ml Fructose 1,6-bisphosphate (0–

10mM), 10ml NADH (0.625mM), 0–45ml PEP (0–8mM), 10ml

ADP+MgCl2 (4.6875 mM+5mM), 10ml Enzyme/lysate mixture

(0.2 mg total protein+0.65 units of lactic dehydrogenase (EC

1.1.1.27) per reaction) and H2O to bring the mixture to 225ml end

volume.

All reaction components except reaction starter (ADP) were

pipetted into the wells of a 96 well plate (black, flat UV-transparent

bottom, Greiner) individually using single-dispense-pipetting for

maximum pipetting precision. The most stable components (pH

buffers, salt solutions and water) of the mixture were added first, in

order to avoid transient exposure of the less stable components

(cofactors, substrates, enzymes) to extreme conditions.

After pipetting of these components was finished, the plate was

transferred to the plate-reader using the robotic gripper and

incubated there for 10 minutes in order to enable temperature

equilibration to 37uC at which the assay was performed and to

expose the enzymes to the final conditions for a defined minimum

amount of time.

After incubation, the reaction was started by adding ADP.

Multiple dispense pipetting was used to reduce the time spent with

pipetting while the reaction in the first wells is already running.

After transferring the plate into the reader, an absorption-kinetics

measurement with 30 measurement cycles was started by our

program. The kinetic cycle interval was set to minimum (approx.

60s for 96 wells) and only the wells that were actually used in the

experiment were measured for maximum time resolution. The

final measurement time was between 15 min and 30 min with

kinetic intervals between 30s and 60s. The slope of the kinetic

curves was determined by linear regression in a region selected by

a combination of minimum and maximum OD values and

measurement times.

The initial reaction speed and thus the enzymatic activity in

each well (acttotal) was calculated by dividing the slope of the kinetic

curve (A340/dt) by the plate-specific molar-absorption coefficient of

NADH (eNADH).

acttotal~
A340=dt

eNADH

The constant eNADH was determined from a standard curve of the

A340 values of 150 ml of 1 mM, 0.5 mM, 0.25 mM and 0.125 mM

NADH in the wells of a 96 well plate of the same type used for our

enzymatic assays. Samples containing all reaction components,

excluding the coupling enzyme LDH, at various pH conditions

were used as controls for passive oxidation rate of NADH. The

changes in background signal are much smaller than changes

observed in the coupled reaction, showing a small change at

pH,5.5 in the NADH oxidation rate that does not significantly

influence the coupled reaction (Figure S1).

The activity per mg protein content (actpermgprotein) was

obtained by dividing acttotal by the amount of protein in the well

as determined from the extinction in a Bradford test (ABF) and the

lysate volume (Vlysate).

actpermgprotein~
acttotal

mprotein

~
A340=dt

eNADH

: 1

ABF
:eBF

:Vlysate

ð1Þ

The Bradford-test proportionality constant ABF was determined

from a standard curve.

pH buffer system
The pH in the reaction mixtures was controlled by adding

mixtures of two buffers adjusted to different pH values. The same

buffer system was used for both buffers and the total buffer volume

was kept constant. In order to be able to vary the pH in the

reaction reproducibly over the desired range, we used a two

component system of 2-(N-morpholino)ethanesulfonic acid (MES,

pKa = 6.15) and tris(hydroxymethyl)aminomethane (TRIS,

pKa = 8.06) in equal concentrations of 50mM. The pH of stock

mixtures was adjusted by addition of NaOH or HCl to pH 9.2 and

pH 4.75, respectively. The two buffer stocks were mixed in different

ratio providing nearly linear dependence of the pH on the mixture

composition (see Fig. 9). We used a spline fit of the data shown in

the figure for converting between buffer fractions and pH values.

A diprotic model of pH dependence of PYK activity
For modeling the pH dependence of PYK activity, we used a

classical diprotic model of enzymatic activity [18,19,20,21]. A

sketch of the reaction network and the model parameters is shown

in Fig. 10 and Table 2. The model treats the enzyme like a weak

diprotic acid with two protonation-sites. Depending on its
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protonation state, the enzyme has different substrate affinities and

speeds of the rate limiting substrate conversion step, resulting in a

pH dependent transition between different Michelis-Menten like

substrate saturation behaviours. Note that in this model the

proteolytic properties of the substrate (PEP) are not considered.

A detailed derivation of the formula used for calculating

enzymatic activities from substrate concentrations and pH values

can be found in the literature [18], so we give the final result only.

The enzymatic activity/rate is calculated as follows:

activity~
dcP

dt
~

Vmax
:cPEP

KM
:fEzfES

:cPEP

: 1za
cH

K1
ES

zb
K2

ES

cH

� �
ð2Þ

where cH and c
P

are proton and product P concentrations,

respectively. The proton concentration cH is related to the pH as

follows:

cH~10{pH ð3Þ

The two terms fE and fES denote the (Michaelis) acidity functions:

fE(S)~1z
cH

K1
E(S)

z
K2

E(S)

cH

ð4Þ

a and b are ratios between turnover-numbers k
0
2=k2 and k

00
2 =k2,

respectively (Fig. 10, Table 2). The presence of a values indicate

that the acidic form of the enzyme (EH2
+) is catalytically active,

while the presence of b values indicate that the basic form of the

enzyme (E2) is catalytically active.

The parameters of the model were determined by minimizing

the sum of squared differences between model predictions and

measured data using the R function nls. A manual guess of the

parameters was used as a starting point. To ensure that a global

optimum was found, the fitting procedure was initialized with

5000 different parameter combinations derived from the manual

estimate by multiplying each parameter with a random number

Figure 9. The calibration curve used for converting between buffer-fractions and pH values. The measured pH values of 16 different
mixtures are shown as dots. Notice the nearly linear dependence between buffer-composition and pH in the range between pH 8.5 and pH 5.5.
doi:10.1371/journal.pone.0010727.g009

Figure 10. Reaction scheme of diprotic model. E represents the
enzyme as a weak diprotic acid with its three protonation states EH2

+,
EH and E2. The dissociation constants K1

E, K2
E, K1

ES and K2
ES describe

rapid protonization equilibria of the free enzyme and the enzyme with
bound substrate, i.e., K1

E = [H+][EH]/[EH2
+], K2

E = [H+][E2]/[EH],
K1

ES = [H+][ESH]/[ESH2
+], K2

ES = [H+][ES2]/[ESH]. For the sake of simplic-
ity, free protons are not shown in the scheme. The substrate affinity of
the neutral enzyme EH is given by KM = [EH][S]/|ESH]. In case of steady-
state kinetics, KM = (k21+k2)/k1. The reaction rate of the system is given
as d[P]/dt = k2[ESH]+k29[ESH2

+]+k20[ES2] leading to the final expression
described by Eq. 2.
doi:10.1371/journal.pone.0010727.g010

Table 2. Parameters of the diprotic model of enzymatic
activity as determined by nonlinear least squares regression.

Parameter name Value from nonlinear least squares

Vmax 1.1N104 mU

KM 0.53 mM

K1
E 1.9 N1026 M

K2
E 4.4 N1029 M

K1
ES 2.2 N1026 M

K2
ES 9.6 N1029 M

a 0.16

b 0

For the meaning of the parameters, see Fig. 10.
doi:10.1371/journal.pone.0010727.t002
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between 1023 and 103. Among those fits that converged, we

selected the one with the lowest sum of squared residuals.

The optimum pH refers to the pH values, which at constant

substrate concentrations leads to the largest rate/activity in the

enzymes and refers to the maximum of the bell-shaped activity-pH

plot. It should not be confused with the Vmax of the enzyme (Eq.

2). Using the diprotic model with a=b= 0, the optimum proton

concentration c
opt
H can be estimated from Eq. 2 by finding the

maximum activity, i.e., calculating the derivative of the activity

with respect to cH, setting it to zero and solving for cH (~c
opt
H ):

c
opt
H ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KE

1 KES
1 (KE

2 KMzKES
2 cPEP)

KES
1 KMzKE

1 cPEP

s
ð5Þ

Supporting Information

Figure S1 Influence of pH and KCl concentration in reaction

buffer on spontaneous NADH oxidation. Each dot corresponds to

a measurement conducted with one of 48 conditions from the

space filling design of the PYK-LDH coupled assay. In all plots,

the measured data and the Kriging model fitted surface is shown.

a) Blue response surface represents samples without the coupling

enzyme LDH; red surface represents samples whith all reaction

components present (PEP = 1 mM, see Material and Methods). b)

Extended view of the response surface model of spontaneous

NADH oxidation in samples where LDH is excluded from the

reaction (blue response surface in a); but extended scale of z-axes

to visualize changes in spontaneous NADH oxidation). Results

show a low spontaneous oxidation of NADH at pH,5.5, which is

significantly lower than the changes resulting from enzymatic

reactions.

Found at: doi:10.1371/journal.pone.0010727.s001 (1.95 MB TIF)
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