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Abstract

In previous work, it has been shown that the Ce-ion catalyzed Belousov—Zhabotinsky reaction exhibits oscillatory
photoluminescence. Unfortunately, Ce(l11) photoluminescence measurements were performed at a second-order peak. In this
Letter, the complete 3-dimensional fluorescence spectrum of Ce(I11) is shown including the correct (oscillatory) first-order
peak with an intensity 100—700 times higher than the second-order peaks. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The Belousov [1]-Zhabotinsky [2] (BZ) reaction
shows probably one of the most complex dynamic
behaviors of a nonliving set of chemical reactions.
For the classical BZ system [3], the mechanism was
elucidated by Field, Koros and Noyes (FKN) [4].
Although, a variety of versions of the BZ reaction
have been found, the FKN mechanism with bromide
ion control [5-7] is essential in understanding most
of the BZ reactions' dynamics, although the role of
the organic reactions, especialy radical reactions
[8-12], are till poorly understood.

A variety of different methods have been used to
study the BZ reaction, including electrochemical
methods [4,13,14], NMR [15-18], HPLC [19,20],
spectrophotometry [21] and fluorimetry [22—27]. The
use of fluorimetry has exclusively been concentrated
on Ru-catayzed BZ systems, where Ru is mostly
used in the form of Ru(bpy);*. Due to a rapid
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microwave synthesis protocol [28] other Ru-com-
plexes have become more easily available.

In a previous Letter [29] Ruoff has shown that a
Ce-catalyzed BZ system can be studied by means of
photoluminescence and that the inner filter effect
[30] may play an important role in the dynamic
behavior of luminescent oscillations. In fact, the
predicted dynamics induced by the inner-filter effect
were subsequently found in the Ru-catalyzed BZ
system [31]. Similar oscillatory behavior has also
been reported by Bolletta et al. [32]. Unfortunately,
in the Ce(l11)-fluorescence work [29] the entire pho-
toluminescence spectrum was not shown and the
reported oscillations were recorded on a second-order
peak. Bolletta et al. [33] indicated the possibility that
the excitation wavelength reported by Ruoff [29]
may be a second-order line. Karavaev and Noskov
[34] communicated that the weaker peak [29] may be
due to trace impurities and that there is probably no
relation to the Ce(lll) emission. Ruoff originally
thought that the reported Ce(l11) fluorescence peaks
may be due to a multiphoton excitation mechanism,
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causing emission wavelengths shorter than excitation
wavelengths.

In this Letter, the entire 3-dimensional Ce(lll)
UV —visible fluorescence spectrum has been investi-
gated showing that the correct first-order Ce(lll)
fluorescence peak occurs at an excitation wavelength
of ~260 nm and an emission wavelength of 350
nm. The peaks of the Ce(lll) fluorescence spectrum
reported earlier [29] are of higher order and the result
of using Echellette gratings in the excitation and
analyser monochromators.

2. Materials and methods

The BZ reaction was studied under batch condi-
tions in a fluorimetric quartz cell (Hellma Ceélls,
Zeiss, Germany) with a reaction volume of 1.5 ml.
The temperature was kept constant by an external
circulating water bath at 25°C (4 0.1°C). The solu-
tion was tirred magnetically from below. The BZ
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reaction was started by rapidly mixing equal vol-
umes (500 wl) of a 0.9 M agueous malonic acid
(MA) solution, a 0.3 M agueous NaBrO, solution
and a Ce(SO,), solution in 3 M sulfuric acid. The
resulting initial concentrations for H,SO,, MA and
NaBrO; were 1.0, 0.3 and 0.1 M, respectively. For
preparing the Ce(lll) solutions Ce(NO,), - 6H,0
(Merck, extrapure) was used. The luminescence was
studied with a Hitachi F-4500 spectrofluorimeter.
The cell and excitation /emission beam arrangement
have a standard orthogona design [30]. The only
difference to other commercial spectrofluorimetersis
that the F-4500 has a horizontal beam geometry,
instead of a vertical beam, which is normally used.

3. Results and discussion
Fig. 1la shows the 3-dimensiona fluorescence

spectrum of an acidic Ce(ll1) solution in the range
200—900 nm, for excitation and emission wave-
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Fig. 1. (@ Fluorescence spectrum of a2 x 10~ M Ce(NO,); in 1M sulfuric acid. Peak 1: 1st-order fluorescence peak. Peaks 2, 3: 350 nm
emissions due to excitations by a 2nd-order line at 520 nm and a 3rd-order line at 780 nm, respectively. Peak 4: 350 nm emission line of
peak 1 that passes the emission monochromator as a 2nd-order line. Peaks 5, 6: corresponding 2nd-order 350 nm emission lines of peaks 2,
3, respectively. (b) Density plot of the spectrum shown in (a). Scan speed 30000 nm,/min; EX: excitation wavelength with sampling interval
of 20 nm; EM: emission wavelength with sampling interval of 10 nm: Contour interval: 10 nm. Slit width (EX/EM): 5 nm/5 nm.

Photomultiplier voltage: 700V.
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lengths, respectively. Pegk 1 is the correct first-order
peak with excitation and emission wavelengths at
~ 260 and ~ 350 nm, respectively. Peak 2 is a
second-order line which has been previoudy re-
ported [29]. The first-order line 1 has an intensity
~ 100 times higher than peak 2.

The occurrence of higher-order lines is due to the
use of Echellette gratings in the excitation and emis-
sion monochromators. The relationship between line
order n, wavelength A, angle of incoming radiation i
and angle of reflection r is given by:

nA=d(sini+sinr), (1)

where d is the distance between the grooves in the
grating [35]. Inspection of the various peaks showed
clearly that peaks 2—6 are higher-order lines. Peaks 2
and 3 are the result of exciting Ce(l11) with 260 nm
by higher-order lines, i.e. n=2for peak 2and n=3
for peak 3. Peaks 4, 5 and 6 are second-order lines of
the emission peaks 1, 2 and 3, respectively. Since the
first-order peak is oscillatory in the BZ reaction, all
higher-order satellites should also be oscillatory. This
was indeed found, eliminating the possibility that the
other peaks are fluorescent trace impurities.
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