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ABSTRACT: An essential property of life is that cells and
organisms have the ability to protect themselves against
external disturbances/attacks by using homeostatic mecha-
nisms. These defending mechanisms are based on negative
feedback regulation and often contain additional features, such
as integral control, where the integrated error between a
controlled variable and its set-point is used to achieve
homeostasis. Although the concept of integral control has its
origin in industrial processes, recent findings suggest that biological systems are also capable of showing integral control. We
recently described a basic set of negative feedback structures (controller motifs) where robust homeostasis is achieved against
different but constant perturbations. As many perturbations in biology, such as infections, increase rapidly over time, we
investigated how the different controller motifs equipped with different implementations of integral control perform in relation to
rapidly changing perturbations, including exponential and hyperbolic changes. The findings show that the construction of an
optimum biochemical controller design for time-dependent perturbations requires a certain match between the structure of the
negative feedback loop, its signaling kinetics, and the kinetics of how integral control is implemented within the negative feedback
loop.

■ INTRODUCTION

Cannon1,2 defined the term homeostasis as the physiological
conditions that keep the concentrations of certain substances
within narrow limits.3 Homeostasis is essential for maintaining
the internal stability of cells and organisms and to help them in
defending against environmental and internal disturbances.
Many aspects of homeostatic regulation have become apparent,
such as its involvement in coping with stress,4,5 its participation
in circadian rhythms,6−8 the involvement of processes that act
in a concerted manner,9−11 and the nonlinear dynamics of
defending mechanisms.12 With the development of cyber-
netics13,14 and control engineering15 the basic regulatory
elements of homeostasis have been identified as negative
feedback mechanisms.16

Figure 1 shows eight basic negative feedback loops (motifs)
between a controlled variable A and a controller species E.17

The motifs divide into two classes, which have been termed
inf low controllers and outf low controllers. Inflow controllers
compensate for outflow perturbations in A by adding A to the
system (from an external or internal source), whereas outflow
controllers remove A from the system into external or internal
reservoirs. The reason for this division between inflow and
outflow controllers is that the Ei,o’s can only have positive
values (concentrations) and therefore two distinct classes of
mechanisms are necessary to add or remove A by Ei,o. The eight
motifs differ in how the signaling from A to Ei,o and from Ei,o to
A occurs, which can be either in the form of activating or
inhibitory mechanisms.

One of the mechanisms to achieve robust homeostasis is
integral control.15 Figure 2a illustrates how integral control as
part of a negative feedback loop is achieved. In integral control,
the deviation/error ϵ = Aset − A between the set-point Aset and
the value of a controlled variable, A, is integrated. The
integrated error E represents the sum of all deviations of A from
Aset over time and allows compensation for these deviations
such that A can precisely reach Aset.

15 It further corresponds to
the concentrations Ei,o in the different controller motifs.
Although integral control was invented for industrial processes,
such as in the maneuvering of ships, it is now clear that the
robustness of biological feedback mechanisms can also be
addressed in terms of integral control.17−29

To implement integral control within a biochemical negative
feedback loop, where A and Ei,o are the controlled and
controller species, respectively, we found that the reaction
orders for the synthesis and removal reactions of Ei,o (with
respect to Ei,o) need to be identical. The resulting behaviors can
show robust concentration homeostasis, however frequency
homeostasis can also be observed when the considered systems
are oscillatory.17,22−29

Before we describe the results of the different kinetic
implementations of integral control, we give a brief overview of
the kinetic requirements that lead to integral control. Figure 2b
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shows the three types of integral control implementations that
are considered in this study. The left scheme in Figure 2b
shows how integral control can be incorporated by zero-order
kinetics with respect to Eo. The two schemes in the middle and
to the right of Figure 2b incorporate integral control by using
first- and second-order autocatalysis and degradation with
respect to Eo. The fluxes j1 = k1 and j2 = k2·A describe
environmental disturbances in A, whereas flux j6 = k6 is a

system-internal synthesis of A. The flux j7 = k7·A·Eo is the
compensatory outflow flux that neutralizes inflow perturbations.
As an outflow controller can only compensate for inflow
perturbations and an inflow controller can only compensate for
outflow perturbations, a system that can handle both types of
perturbations needs both inflow and outflow controllers to be
present. This organization of inflow and outflow controllers
appears to be the main reason why physiological controllers

Figure 1. Eight basic negative feedback motifs. In motifs 1−4, the compensatory flux originating from Ei is an inflow to A (inflow controllers),
whereas in motifs 5−8, the compensatory flux originating from Eo is an outflow from A (outflow controllers). Gray arrows indicate the perturbations
that the motifs are able to oppose.

Figure 2. Implementation of integral control by three different kinetic mechanisms. (a) General control scheme. (b) Molecular representations of
integral control using motif 5 as an example. By applying the steady state condition k1̇/Ėo = 0, the set-point of A for the three controllers is calculated
to be Aset

Eo = k4/k3, independent of the values of k1 and k2, as long as the inflow perturbation k1 dominates over outflow perturbation k2.
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often come in antagonistic pairs.30,31 As can be seen from
Figure 2b, the rate equations for the three Eo’s can be
formulated as

̇ = − · · −γE k E A A( )E
o 3 o set

o (1)

where Aset
Eo = k4/k3 describes the perturbation-independent set-

points for the three controllers with exponent γ equal to 0, 1, or
2. The color codes used in Figure 2 illustrate the functional
relationships between the general flow scheme of Figure 2a and
the molecular/reaction kinetic representations of Figure 2b.
The red color indicates the rate constants k3 and k4 defining the
set-point of the controller. The brown color indicates the parts
that lead to integral control, that is, a low k5 value in the zero-
order type of controller and identical synthesis and degradation
reaction orders with respect to Eo in the two autocatalytic
controllers. Blue and green colors indicate the respective
signaling reactions from A to Eo and from Eo to A, and the
orange color indicates the perturbations.
Most of our earlier studies17,22−29 on robust homeostasis

were conducted by applying zero-order kinetics to achieve
integral control and focused on properties in the face of

different but constant perturbations. The goal of the present
study is to compare how the different kinetic implementations
of integral control influence overall controller performance. In
biological systems, the perturbation strength by invasive agents
often increases with time and may be relatively rapid, such as
the exponential growth of pathogenic bacteria32 or the
hyperbolic/hypercyclic growth of viruses.33 To meet attackers
with minimal delay, the immune system, for example, produces
and destroys lymphocytes all the time while maintaining a
robust lymphoid homeostasis.34 Because of such time-depend-
ent aspects we, as a first approach, studied how different
implementations of integral control will influence a controller’s
performance in maintaining homeostasis when growth and
depletion perturbations show linear, exponential, or hyperbolic
time dependencies.

■ METHODS
Controller performances are presented in complementary pairs
of inflow/outflow controllers, that is, controller pairs 1 and 5, 2
and 6, 3 and 7, and 4 and 8 (Figure 1). The set-point values of
A for the individual controllers were taken, rather arbitrarily, to

Figure 3. Performance of the three implementations of integral control (Figure 2b) for controller motif 5. Dashed vertical lines indicate phase
borders. Dashed horizontal lines in middle panels indicate the set-point Aset

Eo = 6.0. Left panels: (a) k1 increases linearly using parameters k1,p = 1.0, α
= 20.0, and tp = 2.0 (eq 2). (b) k1 Increases exponentially with parameters k1,p = 1.0, α = 2.0, β = 0.5, and tp = 2.0 (eq 3). (c) k1 has a step-wise
increase at tp = 1.0 and hyperbolic growth with parameters k1,p = 1.0, α = 40.5, and β = 8.0 (eq 4). Middle and right panels: blue curves show A and
Eo values of the zero-order type of controller, whereas red and black curves show A and Eo values for the first- and second-order autocatalytic
controllers, respectively. Rate constants: k1 = 1.0 (t < tp), k2 = 0.0, k3 = 1.0, k4 = 6.0, k5 = 1 × 10−4, k6 = k7 = 5.0, k13 = k14 = 1 × 10−3. Initial
concentrations: A0 = 6.0, Eo,0 = 0.2. The rate equations of the motif 5 controllers are given in SI2.
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be either 3.0 or 6.0, dependent on the controller pairs. The set-
point values (3.0 or 6.0) were chosen such that the combined
complementary controllers do not show windup (see
Supporting Information, ch. “Integral Windup in Combined
Controllers” of ref 17).
Computations were performed by using the Fortran

subroutine LSODE35 in conjunction with Absoft’s Pro Fortran
compiler (www.absoft.com). The graphs were generated with
gnuplot (www.gnuplot.info) and Adobe Illustrator (www.
adobe.com). To make notations simpler, concentrations of
compounds are denoted by compound names without square
brackets. Rate parameters are presented as ki’s (i = 1, 2, 3, ...)
irrespective of their kinetic nature, that is, whether they
represent turnover numbers, Michaelis constants, or inhibition
constants. A set of corresponding Matlab and Simulink
calculations are provided in the Supporting Information (zip).
In the calculations, we consider two phases. In phase 1,

starting at time t = 0, the concentration of A is kept constant
either at set-point Aset

Ei or at Aset
Eo (dependent on whether the

controller is of the inflow or outflow type) using constant k1/k2
values. At time t = tp, phase 2 starts and the values of k1 or k2
are changed using the following time dependencies.

(i) the A-perturbation is a linear function of time t

α= + · − ≥k k t t t t( );1/2 1/2,p p p (2)

k1/2 denotes either k1 or k2; k1/2,p is the k1 or k2 value at
time tp, and α is a positive constant.

(ii) the perturbation has an exponential time dependency

α= + − ≥β· −k k t t(e 1);t t
1/2 1/2,p

( )
p

p
(3)

(iii) the perturbation has a hyperbolic time dependency

α β= ·
− −

≥αk
t t

t t
( )

;
k

1/2
p

p

1/2,p (4)

Note that k1/2 goes to infinity when t reaches (α/k1/2,p) +
tp. A value of β > 1 in eq 4 allows for an additional step-
wise change of k1 or k2 at t = tp.

■ RESULTS AND DISCUSSION
In the following discussion, we present four of the eight
controller motifs and show how the three implementations of
integral control (Figure 2b) can manage to maintain homeo-
stasis against linear, exponential, and hyperbolic changes in k1/
k2. The controllers described in the main part of this article are
inflow controllers 2 and 3 and outflow controllers 5 and 8. The
other controllers, respectively, 6 and 7, and 1 and 4 show
similar/analogous behaviors to those covered in the main
article. They are described in the Supporting Information (see
below).
Responsiveness of Autocatalytic Controllers. A prob-

lem the autocatalytic implementation of integral control faces is
that low concentrations of the controller variables Eo or Ei may
lead to unresponsive or slow responding controllers. The
reason for this can be explained by looking at the equation for
the change in Ei,o, for example, eq 1 for outflow controller 5.
The first- and second-order autocatalytic controllers (γ = 1, 2)
have a reaction rate in Ei,o that is dependent upon its own
concentration and leads to self-amplifying positive feedback.
However, when Ei,o is zero, none of the autocatalytic controllers
are able to start up. Thus, care has to be taken to avoid

situations where Ei,o is driven toward too low values. An
example of how this may occur is given in the Supporting
Information (SI1). To prevent situations with too low Ei,o
values, in the following calculations we kept Ei,o at basal levels
by including small synthesis and degradation rates with the
respective rate constants k11 and k12 for the autocatalytic inflow
controllers Ei, and k13 and k14 for the autocatalytic outflow
controllers Eo. The rate constants are in the order of 10−3/10−2

and have no practical influence on the set-points for the
autocatalytic controllers.

Controller Motifs with Activating Signaling. Motifs 5
and 1. In motif 5 (and complementary motif 1), the signaling
mechanisms between A and E are entirely based on activation.
Figure 3 gives an overview of how the different kinetic
implementations of integral control behave for motif 5.
Typically, the zero-order implementation can keep A only at
its set-point for step-wise perturbations in A. If the perturbation
k1 increases linearly, the A value of the controller shows a
systematic but constant offset from Aset

Eo (Figure 3a, middle
panel, blue curve). The steady state value of A (Ass) for an ideal
zero-order controller (when k5 → 0) can be calculated by
assuming that Ȧ and Ä vanish. Ass in this case is given by (SI2)

= + +
̇

⎜ ⎟
⎛
⎝

⎞
⎠A A A

k
k k

1
2

1
2

E E
ss set set

2
1

3 7

o o

(5)

with ̇k k k/( )1 3 7 contributing to the offset. Thus, with increasing
but constant k1̇ the offset for the zero-order type of controller
increases, but can be reduced by increasing the values of k3
and/or k7. As indicated by eq 5 and Figure 3b,c (middle panel,
blue curves), the zero-order type of controller breaks down
when the rate law for k1 exceeds linear time kinetics.
Considering the first-order autocatalytic implementation of

integral control into motif 5, the controller is able to establish a
steady state for power-law and exponential perturbations in A.
However, for exponential perturbations, the controller shows a
constant offset above Aset

Eo = 6.0 (Figure 3b, middle panel, red
curve). The controller is not able to counteract hyperbolic
perturbations in A. The second-order autocatalytic implemen-
tation of integral control shows the best results with relatively
small offsets when perturbations become hyperbolic (Figure 3c,
middle panel, black curve).
The offset for the two autocatalytic controllers can be

calculated from the stationary solutions in A, which take the
following form (SI2)

= + +
̇

· ·
⎜ ⎟
⎛
⎝

⎞
⎠A A A

k
E k k

1
2

1
2

E E
nss set set

2
1

o 3 7

o o

(6)

where n is either 1 or 2, dependent on whether autocatalysis in
Eo is first- or second-order, respectively. Equation 6 also shows
that for the autocatalytic controllers, Ass → Aset

Eo as long as Eo
n

increases faster than k1̇. A comparison between the numerical
A-values and the stationary values Ass is also given in SI2.
SI3 shows corresponding results for the complementary

motif 1.
Controller Motifs with Activating and Inhibiting

Signaling. This class contains four negative feedback arrange-
ments (Figure 1). In two of them, motifs 2 and 6, A activates,
respectively, the synthesis of Ei or the removal of Eo, and the
Ei,o’s either inhibit the compensatory influx to A (motif 2) or
the compensatory outflux from A (motif 6). In motifs 3 and 7,
the A/E inhibitions/activations are reversed, that is, A inhibits
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the synthesis of Ei or the removal of Eo, respectively, and the
Ei,o’s activate either the compensatory influx (motif 3) or the
compensatory outflux (motif 7).
Motifs 2 and 6. The negative feedback structure of motif 2 is

closely related to the Goodwin equations,36−38 which have been
used in many variations as a model for different types of
biological oscillators.39

Figure 4 shows the three implementations of integral control
in motif 2. As this is an inflow controller, we tested the
controller against changes in k2. To compensate for the outflow
perturbations induced by k2, the Ei levels for this feedback type
need to decrease to raise the compensatory flux j6 = k6k23/(k23
+ Ei) to keep A at its set-point. For continuously increasing k2
values, the motif 2 controllers will eventually break down

Figure 4. Kinetic implementations of integral control for motif 2. See SI4 for rate equations, initial conditions, and derivations of the stationary
solutions Ass.

Figure 5. Performance of the three implementations of integral control in motif 2. During the first phase from t = 0 until the dashed line at t = tp =
2.0, we have k1 = k2 = 1.0. During the second phase, k1 remains unchanged and k2 increases as indicated in the left panels. Middle panels show the
changes in A and adaptation of A to the controllers’ set-points at Aset

Ei = 6.0. Color coding is as in Figure 3. As indicated in the middle and right panels
of (b) and (c), the controllers are no longer able to maintain homeostasis as Ei levels drop too low. SI4 describes the rate equations, rate constant
values, and initial concentrations.
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because when the Ei level gets too low, the controller will no
longer be able to maintain the function of the negative feedback
loop.
Figure 5 shows how the different controller implementations

behave toward linear, exponential, and hyperbolic increases in
k2. A striking difference with the controllers based on motif 5
(and 1) is the apparent lack of an offset in A. The stationary
solutions of the three controllers are (SI4)

γ
γ

=
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A A

1
E n

n
ss set

i

(7)

where

=A
k
k

E
set

9

8

i

(8)

is the set-point, and

Figure 6. Kinetic implementations of integral control for motif 3. See SI6 for rate equations, initial conditions, and derivations of the stationary
solutions Ass.

Figure 7. Performance of the three implementations of integral control in controller motif 3 (Figure 6). During the first phase from t = 0 to t = tp =
2.0, we have k1 = k2 = 1.0. During phase 2 (t > tp), k1 = 1.0 and k2 increases as indicated in the left panels. Middle panels show the changes in A and
the controllers’ ability to maintain the set-point Aset

Ei = 3.0. Color coding is as in Figure 3. SI6 describes the rate equations, rate constant values, and
initial concentrations.
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γ = ̇ +
k k k E

k k E( )n
i
n

i

6 8 23

2 23
2

(9)

relates to the offset contribution for the zero-order, first-order,
and second-order controllers with n = 0, 1, 2, respectively. High
γn values indicate a controller that is able to keep A close to its
set-point (Figure 4) such that γn/(1 + γn) ≈ 1 (see also SI4).
Interestingly, the zero-order implementation of integral

control performs better than the two autocatalytic controllers,
that is, when A is rapidly removed in a hyperbolic fashion
(Figure 5c, middle panel), while under these conditions, the
second-order autocatalytic controller performs the poorest. The
reason for the better performance of the zero-order arrange-
ment lies in the nonlinear dynamics of the inhibition term,
which allows Ei to decrease as rapidly as the perturbation
occurs. With a rapidly increasing k2, the perturbation-induced
decrease of Ei in the zero-order type of controller is sufficiently
quick to maintain homeostasis even for very high k2̇ values. For
the autocatalytic controllers, however, the Ei decrease is slightly
slower due to the autocatalytic production terms in Ei, which
oppose an effective decrease in Ei (SI4).
For the complementary outflow controllers based on motif 6,

analogous behaviors as seen for motif 2 are observed, that is,
the zero-order controller performs considerable better than the
controllers based on autocatalysis. SI5 shows the results.
Motifs 3 and 7. Because of its feedback structure, motif 3-

based controllers compensate outflow perturbations by an
increase in Ei. The different implementations of integral control
in motif 3 are indicated in Figure 6, and Figure 7 shows an
overview of the performance of the different implementations.
In contrast to those of motif 2, but like those of motif 5, the
motif 3-based controllers show offsets from Aset

Ei (now negative)
when the zero-order, first-order, or second-order controllers
encounter, respectively, a linear, exponential, or hyperbolic
increase in k2 (Figure 7, middle panels). The offsets can be
calculated by the stationary solutions Ass. For the zero-order
type of controller, Ass is given by

γ γ
γ= −

+
+

+
+

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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where in this case

γ = ̇
k k
k0
6 9

2 (11)

and
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1E
set 24
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i

(12)

When ̇ =k 02 , Ass = Aset
Ei (see SI6, page S37). Equation 10 is in

excellent agreement with the numerical data (Figure S2, SI6).
For the first- and second-order autocatalytic controllers, Ass is
analogous to eq 10, where γ0 is replaced by γn

γ = ̇
k k E

kn

n
6 9 i

2 (13)

where n is 1 and 2 for the first-order and second-order
autocatalytic controllers, respectively. The derivations of eqs
10−13 and a comparison between Ass and the numerical A-
values for the controllers are described in SI6. Although the
second-order autocatalytic controller performs best, its A steady
state shows a certain but minor offset below Aset

Ei = 3.0 when the
outflow perturbation is hyperbolic (Figure S4 in SI6).
SI7 shows the corresponding results for the three integral

control implementations for motif 7.
Controller Motifs with Inhibiting Signaling. Motifs 8

and 4. Finally, we turn to motif 8, which contains only
inhibitory signaling. The motif 8-based controllers are outflow
controllers and maintain homeostasis against inflow perturba-
tions by an increase in the outflow compensatory flux. This is
achieved by decreasing Ei. The implementations of integral
control for controller 8 are shown in Figure 8. Rate equations,
rate constant values, and initial conditions are stated in SI8.
The controllers’ responses toward a linear increase in k1 with

time (Figure 8) show that the zero-order and the first-order
autocatalytic controller can maintain homeostasis after a brief
excursion. The second-order autocatalytic controller, on the
other hand, is not able to keep homeostasis and shows
increasing A-levels drifting away from the set-point Aset

Eo = 6.0.
The stationary solutions Ass for the zero-order and

autocatalytic controllers are as follows (see SI8 for derivation)
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with

γ =
̇ +k k E

k k k
( )

0
1 22 o

2

4 7 22 (15)

For the autocatalytic controllers, γ0 is replaced in eq 14 by

Figure 8. Kinetic implementations of integral control for motif 8. Rate equations and initial conditions are described in SI8.
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γ =
̇ +k k E
k k k E
( )

n n
1 22 o

2

4 7 22 o (16)

with n = 1 for the first-order and n = 2 for the second-order
controller. For the linear increase of k1, the γ0 and γ1 values for
the zero- and first-order type of controllers are, at t = 100.0,

Figure 9. Performance of the three implementations of integral control in controller motif 8 (Figure 8). See SI8 for rate equations, rate constant
values, and initial concentrations.

Table 1. Overview of the Influence of Feedback Structure and the Type of Integral Control Implementations on the Controllers’
Homeostatic Performances with respect to Linear, Exponential, and Hyperbolic Time Dependencies in k1/k2

type of integral control implementation

controller motifs
time dependence of

k1/k2 Increase zero-order first-order second-order

1, 5 (Figure 3, SI2, SI3) linear constant A-offset, dependent on k1̇/k2̇ functional controller functional controller
exponential controller breakdown constant A-offset, dependent on k1̇/k2̇ functional controller
hyperbolic controller breakdown controller breakdown constant or small

increasing A-offset
2, 6 (Figure 5, SI4, SI5) linear functional controller, breakdown at

high k1/k2 values
functional controller, breakdown at
high k1/k2 values

constant or increasing
A-offset

exponential functional controller, breakdown at
high k1/k2 values

breakdown at high k1/k2 values controller breakdown

hyperbolic breakdown at high k1/k2 values breakdown at high k1/k2 values controller breakdown
3, 7 (Figure 7, SI6, SI7) linear constant A-offset, dependent on k1̇/k2̇ functional controller functional controller

exponential controller breakdown constant A-offset, dependent on k1̇/k2̇ functional controller
hyperbolic controller breakdown controller breakdown constant or small

increasing A-offset
4, 8 (Figure 9, SI8, SI9) linear functional controller, breakdown at

high k1/k2 values
functional controller, breakdown at
high k1/k2 values

controller breakdown

exponential breakdown at high k1/k2 values controller breakdown controller breakdown
hyperbolic controller breakdown controller breakdown controller breakdown
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respectively, 1.9 × 10−3 and 9.1 × 10−2. These values decrease
with decreasing Eo and show that the two controllers can keep
homeostasis at Aset

Eo with a relatively high accuracy. However,
with increasing time, Eo becomes too low and the negative
feedback loop cannot be operated any longer: the controllers
break down. This is seen in Figure 9a, in the middle and right
panels, where the zero-order and first-order controllers’
breakdown occurs at about 300 time units. The A-levels of
the two controllers then rise in parallel with the A-level of the
already nonfunctional second-order controller. When k1
increases exponentially (Figure 9b), none of the controllers
are able to defend their set-points. Although the zero-order
type of controller shows a temporary decrease toward Aset

Eo ,
breakdown occurs at about 20 time units and A-levels increase
exponentially as for the other controllers. When k1 increases
hyperbolically, the autocatalytic controllers are able to move A
to their set-points during the slow increasing phase of k1, but
controller breakdown occurs when k1 comes close to singularity
where k1̇ grows at an extremely rapid rate.
SI9 shows the results for the complementary motif 4.
Comparison of Controllers. Table 1 gives a qualitative

overview of the controllers’ performances with respect to the
perturbation kinetics k1 and k2 and the types of integral control
implementation. A controller is considered functional when the
A-offset between A and the controller’s set-point, |A − Aset

Ei/o|,
decreases with time, as judged from the calculations and the
derived γn values. When a controller’s intrinsic compensation
kinetics match the kinetics of the perturbation, as indicated by a
constant γn value, then constant A-offsets are observed.
Controller breakdown occurs when the A-offset increases
monotonically with time.
For controller motifs 1, 3, 5, and 7, where increasing k1/k2

values are compensated by an increased activation of Ei/o, the
functionality of these controllers relies on a sufficient
production rate of Ei/o. In our present formulation of these
controllers, we allowed an ideal performance in the sense that
controllers have an infinite capacity to generate Ei/o. When k1 or
k2 is kept constant after a time-dependent perturbation, the A-
values of these controllers will always return to their set-points
(although this may take some time) even when the controllers
had a breakdown during the preceding time-dependent k1 or k2
perturbation. However, controllers based on motifs 2, 4, 6, and
8 require decreased Ei/o values to increase their compensatory
fluxes. These controllers face the problem that a time-
dependent increase in k1/k2 will eventually drive the Ei/o values
to such low levels that the compensatory fluxes become
saturated and the controllers break down. After breakdown, the
controllers are not able to return to their set-points once k1̇ or
k2̇ is kept constant; they are trapped in their breakdown steady
states. To illustrate this point, we take the motif 8-based
controllers as an example. The rate equation of A for this motif
is (SI8)

̇ = + − −
+

A k k k A
k k A

k E1 6 2
7 22

22 o (17)

Assuming that the three controller types based on this motif
can keep their steady states in A at the set-point Aset

Eo , we can
calculate the steady state concentration of Eo as a function of
different but constant k1 values

=
+ −

−E
k k A

k k k A
k

E

Eo,ss
7 22 set

1 6 2 set
22

o

o (18)

Equation 18 shows that as k1 increases, Eo,ss becomes zero or
even negative. Negative Eo,ss values are unphysical, which
indicates that Ass at such high k1 values has to deviate from Aset

Eo

and that the controllers cannot keep their A-values at the set-
point. Thus, if a time-dependent k1 drives the controllers
eventually into breakdown and then k1̇ is kept constant, the
remaining steady state is given by eq 18, with Aset

Eo replaced by
Ass, where Ass is larger than Aset

Eo . As Eo is driven to very low
values and the derepression mechanism becomes saturated (Eo
≪ k22), an approximate value of Ass can be estimated from eq
17, that is

≈
+
+

A
k k
k k

k(high )ss
1 6

2 7
1

(19)

This shows that the controllers based on derepression of the
compensatory flux have a finite operational lifetime once
exposed to perturbations that grow in time. With increasing
constant or accelerating k1̇ or k2̇ values, the operational lifetime
of these controllers decreases. For the motif 1, 3, 5, and 7-based
controllers, constant A-offsets occur when the internal
controller and perturbation kinetics are of the same order
(e.g., a first-order controller acting on an exponentially
increasing perturbation). In these cases, the k1̇ or k2̇ values
are part of the parameter set that determines the size of the
offset, as indicated by the expressions for the derived γn values
(see SI6 and SI7). When the controller kinetics are superior to
the kinetics of the perturbation (e.g., when a first-order
controller is acting on a linearly increasing perturbation),
homeostasis is always guaranteed as long as sufficient Ei/o can
be produced (however, see discussion below when the Ei/o’s are
considered to become limiting).
Taking our earlier observations for the zero-order

implementation of integral control that all eight controller
motifs can successfully defend their homeostatic set-points with
little difference for step-wise perturbations (Figure 2 in ref 17),
it is interesting to note the large differences between the
controllers when they become exposed to perturbations with
different time-changing kinetics.
These differences in the controllers’ behaviors come both

from the different kinetic implementations of integral control
and from the type of signaling kinetics, which can be either of
an activating or inhibiting type. An explanation of the
observations can be found in the Internal Model Principle,40−42

which states that if a controller adapts to an environmental
perturbation, then the controller needs to have the capability to
generate that type of perturbation internally. This is, for
example, seen in Figure 3c for outflow controller 5, where the
second-order autocatalytic implementation of integral control
adapts to the hyperbolic increase in A by increasing Eo
hyperbolically (although with a steady state slightly off Aset

Eo ).
On the other hand, neither the zero-order nor the first-order
controllers have the kinetic capability to generate Eo hyper-
bolically and are therefore not able to compensate for a
hyperbolically increasing inflow of A.
The behavior of the controllers based on motif 2 (Figure 4)

can be understood in a similar manner: a rapid decrease in A
leads to a decrease in Ei, which then derepresses the
compensatory flux j6. As indicated by the stationary solutions
(SI4), the remarkable ability of this feedback arrangement is
that all three integral control implementations can show
adaptation to their set-points practically without an offset
(Figure 5). The reason why the second-order autocatalytic
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controller (Figure 5b,c, middle panels) performs more poorly
than the zero-order type of controller is because the
autocatalytic production part of Ei hinders an efficient
hyperbolic decrease in Ei (Figure 5b, right panel).
In controller motif 3, offsets from the set-point are observed

for all three controllers whenever the rate law of the increasing
k2 is the same or is more rapid than the rate-law generating Ei.
The second-order autocatalytic controller performs best,
followed by the first- and zero-order controllers.
The controllers based on motif 8 performed poorly: the

second-order autocatalytic controller fails when k1 increases
linearly, whereas the zero- and first-order controllers can
maintain homeostasis until Eo becomes too low and the
negative feedback loops are no longer operational (controller
breakdown, Figure 9). When k1 increases exponentially, the
zero-order type of controller makes an attempt to move A to its
set-point, but controller breakdown occurs when Eo rapidly
drops to low values (Figure 9b). During the initial phase of the
hyperbolic perturbation, k1 increases slowly such that the
autocatalytic controllers can move A to their set-points (Figure
9c, middle panel), but as k1 increases, its growth rate
homeostasis is lost for all controllers.
The results can be summarized as follows: all controllers are

able to maintain homeostasis for moderate step-wise changes in
k1 or k2,

17 or when the perturbing k1/k2 changes (relative to the
controllers’ responsiveness) are slow (Figures 3c, 5c, and 9c,
middle panels). To avoid potential failures in the start-up of the
autocatalytic controllers at low Ei or Eo concentrations, these
controllers need to have slightly elevated resting levels in Ei and
Eo. All controllers where the signaling from Ei/o to A is of the
activating type (and first-order with respect to Ei or Eo) show a
constant offset from the set-point whenever the rate law of the
k1/k2 increase is the same as that for the compensatory flux.
The usage of an activating signaling from A to Ei/o and an
inhibitory signaling from Ei/o to A combined with zero-order
implementation of integral control shows the best results with
respect to avoiding offsets and maintaining homeostasis with
different step-wise and time-dependent perturbations.
Although controller motifs 2 and 6 with a zero-order

implementation of integral control show the best performance,
the only drawback, it appears, is that these controllers
eventually break down when their Ei/o values become too
low. However, a restricted range of Ei/o does not only apply to
controller motifs with inhibitory signaling but also to those
where the signaling is entirely of the activating type (motifs 1
and 5). The reason for this is that a cell or organism will
eventually reach a limit of saturation or capacity to make more
Ei/o. Thus, all controllers, irrespective of how well they perform,
when exposed to a time-dependent perturbation will eventually
show breakdown when Ei/o reaches either the upper or lower
bounds of their operational range. Interestingly, this type of
controller breakdown is reminiscent of Selye’s General
Adaptation Syndrome (GAS).5,43 When continuously exposed
to stress (cold, drugs, or forced work), Selye observed that
animals show a certain reaction pattern: during the first phase,
the so-called “alarm reaction”, animals react to the stressor and
prepare for physical activity; during the second phase, termed
the “stage of resistance”, animals have adapted to the stressor
and are in a stage of apparent well-being similar to the
unstressed animals; in the final phase, the “stage of exhaustion”,
the resistance collapses and animals die. Selye interpreted the
surprising collapse as a loss of “adaptation energy”.4,5,44

Certainly, organisms are considerably more complex in their

physiological regulations than the single negative feedback
loops considered here; still, we are intrigued by this puzzling
analogy.

■ CONCLUSIONS
This is the first study where different implementations of
integral control were used to test homeostatic capabilities on a
set of basic controller motifs when perturbations change
linearly, exponentially, and hyperbolically with time. For
controllers where the compensatory flux is activated by
controller variable Ei/o, the controllers can cope with rapidly
growing or depleting perturbations whenever sufficient Ei/o is
supplied and the integral control implementation is at least of
the same kinetic order as the perturbation (motifs 1, 3, 5, and
7). Controllers where the compensatory flux is based on
inhibition already have an inherent hyperbolic rate law in their
compensatory fluxes (internal model principle) and can cope
with the applied time perturbations in k1 and k2 (motifs 2, 4, 6,
and 8). For these controllers, the zero-order implementation of
integral control provides the best control design, because
higher-order implementation of integral control hinders an
effective decrease in Ei/o. Aspects that will be investigated in
future work are how the kinetics of the signal transduction
chains influence controller performance and controller
accuracy.
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