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- Summary

Linear free energy relationships are introduced by means of an information theoretic approach. In
this view the well-known dilemma between the Hammond postulate and the assertion of an invariable
transition state through linear free energy relationships does not appear. -

The approach permits many parameter equations to be cast into physically 1nterpretable forms,
avoiding statistical coincidence. It is shown that in principle every multiparameter equation can be trans-
formed into a definite single parameter linear free energy relationship. '

Introduction

Linear free energy relationships (LFER’s) are useful tools in predicting reaction
rates and as indicators to mechanistic changes in chemical reactions.

However, quite often they seem to stand in considerable contrast to other principles,
as for example to the Hammond postulate (HP) or to the reactivity-selectivity principle
(RSP) [1, 2]. Both the HP as well as the RSP suggest more or less curved relationships.
Nevertheless, LFER’s generally show linear behaviour over considerable free energy
changes. From a theoretical point of view this is unsatisfactory. In a review, JOHNSON
[1] concluded: “The key problem facing theoreticians is the explanation of the efficiency
of such simple and straight-forward laws in thelr government of the hlghly complex
systems of organic chemistry”. ‘

The purpose of this paper is a theoretical deduction of LFER’s by using variational
theoretical arguments. The physical interpretation: of the various parameters will be
set forth and the opaque relationship to the HP ‘will be discussed. Finally it will be
shown that every multiparameter equation can be cast into' a single parameter LFER.

Variational Methods and Information Theory

The use of variational principles in physics is well established. Typical examples
are Hamilton’s principle in mechanics, Fermat’s principle in optics or Boltzmann’s
famous entropy law in equilibrium thermodynamics. In all these cases a given function
is extremized with certain constraints.

In information theory, one is concerned with measuring the scarcity (i.e. the infor-
mation) of events, quite independently of their nature. This can either be the occurence
of the letter “¢” in the English language or the appearance of a scattered electron
within a given room angle dQ, In analogy to statistical thermodynamlcs SHANNON
[3] defined the mean information content H as

H= —K} p;log(p) ' . )
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" where p; is the probability of the event 7 and K is a constant. Often; H is also called
information entropy. Roughly spoken, H is a measure of the scarcity or diversity per
event.

The problem we are confronted with is to make unbiased estimates leading to the p,’s
which are in agreement with the available knowwledge about our system. In principle,
this is done in the way that all observable properties or characteristics act as constraints
when the information entropy is maximized. It is assumed that in all systems, either
physical or nonphysical, the information entropy will tend to its maximum, defining
the system in its most probable state. Thus, the constraints lead the evolution of the
system. :

Information Theory and LFER’s

To apply the concept to chemical reacting systems we want to identify the p;’s as
the probability of getting a transition state (TS) (out of all collisions) of a definite (rate
determining) elementary reaction i at a given temperature 7. One of the central tasks
is now to estimate the influence of substituents on p;. It is assumed that the substituents
are not directly involved in the reaction process, but only perturb the reaction centre.
In other words, is it possible to estimate the extent .of perturbation, i.e. its influence
on the rate constant when the substituents are changed?

In this approach it is assumed that every substituent has a set of definite independent
physical properties (as for example the size leading to steric effects, a charge leading
to field effects etc.) which each influences the reaction centre.

Since we are only concerned with the substituent influence in a definite mechanism,
we use “i” to index the various substituents bearing all the properties which will be
indexed by & (Fig. 1). . )

To compare the reactivity of reaction centres bearing different substituents, consider
an ensemble of identical reactions differing only in the substituents attached to the
reaction centre (Fig. 2). It is possible to construct the ensemble expectation value. for
each substituent property indexed by «. This value f, is given by
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Fig. 1. Schematic representation of a reaction centre perturbed by the substituent 7. It is
assumed that every substituent i’s contribution can be split into a set of independent
properties o, each influencing the reaction centre independently. In principle, the total
number of properties, m, is infinite
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Fig. 2. Ensemble of similar reactions, differing only in the substituents attached to the reac-
tion centres. Each box contains an elementary réaction with a particular substituent i.
The p;’s refer to the probability of creating the TS out of a given number of collisions.
The heat-bath ensures constant temperature

where f;, simply is the property marked by « in the substituent i. We further add the
usual constraint that the probability distribution is normalized, i.e. '

Y=l B

Our problem is now to find the maximum information entropy H under the constraints
set up in egs. (2) and (3). To solve this problem, the method of Lagrange multipliers .
is used, i.e. we have to vary the following sum '

{%ﬂ—a—nzm+zazm4=o | @

where 4 and J, are the constant Lagrange multipliers. After differentiating with respect
to p; and setting the resulting expression equal to zero, the following equation is obtained

ln(pi) = Z}'oc in A. . (5)

However, the Lagrangian multipliers A and i, are not universal constants, normally
they will differ from one ensemble (mechanism) to the other.

It is not unreasonable to imagine ensembles where only one single property « domi-
nates the influence to p;. This may for example be the size of the substituents (let us
call it §), as is the case in Taft’s approach to quantify steric effects in the acid catalyzed
hydrolysis of aliphatic carbolic esters [4]. In such a case only one A, dominates (namely
Ay = 2g) and eq. (5) becomes

In(p) = 2-ﬂfilx — A (6)

To compare the reactivity of two different substituents / and j, a similar equation
can be written for substituent j '

In(p;) = }“ﬂfjﬂ - 2. ' O]
28% '
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- When the two equations are substracted from each other, we get

ln( ) = d(fig — fip)- , (8a)
Dj
Since our p,’s are directly proportional to the rate constant k;, we can write
ki |
In T = Ag(fipg — Jip)- (8b)
i

When j is a standard substituent (call it “0””) to which all other substituents are com-
pared, we finally get

0

i , v »
In (-];i-> = dg(fis — Sop)- B¢

The connection to various single parameter LFER’s is now easily seen. In Taft’s
approach without electronic effects,

Ko\ _ s |
log (k_o) = 0E, _ ©®)

Ag plays the role of the susceptibility factor 6 and (fi; — fo) is identified with the sub-
_ stituent constant E;.
In the Hammett equation [4] (10), § is mainly an electronic inductive property.
The constant 7, is related to the ¢ reaction constant, whereas (f;; — fos) corresponds
to the ¢; substitution constant.

k, .
logl —~ | = go;. 10
g<k0> 0 | (10)

Also in the Grunwald and Winstein [4] approach to describe solvent polarity the
concept is easily applied. Here, (f;; — fop) is related to the ““solvent ionising power”,
whereas A is a substrate parameter giving the sensibility of the effect.

" It must be emphasized that normally more than one property f;, is expected to contri-
bute to the perturbation of the reaction centre. This depends to a great extent on how
the contributing properties are defined. However, later we will see that under a suitable
linear combination of the f;,’s every multiparameter equation [eq. (5)] can be cast
into a single LFER [eq. (6)].

Physical Interpretation and Discussion

As we have seen in the previous section, the 4,’s can be identified with constants
in several LFER approaches. Let us now consider their physical interpretation.
From eq. (5) we may write

Py = ¢ exp @ D m) : (1)
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~ Applying the normalization condition [eq. (3)] we get

ZZ exp (Z l,xfia) =1 ‘ (12)
with ;

Z=c¢*= (z exp (Z Ao m))“‘ (13)
where Z is called the partition function. Thus, eq. (11) is rewritten:

pi=Zexp (; }'zxfioc)- ‘ ‘ (14)

To be in accordance with statistical thermodynamics and since p, and k; (the rate
constant) are proportional we write

(g Z;fm)} ) (15)

1

k;,=CzZ exp{

where C is the proportional constant between p; and k;, ky is the Boltzmann constant,
and T is the temperature. The constant A, is given by the relationship

A, = kyTh,. o o , , (16)
We want now compare eq. (15) with the Arrhenius equation (17)
E*
ki=Adexp| — = 17
\= dexp ( - T) an

where E;* is the activation energy of the reaction with the substituent 7. Setting eq. (15)
equal to eq. (17) and take the natural logarithm on each side, we obtain

In(CZ|A)*T + Y X f, = —E*. (18)i

To get an explicit expression of 4, eq. (18) is differentiated with respect to the pro-
perty f;,. We get

+ .
o= —— (OET | ‘ | (19)
kgT \ 0Of;,
Since eq. (18) holds for every subsﬁtuent, we have
: * : *
(bE,. ) = <()Ej ) = —kgTh, (20)
0fia fja

for all i and j. From eq. (19), Ay is interpreted as the sensitivity in the change of the
activation energy when the property « of the substituents is varied. Note, that in prin-
ciple E;f and Ejqk are different, i.e. a considerable change in the TS structure is possible
‘even when 1, is constant (conf. Fig. 3). Thus, the widely accepted view that the slopes
of LFER’s in some way measures TS structures is too vague. The apparent discrepancy,
often quoted {1, 2, 4], does not appear. -
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Fig. 3. Illustration of constant 4, values at different TS structures. TS; and TS; are TS’s with
substituent 7 and j. Arrows in TS; and TS; indicate the change of the energy when the
property « is changed by a unit step. Equation (19) relates it directly to the 4,’s

In addition, eq. (19) also indicate the temperature dependence of the 4,’s. When it
is assumed that (QE;"/0f;,) is independent of the temperature, we get

ﬂ'oc(jT 1) _1_-'2_

WT)  Tp @h

This is indeed the case for a few reaction series (for example ester hydrolysis) where
eq. (21) is followed with high accuracy [5]. The thermodynamic aspects under which
eq. (21) is valid are discussed by WELLs [5]. However, in general (OE;*/0f;,) will not be
temperature invariant.

Multiparameter Equations

The connection to multiparameter equations as in the extended Hammett approach
[4], in the Swain-Lupton dual parameter equation [4] or other approaches is also
easily seen. In our view, the success of these methods is mainly due to the substituent
constants describing properties which each perturb the reaction centre, while other
factors are more or less constant. However, in multiparameter equations it is often
difficult to give the substitution constants a proper physical interpretation. This leads
us immediately to the question about the possibility to create a complete set of pro-
perties o, such that a general LFER can be defined '

log <—k—) = 3 4fon — for) @
ko o«

where « spans a complete set of properties defining every substituent i. This has the
advantage that statistical ambiguities in the various o scales can be easily avoided.
The ,’s directly give the sensitivity of the rate to the property «. In practice, the number
of substituent properties is of course limited. In principle, all types of properties can
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be chosen (as long as they are independent). The only requirement given in eq.(2) is
that the f;, are summable properties such that £, is a constant in every closed ensemble.
Typical properties suitable for this purpose are the size/volume of the substituent,
the electron affinity, the ionization energy, the polarizability, magnetic properties etc.
It must be stressed, that even if one had a complete set of independent properties (which
in principle is infinite), the set would not be unique. This is certainly true, since every
independent property can act as a basis in a vector space. Therefore, every linear in-
dependent combination of property vectors will also define a suitable basis. However,
by use of a suitable convention this ambiguity can be avoided.

From a mathematical point of view, it is interesting to note that every multlparameter
equation of independent properties can be cast into a single parameter equation with
unit slope. To see this, eq. (5) is interpreted as a linear transformation F which maps
every element of the property vector space V™ into the probability vector space R

Ex)=y, xe/™ ye R

It is now possible to cast the transformation F into its canonical form, i.e. the matrix
representation of F is diagonal (for proof see ref. [6]). Thus, eq. (5) can be rewritten as

In (p:) = fay- ' L (23)

a single parameter equation with unit slope. However, the price to be paid is that (i)
now in- general is a linear combination of all. properties « which is different for every
substituent i. In other words, the universality of the substituent constants f;, is Tost
at the cost of a one parameter LFER, valid only in the ensemble. This means, going
to another type of elementary reaction, the previous substituent constants do generally
not create a LFER.

The main problem in applying the concept of generalized LFER to an experimental
situation is to define properties of the substituent which independently influence the
reaction centre. In most of the observed single parameter equations the universality of
the substituent constants indicate that only one typical property (steric effects, inductive
effects etc.) is responsible for the linearity. This seems also to be thie case for ¢t and
o~ constants. In these cases, however, the substituent constant has to be redefined,
since now also other electronic properties (“through conjugation®) contribute to the
perturbation. According to the above mentioned theorem a single parameter LFER
can be constructed. Note that the so-defined substituent constant ¢+ and ¢~ are not
universal. '

The use of once defined substituent constants (which reflect a definite property)
would avoid the usage of different o salces, and the parameters would have a reasonable
physical interpretation.

To obtain the different f;, substituent constants, either standard reactions which
purely shows the influence of one property « have to be used, or quantum chemical
calculations of properties have to be performed to define the substituent constants.
Then, in this way unbiased multiparameter equations can be set up,
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A limitation of our concept seems to be that only systems where the substituents
perturb the reaction centre are considered. Thus, systems showing anchimeric assistance,
steric acceleration and similar effects are not included in the derivation. However,
in such situations often a new reaction centre can be defined, including the participating
substituents. Nonreacting substituents attached to this new reaction centre will again
result in single or multiparameter LFER’s.
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