
Supplementary Material 
 
Derivation of Eq. 1a.  Assume Jj is a function of the rate constants for the N 

component reactions: 

Jj= Jj (k1, k2,...., ki,...., kN)                                              (4) 

 

The derivative with respect to temperature T is calculated by using the chain rule: 
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The last term in eq. 5 can be explicitly calculated from the Arrhenius equation, i.e., 
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which gives 
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by using ∂ki/ki = ∂lnki. Multiplying eq. 7 by T/Jj and observing that dJj/Jj = dlnJj, and 

T/dT=1/dlnT, Eq. 7 can be written as: 
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This shows that the activation enthalpy of a pathway flux is equal to the weighted 

average of the activation enthalpies of the steps, where the enthalpies are normalized 

by RT and the weighting factors are the flux control coefficients. 
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Derivation of Eq. 1b. Each reaction step is catalyzed by an enzyme and for the sake 

of simplicity we assume that each step can be described by Michaelis-Menten kinetics 

with non-saturating enzymes following first-order kinetics with respect to substrates, 

i.e. 
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where ki is the turnover number, ei  the concentration of enzyme i, and Ki is a 

dissociation constant of a rapid equilibrium (or a dynamic equilibrium constant) 

between enzyme and substrates. Using the chain rule one obtains 
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Because ki and Kl have an Arrhenius-type temperature dependence [1, 21], the first 

and the last terms in Eq. 10 can be written as (see Eqs. (6)-(8)) 
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Because 
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Multiplication with T and using the definition of the response coefficients 
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Reaction schemes where J’ cannot be temperature compensated (Fig. 2b) 

 

Scheme (1). We consider the irreversible case, but the analysis can easily be applied 

to the reversible situation. The rate equations at steady state conditions are: 
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Summing up the four equations leads to J’=k1 showing that C1=1, while the other 

control coefficients are zero. 

 

Scheme (2). We are looking at the irreversible clockwise loop. The rate equations at 

steady state conditions are: 
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Summing up the four equations leads to J’=k1 showing that C1=1, while the other 

control coefficients are zero. 

 

Scheme (3). Although this scheme contains a branch point, flux J’ = k1 showing that 

C1=1, while the other control coefficients are zero. 

 

Scheme (4). Reaction species D inhibits process 2 by replacing k2 by 
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The sum of the four equations leads to J’=k1 showing that C1=1, while the other 

control coefficients are zero. 

  

 

Scheme (5). Like in scheme (4), the contributions of the (positive) feedback loop 

cancel and flux J’=k1 leading to C1=1 and the other Ci’s = 0. 

 

 

Scheme (6). We consider a negative feedforward to the output flux J’. The rate 

equations read: 
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The steady state output flux J’ is given by: 
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KI + [B]SS
m
[D]SS = k1                                               (17) 

showing that C1=1, while the other control coefficients are zero. 
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Scheme (7). Reaction species A activates reaction 4 (positive feedforward). 
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The sum of the four equations leads to J’=k1 showing that C1=1, while the other 

control coefficients are zero. The same result we get for the activation of reaction 4 by 

B or the activation of reaction 3 by A. 

 

The rate equations of a positive feedforward from B to an output flux read: 
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The steady state output flux J’ is given by: 
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J'= k 'k[B]SS
n
[D]SS = k1                                               (20) 

leading to 

! 

C1 =1, while the other control coefficients are zero. 
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Reaction schemes where J’ can be temperature compensated (Fig. 2c) 

 

Scheme (8). Calculating the steady state values: 
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Because J’=k’[D]SS, we get 
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that C1=1. 

 

 

Scheme (9). 
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By successive elimination of the steady state values for A, B, C, and D in the equations, 

we get: 

! 

J'= k '[D]
SS

= k'
k1k2k3k4

(k2 + k6)(k3 + k7)(k4 + k8)(k '+k9)
                       (23) 

Calculating the Ci’s, one get that C1=1 and 

! 

C
2

= "C
6

=
k
6

k
2

+ k
6

; 

! 

C
3

= "C
7

=
k
7

k
3

+ k
7

; 

! 

C
4

= "C
8

=
k
8

k
4

+ k
8

; 

! 

C'= "C
9

=
k
9

k'+k
9

. In order 

to temperature compensate fluxes J6, J7, J8 and J’ simultaneously, vi observe that when 

compensating first J6, this flux depends only on k1, k2 and k6 with 

! 

C
1

J
6 =1 and 



- 7 - 

! 

C
2

J
6 = "C

6

J
6 = "

k
2

k
2

+ k
6

 while all the other control coefficients are zero. This leads to the 
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Scheme 10. The rate equations of this cyclic scheme with steady state conditions read: 
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By successively eliminating the steady state values [A]SS, [B]SS and [C]SS, an expression 

for [D]SS and J’ can be obtained: 
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Scheme (11). Inhibition of J1 by any intermediate. Vi take as an example the inhibition 

of J1 by C with Hill coefficient m = 1. The rate equations with steady state conditions 

are: 
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C2 = C3 = C’ = 0. Note, temperature compensation is only possible because the inhibitor 

constant KI (which can be interpreted as a dissociation constant in rapid equilibrium 

between the enzyme that catalyzes step 1 and the inhibitor C) is assumed to be 

temperature dependent. The temperature dependence of KI can be described analogously 

to the Arrhenius equation by substituting the activation enthalpy with the enthalpy of 

formation 

! 

"H
I

0. In this case the pre-exponential factor AI can still be treated as 

temperature independent with AI = exp(−

! 

"S
I

0/R) [1]. It should also be noted that when 

treating KI as a temperature dependent parameter, then the sum of the control coefficients 

is generally not one. In this case we get: 

! 

C
i

i=1

4

" + C
KI

+ C'=
4k

1
k
4

(k
4
K

I
+ k

4
M ) k

4
M

                              (33) 



- 9 - 

 

Scheme (12). Activation of J1 by any intermediate. In order to avoid an exponential 

increase of concentrations, n needs to be lower than 1. As an example, we look at the 

activation of reaction 1 by intermediate C. The rate equations with steady state conditions 

are: 
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Summing up all steady state equations leads to 
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A Simple Representation of the Calvin Benson Cycle 

Fig. 5c shows a simple representation of the Calvin Benson cycle with its 3 stages: (i) 

the reduction phase (flux J2) due to influx of ATP and NADPH produced by the light 

reaction together with the output flux of Pi, (ii) the regeneration phase (flux J3) with the 

output flux J6 forming carbohydrates, and (iii) the ATP/NADPH-driven carboxylation 

phase (flux 

! 

J
4

CO
2 ) assimilating CO2 [32]. The rate constant 
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k
4

CO2  is assumed to be 

dependent on the partial but constant CO2 pressure. 

 

The rate equations and steady state conditions are given by the following equations: 
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. The assimilation of CO2 can be temperature compensated 

because of the ”balance” between the input and output fluxes.  

 


