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Supporting Information 1

Responsiveness of Autocatalytic Controllers

A problem the autocatalytic implementation of integral control sometimes
faces is that low concentrations of the controller variables Eo or Ei may lead
to unresponsive or slow responding controllers. The situation is illustrated
in Fig. S1 using combined controller motifs 1 and 5 with the three different
kinetic implementations of integral control. In the left panel of Fig. S1a inte-
gral control is based on zero-order kinetics with respect to Ei/Eo, while in the
middle and right panels integral control is based on first-order and second-
order autocatalysis, respectively. Rate constants have been chosen in such a
way that the inflow controllers have set-points at AEi

set=3.0, while the outflow
controllers have set-points at AEo

set=6.0. In this arrangement controllers 1
and 5 act as antagonistic pairs as often found in biology (1, 2). Dependent
whether inflow perturbations k1 or outflow perturbations k2 dominate A is
either kept at AEo

set=6.0 or AEi

set=3.0, respectively.
During the first phase (Figs. S1b and S1c) all three combined controllers
are at their steady states with a dominating outflow perturbation in A
(k1=0.0, k2=1.0), where A levels are kept at AEi

set=3.0. These steady states
are maintained by the Ei’s, which for each of the combined controller pairs
provide the necessary compensating flux j6=k6·Ei to keep A at AEi

set=3.0.
In Fig. S1b the concentrations of all Eo’s during the first phase are zero
(k11=k12=k13=k14=0.0) and make no contributions to the concentrations of
A, while in Fig. S1c the autocatalytic controllers are kept during the first
phase at a resting level because of k11=k12=k13=k14=0.01.
At time t=5.0 (start of the second phase) the perturbation profile changes
from a dominating outflow perturbation in A to a large constant inflow per-
turbation (k1=10.0, k2=0.0). While the controller based on zero-order kinet-
ics can compensate for the perturbation by increasing its Eo, the autocat-
alytic controller species Eo cannot build up (bottom panel, Fig. S1b) with
the result that the A levels for these controllers rise rapidly above AEo

set=6.0
(upper panel Fig. S1b). The addition of the small synthesis and degradation
terms in Eo (with rate constants k13 and k14) keep the autocatalytic Eo-levels
sufficiently high such that Eo concentration in the autocatalytic controllers
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Figure S1: Combined inflow and outflow controllers 1 and 5 with three dif-
ferent implementations of integral control.

S2



can increase and move A to their set-points (Fig. S1c).

Rate equations for combined zero-order controllers (Fig. S1a,
left panel, components outlined in blue)

Ȧ = k1 − k2·A+ k6·Ei − k7·A·Eo (S1)

Ėi = k8 −
k9·A·Ei

k10 + Ei

(S2)

Ėo = k3·A−
k4·Eo

k5 + Eo

(S3)

Rate equations for combined first-order autocatalytic
controllers (Fig. S1a, middle panel, components out-
lined in red)

Ȧ = k1 − k2·A+ k6·Ei − k7·A·Eo (S4)

Ėi = k11 − k12·Ei + k8·Ei − k9·A·Ei (S5)

Ėo = k13 − k14·E0 + k3·A·Eo − k4·Eo (S6)

Rate equations for combined second-order autocatalytic
controllers (Fig. S1a, right panel, components outlined
in black)

Ȧ = k1 − k2·A+ k6·Ei − k7·A·Eo (S7)

Ėi = k11 − k12·Ei + k8·E
2

i − k9·A·E
2

i (S8)

Ėo = k13 − k14·E0 + k3·A·E
2

o − k4·E
2

o (S9)
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Rate constants and initial concentrations (Fig. S1b and
Fig. S1c)

The following rate constant values (in au) were used for all three type of con-
trollers: k1, k2, see text; k3 = 1.0, k4 = 6.0, k5 = 1× 10−4, k6 = k7 = 1.0, k8
= 3.0, k9 = 1.0, k10 = 1×10−4. The values of k11−k14 are specified in Fig. S1.

Initial concentrations, combined zero-order controllers: A0 = 3.0, Eo,0 = 0.0,
Ei,0 = 3.0. Initial concentrations, combined first-order controllers: A0 =
3.0, Eo,0 = 0.0, Ei,0 = 3.01. Initial concentrations, combined second-order
controllers: A0 = 3.0, Eo,0 = 0.0, Ei,0 = 3.17.
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Supporting Information 2

Comparing Stationary and Numerical Solutions

of A with the Different Implementations of

Integral Control for Motif 5

Zero-order Implementation of Integral Control

The rate equations for the zero-order implementation of integral control for
motif 5 are:

Ȧ = k1 − k2·A+ k6 − k7·A·Eo (S10)

Ėo = k13 − k14·E0 + k3·A−
k4·Eo

k5 + Eo

(S11)

Taking the double derivative of A with respect to time and assuming that k̇1
6= 0 and Ėo 6= 0, while Ȧ and Ä are zero, we get

Ä = k̇1 − k2·Ȧ− k7·Ȧ·Eo − k7·A·Ėo = k̇1 − k7·A·Ėo (S12)

By setting Eq. S12 to zero the stationary solution Ass is given by:

Ass =
k̇1

k7·Ėo

(S13)

To solve Ass explictely, Eq. S11 is inserted into Eq. S13, which leads to the
following quadratic equation in Ass:

k3k7A
2

ss − k4k7Ass − k̇1 = 0 (S14)

with the positive solution

Ass =
k4k7 +

√

k7(k7 + k2

4
+ 4k̇1k3)

2k3k7
(S15)
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which can be rearranged as follows

Ass =
1

2
·
k4
k3

+

√

k2

7
k2

4

4k2

3
k2

7

+
4 ˙k1k3k7
4k2

3
k2

7

(S16)

Using the expression for the set-point, AEo

set = k4/k3 (Fig. 2), we finally get

Ass =
1

2
AEo

set +

√
(
1

2
AEo

set

)2

+
k̇1
k3k7

(S17)

Autocatalytic Implementation of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S17. As an example
we use the first-order autocatalytic implementation of integral control. The
rate equations for A and Eo are:

Ȧ = k1 − k2·A+ k6·Ei − k7·A·Eo (S18)

Ėo = k13 − k14·E0 + k3·A·Eo − k4·Eo (S19)

Taking, as above, the double derivative of A with respect to time and assum-
ing that k̇1 6= 0 and Ėo 6= 0, while Ȧ and Ä are zero, we get again Eq. S13.
Inserting Eq. S19 into Eq. S13 while assuming that k13 and k14 are negligible
we obtain the following quadratic equation in Ass analogous to Eq. S14:

k3k
′

7
A2

ss − k4k
′

7
Ass − k̇1 = 0 (S20)

where k
′

7
= k7Eo. As a result the positive solution of Ass is given as:

Ass =
1

2
AEo

set +

√
(
1

2
AEo

set

)2

+
k̇1

k3k7Eo

(S21)

The solution for Ass for the second-order autocatalytic implementation is
derived in a similar manner as for Eq. S20, but now with k

′

7
= k7E

2

o . The
resulting solution for Ass is in this case

Ass =
1

2
AEo

set +

√
(
1

2
AEo

set

)2

+
k̇1

k3k7E2
o

(S22)
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Generally, the Ass solution can be written as

Ass =
1

2
AEo

set +

√
(
1

2
AEo

set

)2

+ γn (S23)

where γn is

γn =
k̇1

k3k7En
o

(S24)

with n = 0, 1, 2 for the zero-, first- and second-order reactions, respectively.

Rate Constants and Initial Concentrations

The following rate constant values (in au) were used for all three type of
controllers: for k1 changes, see legend of Figs. 3; k2 = 0.0, k3 = 1.0, k4 = 6.0,
k5 = 1× 10−4, k6 = k7 = 5.0, k13=k14 = 1× 10−3.

Initial concentrations for all three controllers: A0 = 6.0, Eo,0 = 0.2.

Comparing Stationary and Numerical Solutions of A

In the following we compare the derived stationary solutions Ass with the
numerical results of A from Fig. 3.

Linear Increase of k1 with Time

Fig. S2 shows the results when k1 increases linearly (panel a). In panel b
the concentrations of A and Ass of the zero-order controller are shown on
the left ordinate, while the right ordinate shows the values of γ0. After the
onset of the linear increase of k1 at t=tp=2.0, the stationary solution Ass

and the numerical solution A merge after a few time units. This shows that
the observed offset of A from AEo

set=6.0 is due to the constant term γ0 and in
agreement with Eq. S17. Although the zero-order implementation of integral
control is able to counterbalance a linear increase in k1, this takes a certain
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Figure S2: The performance of the three different integral control implemen-
tations in motif 5 when k1 increases linearly with time. (a) k1 dependence
as a function of time. (b) A, Ass, and γ0 as a function of time for the zero-
order implementation of integral control. (c) A, Ass, and γ1 as a function
of time for the first-order autocatalytic implementation of integral control.
(d) A, Ass, and γ2 as a function of time for the second-order autocatalytic
implementation of integral control.
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time to do so. Once the balance is achieved, the actual A-concentration
is off its set-point. The zero-order based controller is not able to reduce
this offset, because it has not the capacity to increase the rate removal in
A by its compensating flux j7=k6Eo beyond a pure first-order dependency
in Eo. However, the first-and second-order autocatalytic implementations of
integral control have this capacity. Although the compensatory fluxes j7 for
the autocatalytic controllers are formally still first-order with respect to Eo,
the underlying first- or second-order autocatalysis in Eo allows an increase in
j7 in order to meet the set-point. In panels c and d it is seen that the decrease
of the offset using the autocatalytic controllers is given by the term γn (with
n being either 1 or 2). The γn term decreases as Eo increases with increasing
k1 showing that A is moved precisely to AEo

set when waiting sufficiently long
enough.

Exponential Increase of k1 with Time

Fig. S3 shows the results when k1 increases exponentially with time (panel
a). In panel b the concentrations of A, Ass and the values of γ0 for the zero-
order controller are shown. Note that the controller is not able to defend
its homeostatic set-point and A, Ass and γ0 increase with time. In panel
c the behavior for the first-order autocatalytic controller is shown. An off-
set between A and Ass and AEo

set is observed, which is well described by
the stationary solution Eq. S21. Panel d shows the behavior of motif 5
with a second-order autocatalytic implementation of integral control. This
controller is able to defend increasing exponential growth in A and keep A
at AEo

set=6.0.

Hyperbolic Increase of k1 with Time

Fig. S4 shows the results when k1 increases hyperbolically with time after
a step from k1=1.0 to k1=8.0 (panel a). Although the zero-order and first-
order autocatalytic controllers can keep A at its set-point directly after the
step, the homeostatic control is lost once k1 increases too rapidly (panels b
and c). The second-order autocatalytic controller is neither able to maintain
A at AEo

set, although the offset contribution γ2 is only slightly increasing.
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Supporting Information 3

Motif 1: Rate Equations for the Three Imple-

mentations of Integral Control
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Figure S5: Schematic representations of the three implementations of inte-
gral control in motif 1. Components outlined in blue: zero-order type of
controller; red: first-order autocatalytic controller; black: second-order au-
tocatalytic controller.

Rate Equations for Zero-Order Controller

Ȧ = k1 − k2·A+ k6·Ei − k7·A (S25)

Ėi = k8 −

(
k9·Ei

k10 + Ei

)

· A (S26)

Setting Ėi = 0 and assuming k10≪Ei (ideal conditions), the set-point of A,
AEi

set, at constant k1/k2 values, is given by

AEi

set =
k8
k9

(S27)
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Rate Equations for First-Order Controller

Ȧ = k1 − k2·A+ k6·Ei − k7·A (S28)

Ėi = k8·Ei − k9·Ei·A (S29)

Setting Ėi = 0 and assuming that Ei 6=0, the set-point of A is given by

AEi

set =
k8
k9

(S30)

Rate Equations for Second-Order Controller

Ȧ = k1 − k2·A+ k6·Ei − k7·A (S31)

Ėi = k8·E
2

i − k9·E
2

i ·A (S32)

Setting Ėi = 0 and assuming that Ei 6=0, the set-point of A is given by

AEi

set =
k8
k9

(S33)

Overview of the Performance of the Controllers

Fig. S6 gives an overview of the performances of controller motif 1 with the
three implementations of integral control (Fig. S5).

Rate Constants and Initial Concentrations

The following rate constants (in au) and initial concentrations were used for
all three types of controllers: k1=0.0, k2, see Fig. S6, k6=k7=5.0, k8=3.0,
k9=1.0, k10=1× 10−4. Initial concentrations: A0=3.0, Eo,0=3.6.
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Figure S6: Performance of the three implementations of integral control for
controller motif 1 when k2 increases (a) linearly, (b) exponentially, and (c)
hyperbolically.
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Stationary Solutions Ass of Motif 1

Zero-order Implementation of Integral Control

Calculating Ä from Eq. S25 by assuming that all rate constants except k2
are time independent gives

Ä = −k̇2·A− k2·Ȧ+ k6·Ėi − k7·Ȧ (S34)

Assuming further that Ä=Ȧ=0, we get

k̇2·Ass = k6·Ėi (S35)

Inserting Eq. S26 into Eq. S35 and considering ideal zero-order conditions,
i.e., k10≪Ei such that Ei/(k10+Ei)≈1, Eq. S35 reads

k̇2·Ass = k6·(k8 − k9·Ass) (S36)

Rearranging Eq. S36 and solving for Ass gives

Ass =
k6·k8

k̇2 + k6·k9
=

(
k8
k9

)

·
1

1 + k̇2
k6·k9

(S37)

⇒ Ass = AEi

set ·
1

1 + k̇2
k6·k9

(S38)

First-order Implementation of Integral Control

Calculating Ä from Eq. S28 and assuming that Ä=Ȧ=0, together with that
all rate constants except k2 are time independent gives identical to Eq. S35
the relationship

k̇2·Ass = k6·Ėi (S39)

Inserting Eq. S29 into Eq. S39 leads to

Ass(k̇2 + k6·k9·Ei) = k6·k8·Ei (S40)

Rearranging the equation gives

Ass =
k6·k8·Ei

k̇2 + k6·k9·Ei

=

(
k8
k9

)

·
1

1 + k̇2
k6·k9·Ei

= AEi

set ·
1

1 + k̇2
k6·k9·Ei

(S41)
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Second-order Implementation of Integral Control

Using the same above procedure as for the zero-order and first-order im-
plementation of integral control the expression for Ass for the second-order
controller is given by

Ass = AEi

set ·
1

1 + k̇2
k6·k9·E

2

i

(S42)

By using γn as

γn =
k̇2

k6·k9·En
i

(S43)

where n = 0, 1, 2 for zero-, first-, and second-order reaction, respectively, the
expression for Ass can be generalized as

Ass = AEi

set ·
1

1 + γn
(S44)

Comparison between Stationary Solutions Ass

and Numerical Solutions of A for Motif 1

Linear Increase of k2 with Time

Fig. S7 gives a comparison between Ass and and the numerical solutions for all
three implementations of integral control in motif 1 when k2 increases linearly
with time. Typically, as indicated by Eq. S38 the zero-order controller shows
a constant offset of A below AEi

set due to the constant k̇2. On the other hand,
the two autocatalytic implementations of integral control allow Ei to grow
fast enough such that the terms γ1 and γ2, which contribute to the offsets
from AEi

set decrease monotonically and A approaches the stationary states at
AEi

set.
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k2 = 1.0 + 20 · (t − 2.0)
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Figure S7: Comparison between stationary solution Ass and numerical solu-
tion A and the offset contributions γn (n=0, 1, and 2) for the three integral
control implementations when k2 increases in a linear fashion with time.

Exponential Increase of k2 with Time
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Figure S8: Comparison between stationary solution Ass and numerical solu-
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control implementations when k2 increases exponentially with time.
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Fig. S8 gives a comparison between Ass and and the numerical solutions for
all three implementations of integral control in motif 1 when k2 increases ex-
ponentially with time. The zero-order controller shows a complete breakdown
as it is impossible for the controller to counteract the exponential increase
of k2. The first-order autocatalytic controller is able to counteract, but since
this controller is not able to increase Ei faster than k̇2, γ1 goes to a con-
stant value and the controller shows a steady state in A below AEi

set. Only
the second-order autocatalytic implementation of integral control allows to
compensate for the exponential increase of k2 and keeps A at AEi

set.

Hyperbolic Increase of k2 with Time
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Figure S9: Comparison between stationary solution Ass and numerical solu-
tion A and the offset contributions γn (n=0, 1, and 2) for the three integral
control implementations when k2 increases hyperbolically with time.

Fig. S9 gives a comparison between Ass and and the numerical solutions for
all three implementations of integral control in motif 1 when k2 increases
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hyperbolically with time. Only the second-order autocatalytic controller al-
lows to keep A close to AEi

set. At the end of the simulation time at 41.5 time
units k̇2=3.24×106 while γ2 has a value of 6.85×10−3 indicating a relative
deviation of A from AEi

set of about 0.7%.
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Supporting Information 4

Motif 2: Rate Equations for the Three Imple-

mentations of Integral Control
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Figure S10: Schematic representations of the three implementations of in-
tegral control in motif 2. Components outlined in blue: zero-order type of
controller; red: first-order autocatalytic controller; black: second-order au-
tocatalytic controller.

Comparing Stationary and Numerical Solutions

of A with the Different Implementations of In-

tegral Control for Motif 2

Rate equations for zero-order controller motif 2

Ȧ = k1 − k2·A+
k6·k23

k23 + Ei

− k7·A (S45)

Ėi = k8·A−
k9·Ei

k10 + Ei

(S46)
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The set-point for the controller is calculated by setting Eq. S46 to zero and
assuming that k10≪Ei, which leads to the condition Ei/(k10 + Ei)=1. Solv-
ing for Ass gives the set-point as

AEi

set = Ass =
k9
k8

(S47)

Rate equations for first-order autocatalytic controller
motif 2

Ȧ = k1 − k2·A+
k6·k23

k23 + Ei

− k7·A (S48)

Ėi = k11 − k12·Ei + k8·A·Ei − k9·Ei (S49)

Neglecting the contributions of k11 and k12 to the basal level of Ei, the set-
point for this controller is calculated by setting Eq. S49 to zero and solving
for Ass under the assumption that the concentration of Ei 6=0, i.e,

Ei · (k8Ass − k9) = 0 ⇒ AEi

set = Ass =
k9
k8

(S50)

Rate equations for second-order autocatalytic controller
motif 2

Ȧ = k1 − k2·A+
k6·k23

k23 + Ei

− k7·A (S51)

Ėi = k11 − k12·Ei + k8·A·E
2

i − k9·E
2

i (S52)

Setting Eq. S52 to zero and making the same assumptions as in the previous
section the set-point of this controller is calculated as

E2

i · (k8Ass − k9) = 0 ⇒ AEi

set = Ass =
k9
k8

(S53)
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Rate constants and initial concentrations (Fig. 6)

The following rate constant values (in au) were used for all three type of
controllers: k1 = 1.0; k2, see Fig. 5; k6 = 1× 106, k7 = 10.0, k8 = 16.0, k9 =
96.0, k10 = 1× 10−4, k11 = k12 = k23 = 1× 10−3.

Initial concentrations for all three controllers: Ao = 6.0, Ei = 15.4.

Stationary Solutions for Controller Motif 2

By taking the double derivative of A with respect to time and assuming that
k̇2 6= 0 and Ėi 6= 0 while Ȧ and Ä are zero, we get

Ä = −k̇2 · A−
k6 · k23

(k23 + Ei)2
Ėi = 0 (S54)

To get Ass for the zero-order controller, Eq. S46 is inserted into Eq. S54
under the assumption that k10≪Ei, i.e., k9Ei/(k10+Ei)=k9 leading to

−k̇2Ass −
k6k23

(k23 + Ei)2
(k8Ass − k9) = 0 (S55)

Observing that AEi

set=k9/k8, Eq. S55 can be rearranged to

Ass = −
k6k8k23

k̇2(k23 + Ei)2

(
Ass − AEi

set

)
(S56)

Using γ0 as

γ0 =
k6k8k23

k̇2(k23 + Ei)2
(S57)

Ass for the zero-order type of controller can be written as

Ass = AEi

set

(
γ0

1 + γ0

)

(S58)

An analogous expression for Ass can be derived for the autocatalytic con-
trollers. The resulting Ass expressions for all controllers can be summarized
as follows

Ass = AEi

set

(
γn

1 + γn

)

(S59)
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where

γn =
k6k8k23E

n
i

k̇2(k23 + Ei)2
(S60)

with n = 0, 1, and 2 for the zero-, first- and second-order controllers, respec-
tively.
The γ values of the three controllers are an indicator how the different con-
trollers perform. When γn≫1, the offset/error between A and AEi

set is low,
while when γn≪1 the controller performance is poor.

Comparing Stationary and Numerical Solutions of A

Linear Increase of k2 with Time
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Figure S11: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 2 when k2 increases linearly.

Fig. S11 shows the Ass and numerical A values for the motif 2 controllers
when k2 increases linearly with time. The zero- and first-order type of con-
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trollers have their A concentrations close to their set-points and show in-
creasing γ values with time, i.e., reducing the error between Ass and AEi

set.

Exponential Increase of k2 with Time

During the exponential increase of k2 the controllers’ Ass is close to the
set-point due to their large γ values. However, for the two autocatalytic
controllers the γ values rapidly decrease. When the γ’s reach zero the con-
trollers break down. Only the zero-order type of controller shows a tem-
porary increase of γ0. As the concentration of Ei becomes low Ei cannot
maintain the functionality of the negative feedback loop and the zero-order
controller breaks down (see Fig. 5b, right panel). As a result, the γ0 value
decreases (Fig. S12). For the second-order autocatalytic controller the break-
down starts to occur already at about 15 time units, due to the low γ2 value
while this controller’s Ei value is still relatively high.
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Figure S12: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 2 when k2 increases exponentially.
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Hyperbolic Increase of k2 with Time

The k2 undergoes at the start of the second phase a jump from 1 to 8 and
then increases hyperbolically. Initially, the hyperbolic increase is relatively
slow and the controllers are able to adapt after the k2-jump to the slowly
increasing k2, indicated by the relative high (but decreasing) γ values.
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Figure S13: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 2 when k2 increases hyperbolically.

The zero-order controller performs best and is able to hold its A value close
to AEi

set for the longest time (see Fig. 5c, middle panel).
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Supporting Information 5

Comparing Stationary and Numerical Solutions

of A with the Different Implementations of In-

tegral Control for Motif 6
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Figure S14: Schematic representations of the three implementations of in-
tegral control in motif 6. Components outlined in blue: zero-order type of
controller; red: first-order autocatalytic controller; black: second-order au-
tocatalytic controller.

Zero-order Implementation of Integral Control

Ȧ = k1 − k2 · A+ k6 −
k7 · k22 · A

(k22 + Eo)
(S61)

Ėo = k3 −
k4 · Eo · A

k5 + Eo

(S62)

The set-point of the zero-order type of controller is calculated by assum-
ing that k5≪Eo (ideal conditions) such that Eo/(k5+Eo)=1. Setting then
Eq. S62 to zero gives

AEo

set = Ass =
k3
k4

(S63)
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To calculate Ass for changing k1 values we take the double derivative of A
with respect to time and assume that k̇1 6= 0 and Ėo 6= 0, while Ȧ and Ä are
zero, i.e.,

Ä = k̇1 +
k7 · k22 · Ass

(k22 + Eo)2
Ėo = 0 (S64)

By inserting Eq. S62 into Eq. S64 under the assumption that Eo/(k5+Eo)=1
and setting the resulting equation to 0 we get

k̇1 +
k3 · k7 · k22 · Ass

(k22 + Eo)2
−

k4 · k7 · k22 · A
2

ss

(k22 + Eo)2
= 0 (S65)

which can be written in a quadratic form as

A2

ss − Ass

(
k3
k4

)

−
k̇1 · (k22 + Eo)

2

k4 · k7 · k22
= 0 (S66)

Using AEo

set=
k3
k4

and γ0 as

γ0 =
k̇1 · (k22 + Eo)

2

k4 · k7 · k22
(S67)

the stationary solution Ass of the zero-order controller is given by:

Ass =

(
AEo

set

2

)

+

√
(
AEo

set

2

)2

+ γ0 (S68)

Autocatalytic Implementation of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S68. As an example
we use the first-order autocatalytic implementation of integral control. The
rate equations for A and Eo are:

Ȧ = k1 − k2 · A+ k6 −
k7 · k22 · A

(k22 + Eo)
(S69)

Ėo = k13 − k14 · Eo + k3 · Eo − k4 · Eo · A (S70)
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By neglecting the contributions of k13 and k14 in Eq. S70 the set-point AEo

set is
calculated as the steady state in A when k1 and k2 are constants. By setting
Eq. S70 to zero we get

Eo,ss(k3 − k4 · Ass) = 0 ⇒ AEo

set = Ass =
k3
k4

(S71)

To calculate Ass when k1 is a function of time the double derivative of A
with respect to time is taken and assuming that k̇2 6= 0 and Ėo 6= 0, while
Ȧ and Ä are assumed to be zero. Inserting Eq. S70 (neglecting k13 and k14)
into Eq. S64 we obtain the following quadratic equation in Ass analogous to
Eq. S66:

A2

ss − Ass

(
k3
k4

)

−
k̇1 · (k22 + Eo)

2

k4 · k7 · k22 · Eo

= 0 (S72)

with the solution

Ass =

(
AEo

set

2

)

+

√
(
AEo

set

2

)2

+ γ1 (S73)

where

γ1 =
k̇1 · (k22 + Eo)

2

k4 · k7 · k22 · Eo

(S74)

The generalized solution for all controller types is given as

Ass =

(
AEo

set

2

)

+

√
(
AEo

set

2

)2

+ γn (S75)

where

γn =
k̇1 · (k22 + Eo)

2

k4 · k7 · k22 · En
o

(S76)

with n = 0, 1, 2 for the zero-, first- and second-order reactions, respectively.

Overview of the Performance of the Controllers

Fig. S15 gives an overview of the performance of controller motif 6 with the
three implementations of integral control (Fig. S14).
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a linear increase of k
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b exponential increase of k
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c step and hyperbolic increase of k
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Figure S15: Performance of the three implementations of integral control
(Fig. S14) for controller motif 6 when k1 increases linearly (a, left panel),
exponentially (b, left panel), and hyperbolically (c, left panel).

Rate constants and initial concentrations (Fig. S15)

The following rate constant values (in au) were used for all three type of
controllers: k1, see Fig. S15; k2 = 1.0, k3 = 3.0, k4 = 1.0, k5 = 1× 10−4, k6
= 1× 101, k7 = 1× 103, k22 = 3× 10−2.

Initial concentrations for all three controllers: A0 = 3.0, Eo,0 =11.2.
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Comparing Stationary and Numerical Solutions of A

Linear Increase of k1 with Time
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Figure S16: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 6 when k1 increases linearly with time.

Fig. S16 shows the Ass and numerical A values for the zero-order type of con-
troller 6 when k1 increases linearly with time. The zero- and first-order type
of controllers move their A concentrations close towards their homeostatic
set-points as indicated by their decreasing γ0 and γ1 values. The second-
order autocatalytic controller is not able to defend its homeostatic set-point
indicated by the increasing γ2 with time.
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Exponential Increase of k1 with Time

During the exponential increase of k1 none of the integral control implemen-
tations perform well as indicated by the increase of the respective γ values
of the offset contributions. Only the zero-order type of controller shows a
temporary approach of A to AEo

set as indicated by the decreasing γ0. However,
as the concentration of Eo becomes too low to maintain the functionality
of the negative feedback loop, the zero-order controller breaks down and γ0
increases.
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Figure S17: Comparison between stationary and numerical solutions Ass

and A together with the offset contributions γn for the three integral control
implementations in motif 6 when k1 increases exponentially as a function of
time.
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Hyperbolic Increase of k1 with Time

Here k1 undergoes at the start of the second phase a jump from 1 to 8 and
then increases hyperbolically. Initially, the hyperbolic increase is relatively
slow and the controllers are able to adapt to the slowly increasing k1. The
γ values of the three controllers is an indicator how the different controllers
perform (Fig. S18). For the zero-order controller γ0 decreases and indicates
that the offset/error between A and AEo

set decreases. However, as k1 grows
rapidly near the border when k1 reaches infinity, the controller breaks down
and A increases rapidly with time.
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Figure S18: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 6 when k1 increases hyperbolically with time.

The autocatalytic controllers are able to compensate for the initial k1-jump
and for the slowly increasing k1. As k1 increases rapidly towards infinity the
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autocatalytic controllers are not able to decrease Eo rapidly enough (such
as the zero-order controller can) due to their autocatalytic production terms
of Eo. Due to its hyperbolic ability to decrease Eo the zero-order controller
performs best and is able to hold its A value close to AEo

set for the longest
time.
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Supporting Information 6

Comparing Stationary and Numerical Solutions

of A with the Different Implementations of In-

tegral Control for Motif 3

Fig. S19 indicates the three implementations of integral control in motif 3.
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Figure S19: Reaction schemes of motif 3 with three implementations of in-
tegral control.

Rate Equations and Set-Point for the Zero-Order Con-
troller

The implementation of integral control by zero-order degradation of Ei has
the following rate equations for A and Ei:

Ȧ = k1 − k2·A+ k6·Ei − k7·A (S77)

Ėi =
k8·k24
k24 + A

−
k9·Ei

k10 + Ei

(S78)
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The set-point AEi

set is calculated for ideal zero-order conditions, i.e., k10≪Ei

such that Ei/(k10+Ei)=1. Using these conditions and setting Ėi=0, the
set-point is calculated as the steady state value of A, Ass:

Ėi = 0 =
k8·k24

k24 + Ass

− k9 (S79)

Solving for Ass gives the set-point:

AEi

set = Ass = k24

(
k8
k9

− 1

)

(S80)

Rate Equations and Set-Point for the First-Order Au-
tocatalytic Controller

When implementing integral control by a first-order autocatalytic reaction
in Ei the rate equations are:

Ȧ = k1 − k2·A+ k6·Ei − k7·A (S81)

Ėi = k11 − k12·Ei +
k8·Ei·k24
k24 + A

− k9·Ei (S82)

The rate constants k11 and k12 are considered to be small with the purpose to
keep Ei at a low nonzero level. In the calculation of the controller’s set-point
the contributions by k11 and k12 to Ei are neglected. Using this assumption
together with Ėi=0 and Ei 6=0, the set-point is calculated as in the previous
section, i.e.

Ėi = 0 =

(
k8·k24

k24 + Ass

− k9

)

· Ei (S83)

leading to the same set-point

AEi

set = Ass = k24

(
k8
k9

− 1

)

(S84)

as in Eq. S80.
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Rate Equations and Set-Point for the Second-Order Au-
tocatalytic Controller

When implementing integral control by a second-order autocatalytic gen-
eration of Ei and a second-order degradation with respect to Ei, the rate
equations become:

Ȧ = k1 − k2·A+ k6·Ei − k7·A (S85)

Ėi = k11 − k12·Ei +
k8·E

2

i ·k24
k24 + A

− k9·E
2

i (S86)

As for the first-order controller the rate constants k11 and k12 are considered
to be small and are neglected in the calculation of the controller’s set-point.
Assuming Ėi=0 and Ei 6=0, the set-point is calculated as in the previous
sections, i.e.

Ėi = 0 =

(
k8·k24

k24 + Ass

− k9

)

· E2

i (S87)

leading to

AEi

set = Ass = k24

(
k8
k9

− 1

)

(S88)

Rate constants and initial concentrations

The following rate constant values (in au) were used for all three type of
controllers: k1=1.0, k2, see Fig. 7; k3=1.0, k4=61.0, k5=1×10−7, k6=10.0,
k7=0.0, k8=31.0, k9=1.0, k11=k121.0×10−3. The inhibiting constant of Ei

synthesis by A is k24=0.1.

Initial concentrations for all three controllers: A0 = 3.0, Ei,0 = 0.2.
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Stationary Solutions for A using Controller

Motif 3

Zero-order Controller

Calculating Ä from Eq. S77 by assuming that Ä=Ȧ=0, we get

Ä = −k̇2 · A− k1Ȧ+ k6Ėi (S89)

By setting Eq. S89 to zero the stationary solution Ass (when k̇2 6=0 and Ėi 6=0)
is given by:

Ass =
k6Ėi

k̇2
(S90)

To solve for Ass, Eq. S78 is inserted into Eq. S90, which leads to the following
quadratic equation in Ass:

A2

ss + Ass

(
k6k9

k̇2
+ k24

)

−
k6k9

k̇2
· AEi

set = 0 (S91)

Eq. S91 shows that when k̇2=0 the controller’s steady state is at its set-point,
i.e., Ass=AEi

set. In case k̇2 6=0 Ass is

Ass = −

(
γ0 + k24

2

)

+

√
(
γ0 + k24

2

)2

+ γ0A
Ei

set (S92)

where

γ0 =
k6k9

k̇2
(S93)

and

AEi

set = k24

(
k8
k9

− 1

)

(S94)

Autocatalytic Implementation of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S92. As an example
we use the first-order autocatalytic controller.
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Taking, as above, the double derivative of A with respect to time and assum-
ing that k̇2 6= 0 and Ėi 6= 0, while Ȧ=Ä=0, we get again Eq. S90. Inserting
Eq. S82 into Eq. S90 while assuming that k11 and k12 are negligible we obtain
the following equation in Ass analogous to Eq. S91:

A2

ss + Ass

(
k6k9Ei

k̇2
+ k24

)

−
k6k9Ei

k̇2
· AEi

set = 0 (S95)

The quadratic expression of Ass for the first-order autocatalytic implemen-
tation is derived in the same way as for the zero-order controller leading to
Eq. S95. The solution of Ass for the first-order controller is

Ass = −

(
γ1 + k24

2

)

+

√
(
γ1 + k24

2

)2

+ γ1A
Ei

set (S96)

where

γ1 =
k6k9Ei

k̇2
(S97)

and the same AEi

set as in Eq. S94.
For the second-order autocatalytic controller we have an analogous solution
for Ass as Eq. S96, i.e.

Ass = −

(
γ2 + k24

2

)

+

√
(
γ2 + k24

2

)2

+ γ2A
Ei

set (S98)

with γ2 now

γ2 =
k6k9E

2

i

k̇2
(S99)

Comparing A, Ass and γn for the Different Controllers

Fig. S20 shows A, Ass and γn for the zero-order (n=0), first-order (n=1), and
second-order (n=2) controllers when k2 increases linearly. In general there
is a good agreement between the numerically calculated A from the rate
equations and the calculated steady states Ass. The second-order type of
controller has high and increasing γ2 values, which keeps A for this controller

S38



 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20  25  30

time (au)

k
2
 (

a
u

)

k2 = 1.0 + 20 · (t − 2.0)

A
, 
A

s
s
 (

au
) 

zero-order controller

AAss

A

γ0

AEi

set

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20  25  30
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

γ 0

time (au)

A
, 
A

s
s
 (

au
) 

 first-order
 controller 

Ass

A 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20  25  30
 0

 20

 40

 60

 80

γ 1

time (au)

γ1

AEi

set

2

A
, 
A

s
s
 (

au
) 

 second-order 

controller 

Ass

A

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20  25  30
0.0

.
10

0

4.0
.
10

3

8.0
.
10

3

1.2
.
10

4

1.6
.
10

4

γ
time (au)

AEi

set

γ2

Figure S20: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 3 when k2 increases linearly.
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close to AEi

set. This can be seen when inspecting the quadratic equation for
Ass:

A2

ss + A (γn + k24)− γn · A
Ei

set = 0 (S100)

When γn becomes very large in comparison to A2

ss and k24 then Eq. S100 can
approximately be written as

Ass · γn − γn · A
Ei

set = 0 ⇒ Ass = AEi

set (S101)

showing that Ass is close to AEi

set.

Fig. S21 shows A, Ass and γn for the different controllers when k2 increases
exponentially.
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Figure S21: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 3 when k2 increases exponentially.

The zero-order controller is not able to defend the exponential growth of k2
at all, while the first-order type of controller shows a constant offset contri-
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bution γ1. Only the second-order controller is able to defend its set-point
while γ2 is constantly increasing such that Ass is close to AEi

set (Eq. S101).

Fig. S22 shows A, Ass and the γn for the different controllers when k2 in-
creases hyperbolically.
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Figure S22: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 3 when k2 increases hyperbolically.

Only the second-order type of controller is able to defend its set-point during
the hyperbolical increase of k2 with a minor offset from AEi

set.
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Supporting Information 7

Comparing Stationary and Numerical Solutions

of A with the Different Implementations of In-

tegral Control for Motif 7

Fig. S23 indicates the three implementations of integral control in motif 7.
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Figure S23: Reaction schemes of motif 7 with three implementations of in-
tegral control.

Zero-order Implementation of Integral Control

The rate equations for the zero-order type of controller (Fig. S23, left panel
outlined in blue) are as follows, where k21 and k5 play the role of an inhibition
constant and a Michaelis constant, respectively:

Ȧ = k1 + k6 − k2·A− k7 · A · Eo (S102)

Ėo = k3 −
k4 · Eo

k5 + Eo

·
k21

k21 + A
(S103)
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The set-point of A is calculated for ideal zero-order condition with respect
to Eo (Eq. S103), i.e., k5≪Eo such that

Ėo = k3 − k4 ·
k21

k21 + A
(S104)

Setting Eq. S104 to zero gives the set-point AEo

set as the steady state value
Ass

AEo

set = Ass = k21

(
k4
k3

− 1

)

(S105)

In the calculations below the set-point for the motif 7 controllers is AEo

set=6.0.

To calculate Ass when k̇1 6= 0 and Ėo 6= 0 we take the double derivative of A
with respect to time and assume that Ȧ=0 and Ä=0

Ä = k̇1 − k7ĖoA (S106)

By inserting Eq. S103 into Eq. S106 with the assumption that k5≪Eo and
setting the resulting equation to zero we get

k̇1 − k7 · Ass

(

k3 −
k4 · k21

k21 + Ass

)

= 0 (S107)

which can be written in a quadratic form as

A2

ss − Ass

(

k4
k3

k21 − k21 +
k̇1
k3k7

)

−
k̇1k21
k3k7

= 0 (S108)

Using AEo

set=(k4/k3)k21−k21, we rewrite Eq. S107 as

A2

ss − Ass

(
AEo

set + γ0
)
− γ0k21 = 0 (S109)

with

γ0 =
k̇1
k3k7

(S110)

The stationary solution Ass is then given by:

Ass =

(
AEo

set + γ0
2

)

+

√
(
AEo

set + γ0
2

)2

+ 4k21γ0 (S111)

Equation S111 shows that when k1 is constant (k̇1=0) then γ0=0 andAss=AEo

set.
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Autocatalytic Implementations of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S109. As an example
we use the first-order autocatalytic implementation of integral control. The
rate equations for A and Eo are:

Ȧ = k1 + k6 − k2·A− k7 · A · Eo (S112)

Ėo = k13 − k14·Eo + k3 · Eo − k4 · Eo ·
k21

k21 + A
(S113)

Neglecting in Eq. S113 the basal contributions of k13 and k14 to Eo, A
Eo

set can
be calculated by setting Ėo to zero, i.e.

Ėo = Eo

(

k3 − k4
k21

k21 + Ass

)

= 0 (S114)

Solving for Ass and assuming that Eo 6=0 gives the controller’s set-point as in
Eq. S105, i.e.,

AEo

set = Ass = k21

(
k4
k3

− 1

)

(S115)

In a similar manner AEo

set for the second-order autocatalytic controller can be
calculated leading to the same result as Eqs. S115 and S105.

To calculate Ass for the first-order autocatalytic controller we take, as above,
the double derivative of A with respect to time and assume that k̇1 6=0 and
Ėo 6=0, together with Ȧ=Ä=0. The solution for Ass for the first-order con-
troller is analogous to Eq. S111

Ass =

(
AEo

set + γ1
2

)

+

√
(
AEo

set + γ1
2

)2

+ 4k21γ1 (S116)

where γ1 is

γ1 =
k̇1

k3k7Eo

(S117)

Ass for the second-order controller can be calculated by Eq. S116 where γ1
is replaced by γ2

γ2 =
k̇1

k3k7E2
o

(S118)
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Overview of the Performance of the Controllers

Fig. S24 gives an overview of the performance of controller motif 7 with the
three implementations of integral control (Fig. S23).
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Figure S24: Performance of the three implementations of integral control
for controller motif 7 (Fig. S23) when k1 increases linearly (a, left panel),
exponentially (b, left panel), and hyperbolically (c, left panel).

In case k1 increases linearly, the zero-order controller (Fig. S24a, middle
panel, outlined in blue) shows a constant deviation (”offset”) in A from AEo

set.
The offset arises, because the zero-order controller is able to compensate for
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the linear increase in k1, but this takes some time. Since the zero-order
controller cannot accelerate Ėo beyond a linear rate law, contrary to the
first-and second-order controllers, the offset for the zero-order controller re-
mains constant. Fig. S25 shows that the offset contribution γ0 for the linear
controller is constant while the corresponding γ1 and γ2 values for the first-
and second-order controllers decrease in time and move A to AEo

set.

When k1 increases exponentially (Fig. S24b, middle panel) the zero-order
controller (outlined in blue) is not able to compensate for the k1 increase.
The first-order controller (outlined in red) is able to counteract the exponen-
tial k1 increase, but because this controller’s rate law can only be exponential
the controller cannot accelerate Ėo beyond an exponential increase and there-
fore shows an offset in A. On the other hand, the second-order controller has
an intrinsic hyperbolic rate law that can go beyond (be faster) than any ex-
ponential growth rate and has therefore the ability to reduce the offset, as
seen by the decreasing γ2 values for this controller (Fig. S26, second-order
controller).

When k1 increases hyperbolically the zero- and first-order controllers show
better adaptation to AEo

set than the second-order type of controller when k̇1
is still low. However, when k̇1 increases rapidly the second-order controller
shows a much better performance, but with a considerable offset from AEo

set.

Rate constants and initial concentrations

The following rate constant values (in au) were used for all three type of
controllers: k1, see Fig. S24; k2 = 0.0, k3 = 1.0, k4 = 61.0, k5 = 1× 10−4, k6
= k7 = 10.0, k13 = k14 = 1× 10−3, k21 = 0.1.

Initial concentrations for all three controllers: A0 = 6.0, Eo,0 =0.19.
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Comparing A, Ass and γn for the Different Controllers

Fig. S25 shows A, Ass and γn=k̇1/(k3k7E
n
o ) (n=0, 1, or 2) for the different

controllers when k1 increases linearly. The γn values are an indicator for the
difference between A and AEo

set (”offset”) (Eq. S111). The constant γ0 for the
zero-order controller indicates a constant offset, while the decreasing γ1 and
γ2 values for the first-order and second-order controllers indicate that these
controllers have decreasing offsets and move A closer to AEo

set.
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Figure S25: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn=k̇1/(k3k7E

n
o ) for the three integral

control implementations in motif 7 when k1 increases linearly.

Fig. S26 shows A, Ass and γn=k̇1/(k3k7E
n
o ) (n=0, 1, or 2) for the different

controllers when k1 increases exponentially. The increasing γ0 for the zero-
order controller indicates the controller’s breakdown.
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Figure S26: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 7 when k1 increases exponentially.

Fig. S27 shows A, Ass and γn=k̇1/(k3k7E
n
o ) (n=0, 1, or 2) for the different

controllers when k1 increases hyperbolically. Since all γn’s are increasing
none of the controllers can successfully defend their set-points.
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Supporting Information 8

Comparing Stationary and Numerical Solutions

of A with the Different Implementations of

Integral Control for Motif 8

Zero-Order Implementation of Integral Control

The reaction scheme of motif 8 is shown in Fig. 8 (main paper). The rate
equations for the zero-order type of controller are:

Ȧ = k1 − k2·A+ k6 −
k7k22A

k22 + Eo

(S119)

Ėo =
k3k21

k21 + A
−

k4·Eo

k5 + Eo

(S120)

The set-point of A is calculated as the steady state of A for constant k1 and
k2 values when Eo is removed by zero-order kinetics, i.e., when k5≪Eo and
Ėo=0:

k3k21
k21 + Ass

− k4 = 0 (S121)

Rearranging Eq. S121 gives

AEo

set = Ass = k21

(
k3
k4

− 1

)

(S122)

Stationary Solution of Zero-Order Controller for In-
creasing k1

We assume that Ȧ=Ä=0, while k̇1 and Ėo are nonzero. Calculating Ä under
these conditions we get

Ä = k̇1 +
k7k22

(k22 + Eo)2
· Ėo · Ass = 0 (S123)
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Inserting Eq. S120 into Eq. S123 and rearranging gives the following quadratic
equation in Ass

A2

ss + Ass · [k21

(

1−
k3
k4

)

︸ ︷︷ ︸

−A
Eo
set

−
k̇1(k22 + Eo)

2

k4k7k22
] = k21 ·

k̇1(k22 + Eo)
2

k4k7k22
(S124)

Defining γn as

γn =
k̇1(k22 + Eo)

2

k4k7k22En
o

(S125)

for n = 0, 1, 2 with respect to the zero-, first-, and second-order controllers,
the solution of Eq. S124 (zero-order controller) is

Ass =
1

2
AEo

set +
γ0
2

+

√
(
AEo

set

2

)2

+
1

2
AEo

setγ0 +
(γ0
2

)2

+ k21γ0 (S126)

First-Order Implementation of Integral Control

The rate equations for the first-order type of controller are:

Ȧ = k1 − k2·A+ k6 −
k7k22A

k22 + Eo

(S127)

Ėo =
k3k21Eo

k21 + A
− k4·Eo (S128)

The (ideal) set-point of A is calculated as the steady state of A when Eo 6=0
and Ėo=0, i.e.: (

k3k21
k21 + Ass

− k4

)

· Eo = 0 (S129)

leading as in Eq. S122 to:

AEo

set = Ass = k21

(
k3
k4

− 1

)

(S130)
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Stationary Solution of First-Order Controller for In-
creasing k1

As above for the first-order type of controller, we assume that Ȧ=Ä=0, while
k̇1 and Ėo are nonzero. Calculating Ä under these conditions we get

Ä = k̇1 +
k7k22

(k22 + Eo)2
· Ėo · Ass = 0 (S131)

Inserting Eq. S128 into Eq. S131 and rearranging gives the following quadratic
equation in Ass

A2

ss + Ass · [k21

(

1−
k3
k4

)

︸ ︷︷ ︸

−A
Eo
set

−γ1] = k21 · γ1 (S132)

The solution for Ass for the first-order type of controller when k̇1 6=0 and
Ėo 6=0 is given by:

Ass =
1

2
AEo

set +
γ1
2

+

√
(
AEo

set

2

)2

+
1

2
AEo

setγ1 +
(γ1
2

)2

+ k21γ1 (S133)

Second-Order Implementation of Integral Control

The rate equations for the second-order type of controller are:

Ȧ = k1 − k2·A+ k6 −
k7k22A

k22 + Eo

(S134)

Ėo =
k3k21E

2

o

k21 + A
− k4·E

2

o (S135)

The ideal set-point of A is calculated as the steady state of A when Eo 6=0
and Ėo=0, i.e.: (

k3k21
k21 + Ass

− k4

)

· E2

o = 0 (S136)

leading as in Eqs. S122 and S130 to:

AEo

set = Ass = k21

(
k3
k4

− 1

)

(S137)
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Stationary Solution of Second-Order Controller for In-
creasing k1

The derivation for Ass of the second-order controller is analogous to the
derivations of the zero- and first-order controllers. Ass for the second-order
controller is

Ass =
1

2
AEo

set +
γ2
2

+

√
(
AEo

set

2

)2

+
1

2
AEo

setγ2 +
(γ2
2

)2

+ k21γ2 (S138)

Rate constants and initial concentrations

The following rate constant values (in au) were used for all three type of
controllers: k1, see Fig. 9; k2 = 1.0, k3 = 61.0, k4 = 1.0, k5 = 1× 10−7 k6 =
10.0 k7 = 1× 103, k13 = k14 = 0.0, k21 = 0.1, k22 = 1× 10−2.

Initial concentrations for all three controllers: A0 = 6.00, Eo,0 =12.0.
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Comparing Stationary and Numerical Solutions of A

Linear Increase of k1 with Time
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Figure S28: Comparison between stationary solutions Ass and numerical
solutions A and the offset contributions γn for the three integral control
implementations in motif 8 when k1 increases linearly with time.

Fig. S28 shows the Ass and numerical A values for the zero-order type of
controller 8 when k1 increases linearly. The zero- and first-order type of
controllers move their A concentrations close towards their homeostatic set-
points as indicated by their decreasing γ0 and γ1 values. The second-order
autocatalytic controller is not able to defend its homeostatic set-point indi-
cated by the increasing γ2 values.
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Exponential Increase of k1 with Time

During the exponential increase of k1 none of the integral control implemen-
tations perform well as indicated by the increase of their γn values. Only
the zero-order type of controller shows a temporary approach of A to AEo

set

as indicated by the decreasing γ0. However, as the concentration of Eo be-
comes too low to maintain the functionality of the negative feedback loop,
the zero-order controller breaks down (Fig. 9b, right panel) and γ0 increases.
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Figure S29: Comparison between stationary solutions Ass and numerical
solutions A and the offset contributions γn for the three integral control
implementations in motif 8 when k1 increases exponentially.

Hyperbolic Increase of k1 with Time

Here k1 undergoes at the start of the second phase a jump from 1 to 8 and
then increases hyperbolically. Initially, the hyperbolic increase is relatively
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slow and the controllers are able to adapt to the slowly increasing k1. The
γn values of the three controllers is an indicator how the different controllers
perform (Fig. S30). For the zero-order controller the inital γ0 decrease indi-
cates that the offset between A and AEo

set decreases and A moves closer to AEo

set.
However, as k1 increases very rapidly near the border when k1 appraoches
infinity, the controller breaks down and A increases rapidly with time.
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Figure S30: Comparison between stationary solution Ass and numerical so-
lution A and the offset contributions γn for the three integral control imple-
mentations in motif 8 when k1 increases hyperbolically.

The first-order controller is able to cope with the initial decrease and has A
values near AEo

set for some time. However, the controller is not able maintain
homeostasis as k1 increases more and more rapidly and breaks down. While
the second-order controller performs best and is able to hold its A value close
to AEo

set for the longest time, also this controller eventually breaks down when
k1 approaches rapidly infinity.
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Supporting Information 9

Comparing Stationary and Numerical Solutions

of A with the Different Implementations of In-

tegral Control for Motif 4

Fig. S31 indicates the three implementations of integral control in motif 4.
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Figure S31: Reaction schemes of motif 4 with three implementations of in-
tegral control.

Zero-Order Implementation of Integral Control

The rate equations for the zero-order type of controller (Fig. S31, left panel
outlined in blue) are as follows, where k23 and k24 play the roles of inhibition
constants:

Ȧ = k1 − k2·A+
k6k23

(k23 + Ei)
− k7·A (S139)

Ėi = k8 −
k9k24Ei

(k24 + A)(k10 + Ei)
(S140)

The set-point of A is calculated for ideal zero-order condition with respect
to Ei (Eq. S140), i.e., k10≪Ei such that Ei/(k10+Ei)=1 and Eq. S140 can
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be rewritten as:

Ėi = k8 −
k9k24

(k24 + A)
(S141)

Setting Eq. S141 to zero gives the set-point AEi

set as the steady state value
Ass

AEi

set = Ass = k24

(
k9
k8

− 1

)

(S142)

In the calculations which are given below we set AEi

set=3.0.
To calculate Ass when k̇2 6= 0 and Ėi 6= 0, we take the double derivative of
A with respect to time and assume that Ȧ=0 and Ä=0

Ä = −k̇2Ass −
k6k23

(k23 + Ei)2
Ėi (S143)

By inserting Eq. S141 into Eq. S143 and setting it equal to zero, we get

k̇2Ass =
k6k23(k9k24 − k8k24 − k8Ass)

(k23 + Ei)2(k24 + Ass)
=

k6k8k23(A
Ei

set − Ass)

(k23 + Ei)2(k24 + Ass)
(S144)

where

k9k24 − k8k24 = k8k24

(
k9
k8

− 1

)

= k8A
Ei

set (S145)

by using Eq. S142. Note that Eq. S144 implies that when k̇2=0 thenAss=AEi

set.

Rearranging Eq. S144 leads to a quadratic expression in Ass

A2

ss + (k24 +
k6k8k23

k̇2(k23 + Ei)2
)Ass −

k6k8k23

k̇2(k23 + Ei)2
·AEi

set = 0 (S146)

Introducing γn as

γn =
k6k8k23E

n
i

k̇2(k23 + Ei)2
(S147)

where n = 0, 1, 2 for the zero-, first- and second-order controller, respectively,
Ass can be written as:

Ass = −

(
k24 + γ0

2

)

+

√
(
k24 + γ0

2

)2

+ γ0A
Ei

set (S148)
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In order to keep homeostasis in A the zero-order controller meets increasing
k2 values by decreasing Ei, which leads to increased γ0 values. The offset
AEi

set−Ass can be calculated by rearranging Eq. S146

AEi

set − Ass =
A2

ss + k24Ass

γo
(S149)

When γ0≫k24Ass+A2

ss then Ass≈AEi

set.

Autocatalytic Implementations of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S146. For the first-
order autocatalytic implementation of integral control the rate equations for
A and Ei are:

Ȧ = k1 − k2·A+
k6k23

(k23 + Ei)
− k7·A (S150)

Ėi = k11 − k12·Ei + k8·Ei −
k9k24Ei

(k24 + A)
(S151)

Neglecting in Eq. S151 the background synthesis and degradation contribu-
tions with respect to Ei by setting k13 and k14 to zero, AEi

set can be calculated
by setting Ėi to zero, i.e.

Ėi = Ei

(

k8 −
k9k24

(k24 + Ass)

)

= 0 (S152)

which leads to the same set-point as for the zero-order controller (Eq. S142),
i.e.

AEi

set = Ass = k24

(
k9
k8

− 1

)

(S153)

To calculate Ass for the first-order controller when k̇2 6= 0 and Ėi 6= 0, we
take again the double derivative of A with respect to time and assume that
Ȧ=0 and Ä=0

Ä = −k̇2Ass −
k6k23

(k23 + Ei)2
Ėi = 0 (S154)

By inserting Eq. S152 into Eq. S154 and setting it equal to zero we get

k̇2Ass =
Eik6k23(k9k24 − k8k24 − k8Ass)

(k23 + Ei)2(k24 + Ass)
=

Eik6k8k23(A
Ei

set − Ass)

(k23 + Ei)2(k24 + Ass)
(S155)
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where, as for Eq. S145, we use the expression for AEi

set

k9k24 − k8k24 = k8k24

(
k9
k8

− 1

)

= k8A
Ei

set (S156)

Eq. S155 can be rearranged into the same quadratic equation as Eq. S146

A2

ss + (k24 + γ1)Ass − γ1·A
Ei

set = 0 (S157)

with the solution

Ass = −

(
k24 + γ1

2

)

+

√
(
k24 + γ1

2

)2

+ γ1A
Ei

set (S158)

using γ1 from Eq. S147

For the second-order controller Ass is calculated by Eq. S158 where γ1 is
replaced by γ2.

Overview of the Performance of the Controllers

Fig. S32 gives an overview of the performance of controller motif 4 with the
three implementations of integral control (Fig. S31). In case k2 increases lin-
early, the zero-order controller (Fig. S32a, middle panel, outlined in blue) per-
forms best. The γ0 value is considerably larger than γ1 and γ2 (see Fig. S33)
leading to negligible offsets (Eq. S149). The zero-order controller also per-
forms best when k2 increases exponentially (Fig. S32b, middle panel) or even
hyperbolically (Fig. S32c, middle panel) indicated by the higher γ0 value of
the zero-order controller in comparison with the other controllers.

Rate constants and initial concentrations

The following rate constant values (in au) were used for all three type of
controllers: k1 = 1.0, k2, see Figs. S32; k6 = 1× 104 k7 = 10.0, k8 = 1.0, k9
= 31.0, k10 = 1× 10−4, k11 = k12 = 0.0, k23 = 1× 10−4, k24 = 0.1.

Initial concentrations for all three controllers: A0 = 3.0, Ei,0 = 0.03.
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Figure S32: Performance of the three implementations of integral control
(Fig. S31) for controller motif 4 when k2 increases linearly (a, left panel),
exponentially (b, left panel), and hyperbolically (c, left panel).
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Figure S33: Comparison between stationary solutions Ass, the numerical
solutions A, and γn for the three integral control implementations in motif 4
when k2 increases linearly.

Comparing A, Ass and γn for the Different Controllers

Fig. S33 shows A, Ass and the γn values for the different controllers when k2
increases linearly. The zero-order and first-order controllers perform better
than the second-order controller as indicated by the larger and increasing γ0
and γ1 values. In comparison with the first-order controller the zero-order
controller shows higher γ0 values and a more rapid adaptation to the set-
point.
Fig. S34 shows A, Ass and the γn values for the different controllers when k2
increases exponentially. During the exponential increase of k2 the zero-order
controller defends its set-point, while both autocatalytic controllers perform
poorly (Fig. S32b, middle panel), which is also indicated by the decreasing
γ1 and γ2 values.
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Figure S34: Comparison between stationary solutions Ass, the numerical
solutions A, and γn for the three integral control implementations in motif 4
when k2 increases exponentially.

Fig. S35 shows A, Ass and γn for the different controllers when k2 increases
hyperbolically. In this case all controllers show decreasing γ values. For
the zero-order controller and also for the first-order controller γ0 and γ1 are
relatively large, which keep the A values of these controllers close to AEi

set.
When k2 increases rapidly (above 40 time units) both the zero-order and
first-order controllers break down, but the zero-order controller stays closer
to AEi

set than the other controllers (Fig. S32c, middle panel). The second-order
autocatalytic controller performs less well with A values well below AEi

set.
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Figure S35: Comparison between stationary solutions Ass, the numerical
solutions A, and γn for the three integral control implementations in motif 4
when k2 increases hyperbolically.
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