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Supporting Information 1

Responsiveness of Autocatalytic Controllers

A problem the autocatalytic implementation of integral control sometimes
faces is that low concentrations of the controller variables F, or E; may lead
to unresponsive or slow responding controllers. The situation is illustrated
in Fig. S1 using combined controller motifs 1 and 5 with the three different
kinetic implementations of integral control. In the left panel of Fig. Sla inte-
gral control is based on zero-order kinetics with respect to F;/E,, while in the
middle and right panels integral control is based on first-order and second-
order autocatalysis, respectively. Rate constants have been chosen in such a
way that the inflow controllers have set-points at A%, =3.0, while the outflow

set™

controllers have set-points at A%=6.0. In this arrangement controllers 1
and 5 act as antagonistic pairs as often found in biology (1, 2). Dependent
whether inflow perturbations k; or outflow perturbations ks dominate A is
either kept at A%2=6.0 or A%, =3.0, respectively.

During the first phase (Figs. S1b and Slc) all three combined controllers
are at their steady states with a dominating outflow perturbation in A
(k1=0.0, ky=1.0), where A levels are kept at A%,=3.0. These steady states
are maintained by the F;’s, which for each of the combined controller pairs
provide the necessary compensating flux je=kg-E; to keep A at ASEgt:ZS.O.
In Fig. S1b the concentrations of all E,’s during the first phase are zero
(k11=Fk12=Fk13=Fk14=0.0) and make no contributions to the concentrations of
A, while in Fig. Slc the autocatalytic controllers are kept during the first
phase at a resting level because of ki1=kis=Fk13=k14=0.01.

At time t=5.0 (start of the second phase) the perturbation profile changes
from a dominating outflow perturbation in A to a large constant inflow per-
turbation (k;=10.0, k2=0.0). While the controller based on zero-order kinet-
ics can compensate for the perturbation by increasing its FE,, the autocat-
alytic controller species E, cannot build up (bottom panel, Fig. S1b) with
the result that the A levels for these controllers rise rapidly above A%X3=6.0
(upper panel Fig. S1b). The addition of the small synthesis and degradation
terms in F, (with rate constants ki3 and ky4) keep the autocatalytic F,-levels

sufficiently high such that E, concentration in the autocatalytic controllers
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Figure S1: Combined inflow and outflow controllers 1 and 5 with three dif-
ferent implementations of integral control.
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can increase and move A to their set-points (Fig. Slc).

Rate equations for combined zero-order controllers (Fig. Sla,
left panel, components outlined in blue)

A=k —kyA+ksE; — ki-AE, (S1)
. ko-A-E;

E, = kg — S2

i ko + E; (52)
- k4'Eo

E, = ks A— S3

3 [ (S3)

Rate equations for combined first-order autocatalytic
controllers (Fig. Sla, middle panel, components out-
lined in red)

A - kl - kQA + kGE’L - k7'A'EO (S4>
El‘ — k‘n - klg'Ei —|— kgE,L - kgAEz <S5>
E, = kys — kiy-Eo + k3-A-E, — ky-E, (S6)

Rate equations for combined second-order autocatalytic

controllers (Fig. Sla, right panel, components outlined
in black)

A = kl — kQA + kGE’L - k’?‘A'Eo (S7>
E; = ky — kio B + ks E} — kg A-E} (58)
EO = ki3 — k- Eo + kSAEg - k4'E3 (89>
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Rate constants and initial concentrations (Fig. S1b and
Fig. Slc)

The following rate constant values (in au) were used for all three type of con-
trollers: k?l, k27 see text; /{33 = 1.0, ky = 60, k?5 =1x 10_4, kG = ]{?7 = 1.0, ]{?8
= 3.0, kg = 1.0, k19 = 1 x 10™*. The values of k1; — k14 are specified in Fig. S1.

Initial concentrations, combined zero-order controllers: Ay = 3.0, £, = 0.0,
E;o = 3.0. Initial concentrations, combined first-order controllers: A, =
3.0, E,p = 0.0, E;p = 3.01. Initial concentrations, combined second-order
controllers: Ay = 3.0, E,o = 0.0, E;y = 3.17.
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Supporting Information 2

Comparing Stationary and Numerical Solutions
of A with the Different Implementations of
Integral Control for Motif 5

Zero-order Implementation of Integral Control

The rate equations for the zero-order implementation of integral control for
motif 5 are:

A - ]fl - kQA -+ ]f6 - k7'A'EO (SlO)

. ki E,
E, = ks — kuy-Eo + ks A —
13 141 + K3 Ie + B,

(S11)

Taking the double derivative of A with respect to time and assuming that ks
# 0 and F, # 0, while A and A are zero, we get

A= ]{;1 — kQA — ]C7'A'EO — k7'A'E0 = k;l — k?7'A'EO (812)

By setting Eq. S12 to zero the stationary solution Ay, is given by:

k
= L (S13)
k7'Eo

SS

To solve Ay, explictely, Eq. S11 is inserted into Eq. S13, which leads to the
following quadratic equation in Ag:

kskr A2, — kykr Ay — ky = 0 (S14)

with the positive solution

kakr + /e (ke + k3 + 4k ks)

SS 15
2ksky (515)
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which can be rearranged as follows

1 ky k2k2 dkiksks
AR2k2 T AkZR2

Ass = 35
2 ks

(S16)

Using the expression for the set-point, A%, = k,/ks (Fig. 2), we finally get
2
Ay = -AEo AE° LY (S17)
set set ]{731{37

Autocatalytic Implementation of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S17. As an example
we use the first-order autocatalytic implementation of integral control. The
rate equations for A and E, are:

A=k —kyA+keE; — ki-A-E, (S18)
E, = ki3 — kiy-Fo+ ks-A-E, — ky-F, (S19)

Taking, as above, the double derivative of A with respect to time and assum-
ing that & # 0 and E, # 0, while A and A are zero, we get again Eq. S13.
Inserting Eq. S19 into Eq. S13 while assuming that ki3 and k14 are negligible
we obtain the following quadratic equation in A, analogous to Eq. S14:

kakn A2, — kyko Ay — Ky = 0 S20
T4 tss 7

where k; = krE,. As a result the positive solution of A, is given as:

5 ;
k

Ags -AEo AL . S21

set \/( set) + k3k7Eo ( )

The solution for A, for the second-order autocatalytic implementation is

derived in a similar manner as for Eq. S20, but now with k; = k;E2. The
resulting solution for A, is in this case

5 -
k
E, E, 1

Ay = Aset \/( Aset> +I<:3/<:7E2 (522)
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Generally, the A,, solution can be written as

1 1 2
A, = §Af(;; + \/<§ASE€;) + Yn (S23)
where ,, is '
k

with n = 0, 1, 2 for the zero-, first- and second-order reactions, respectively.

Rate Constants and Initial Concentrations

The following rate constant values (in au) were used for all three type of
controllers: for k; changes, see legend of Figs. 3; ks = 0.0, k3 = 1.0, ky = 6.0,
k?5 =1x 10_4, kﬁ = k?7 = 50, k13:k14 =1x 10_3.

Initial concentrations for all three controllers: Ay = 6.0, E,o = 0.2.

Comparing Stationary and Numerical Solutions of A

In the following we compare the derived stationary solutions A, with the
numerical results of A from Fig. 3.

Linear Increase of k; with Time

Fig. S2 shows the results when k; increases linearly (panel a). In panel b
the concentrations of A and A, of the zero-order controller are shown on
the left ordinate, while the right ordinate shows the values of ~q. After the
onset of the linear increase of k; at t=t,=2.0, the stationary solution A
and the numerical solution A merge after a few time units. This shows that
the observed offset of A from A%3=6.0 is due to the constant term 7, and in
agreement with Eq. S17. Although the zero-order implementation of integral
control is able to counterbalance a linear increase in k;, this takes a certain
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Figure S2: The performance of the three different integral control implemen-
tations in motif 5 when k; increases linearly with time. (a) k; dependence
as a function of time. (b) A, A, and 7 as a function of time for the zero-
order implementation of integral control. (c) A, Ay, and 7, as a function
of time for the first-order autocatalytic implementation of integral control.
(d) A, Ass, and 2 as a function of time for the second-order autocatalytic
implementation of integral control.
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time to do so. Once the balance is achieved, the actual A-concentration
is off its set-point. The zero-order based controller is not able to reduce
this offset, because it has not the capacity to increase the rate removal in
A by its compensating flux j;=kgFE, beyond a pure first-order dependency
in £,. However, the first-and second-order autocatalytic implementations of
integral control have this capacity. Although the compensatory fluxes j; for
the autocatalytic controllers are formally still first-order with respect to E,,
the underlying first- or second-order autocatalysis in E, allows an increase in
J7 in order to meet the set-point. In panels ¢ and d it is seen that the decrease
of the offset using the autocatalytic controllers is given by the term =, (with
n being either 1 or 2). The ~,, term decreases as E, increases with increasing
k; showing that A is moved precisely to A% when waiting sufficiently long
enough.

Exponential Increase of k£, with Time

Fig. S3 shows the results when k; increases exponentially with time (panel
a). In panel b the concentrations of A, A,y and the values of v, for the zero-
order controller are shown. Note that the controller is not able to defend
its homeostatic set-point and A, A, and vy increase with time. In panel
¢ the behavior for the first-order autocatalytic controller is shown. An off-
set between A and A, and AZs is observed, which is well described by
the stationary solution Eq. S21. Panel d shows the behavior of motif 5
with a second-order autocatalytic implementation of integral control. This

controller is able to defend increasing exponential growth in A and keep A
at AL=6.0.

set

Hyperbolic Increase of k; with Time

Fig. S4 shows the results when k; increases hyperbolically with time after
a step from k;=1.0 to k;=8.0 (panel a). Although the zero-order and first-
order autocatalytic controllers can keep A at its set-point directly after the
step, the homeostatic control is lost once k; increases too rapidly (panels b
and c¢). The second-order autocatalytic controller is neither able to maintain
A at AP although the offset contribution 7, is only slightly increasing.

set)
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Figure S3: The performance of the three different integral control implemen-
tations in motif 5 when £; increases exponentially in time. (a) k; dependence
as a function of time. (b) A, A, and 7 as a function of time for the zero-
order implementation of integral control. (c¢) A, A, and v, as a function
of time for the first-order autocatalytic implementation of integral control.
(d) A, A, and 72 as a function of time for the second-order autocatalytic
implementation of integral control.
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hyperbolic k; increase
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Figure S4: The performance of the three different integral control imple-
mentations in motif 5 when k; increases hyperbolically with time. (a) k;
dependence as a function of time. (b) A, Ay, and vy as a function of time
for the zero-order implementation of integral control. (c¢) A, A, and 7 as
a function of time for the first-order autocatalytic implementation of inte-
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Supporting Information 3

Motif 1: Rate Equations for the Three Imple-
mentations of Integral Control
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Figure S5: Schematic representations of the three implementations of inte-
gral control in motif 1. Components outlined in blue: zero-order type of

controller; red: first-order autocatalytic controller; black: second-order au-
tocatalytic controller.

Rate Equations for Zero-Order Controller

: ko E;
Ei=mhe— [ —2Z ). 4 9
i = ks (km + E) (526)

Setting E; = 0 and assuming ko< E; (ideal conditions), the set-point of A,
A at constant ky /ky values, is given by

ALyt

= 2
set kg (S 7)
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Rate Equations for First-Order Controller

A=k —kyA+kgE; — ks-A (S28)
E; = kg-E; — ko-E;-A (S29)
Setting E; = 0 and assuming that E;0, the set-point of A is given by

AB, = B (S30)

set — /{
9

Rate Equations for Second-Order Controller

A=k —kyA+keE; —ki-A (S31)
E; = ks-E? — ko-E2-A (S32)
Setting E; = 0 and assuming that E,0, the set-point of A is given by
k
AB = 28 (S33)
ko

Overview of the Performance of the Controllers

Fig. S6 gives an overview of the performances of controller motif 1 with the
three implementations of integral control (Fig. S5).

Rate Constants and Initial Concentrations

The following rate constants (in au) and initial concentrations were used for
all three types of controllers: k1=0.0, ks, see Fig. S6, k¢=k;=5.0, ks=3.0,
kg=1.0, k1p=1 x 10~*. Initial concentrations: A,=3.0, E,0=3.6.

S13
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Stationary Solutions A, of Motif 1

Zero-order Implementation of Integral Control
Calculating A from Eq. $25 by assuming that all rate constants except ks
are time independent gives
A= —kyA—kyA+kgE; —ky-A (S34)
Assuming further that A=A=0, we get
ko Ags = ko E; (S35)

Inserting Eq. S26 into Eq. S35 and considering ideal zero-order conditions,
i.e., k1o E; such that E;/(kio+E;)~1, Eq. S35 reads

kg Ay = k- (kg — kg-Asgy) (S36)
Rearranging Eq. S36 and solving for Ay, gives
A, = _ keks (@) N (S37)
ko + ke-ko ko) 1+ ﬁ
1
= Ass = AsEgt : [ (838)
1 + ke 369

First-order Implementation of Integral Control

Calculating A from Eq. S28 and assuming that A=A=0, together with that
all rate constants except ko are time independent gives identical to Eq. S35
the relationship

ky-Agy = k- E; (S39)
Inserting Eq. S29 into Eq. S39 leads to
Ago(ky + kg-ko-E;) = kg ks E; (S40)
Rearranging the equation gives
g ks B (@) L e L (841)
ko + Kok By \Fo) 14 2 14
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Second-order Implementation of Integral Control

Using the same above procedure as for the zero-order and first-order im-
plementation of integral control the expression for A, for the second-order
controller is given by

1
A=A —— (542)
By using v, as ‘
ka
Y = ————— S43

where n = 0, 1, 2 for zero-, first-, and second-order reaction, respectively, the
expression for A, can be generalized as

Ay = AL !

: S44
set 1_’_,%1 ( )

Comparison between Stationary Solutions A
and Numerical Solutions of A for Motif 1

Linear Increase of ks with Time

Fig. S7 gives a comparison between A, and and the numerical solutions for all
three implementations of integral control in motif 1 when ks increases linearly
with time. Typically, as indicated by Eq. S38 the zero-order controller shows
a constant offset of A below A%, due to the constant ks. On the other hand,
the two autocatalytic implementations of integral control allow E; to grow
fast enough such that the terms +; and 9, which contribute to the offsets
frjogm AEi decrease monotonically and A approaches the stationary states at
Aseit'
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Figure S7: Comparison between stationary solution Ay, and numerical solu-
tion A and the offset contributions 7, (n=0, 1, and 2) for the three integral
control implementations when ks increases in a linear fashion with time.
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Figure S8: Comparison between stationary solution Ay, and numerical solu-
tion A and the offset contributions 7, (n=0, 1, and 2) for the three integral
control implementations when ks increases exponentially with time.



Fig. S8 gives a comparison between A, and and the numerical solutions for
all three implementations of integral control in motif 1 when ks increases ex-
ponentially with time. The zero-order controller shows a complete breakdown
as it is impossible for the controller to counteract the exponential increase
of k5. The first-order autocatalytic controller is able to counteract, but since
this controller is not able to increase E; faster than ks, 71 goes to a con-
stant value and the controller shows a steady state in A below AZ,. Only

the second-order autocatalytic implementation of integral control allows to
compensate for the exponential increase of k, and keeps A at A%

Hyperbolic Increase of ky with Time
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Figure S9: Comparison between stationary solution A, and numerical solu-
tion A and the offset contributions +, (n=0, 1, and 2) for the three integral
control implementations when ks increases hyperbolically with time.

Fig. S9 gives a comparison between A, and and the numerical solutions for
all three implementations of integral control in motif 1 when ks increases
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hyperbolically with time. Only the second-order autocatalytic controller al-
lows to keep A close to AEi At the end of the simulation time at 41.5 time

units ky=3.24x10% while 7, has a value of 6.85x107% indicating a relative
deviation of A from AY: of about 0.7%.
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Supporting Information 4

Motif 2: Rate Equations for the Three Imple-
mentations of Integral Control
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Figure S10: Schematic representations of the three implementations of in-
tegral control in motif 2. Components outlined in blue: zero-order type of
controller; red: first-order autocatalytic controller; black: second-order au-
tocatalytic controller.

Comparing Stationary and Numerical Solutions
of A with the Different Implementations of In-
tegral Control for Motif 2

Rate equations for zero-order controller motif 2

" k6'k23

A=k — kg A+ —" —k-A S45

! ? kos + E; ! (545)
- ko B

B, = kgA— —F+— S46

® k1o + E; (546)
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The set-point for the controller is calculated by setting Eq. S46 to zero and
assuming that ko< F;, which leads to the condition E;/(kiy + E;)=1. Solv-
ing for Ay gives the set-point as

k
AsEeit = Ass - = (S47)
kg

Rate equations for first-order autocatalytic controller
motif 2

A kG'kQS
A=k —kyA+ —— —k-A 548
! 2 ]{323 + EZ ! ( )
Ei = kll — klg'Ei + /{ISAEZ — k/‘gEZ (849)

Neglecting the contributions of ki; and k1o to the basal level of E;, the set-
point for this controller is calculated by setting Eq. S49 to zero and solving
for Ags under the assumption that the concentration of E;#0, i.e,

Ei(kgAgs — ko) =0 = AL =A, =" (S50)

set —

Rate equations for second-order autocatalytic controller
motif 2

i ke ks
A=k —kyA+ ——— —kr-A S51
1= kAt e — (551)
E; = ki — ki E; + ks A-E} — k- E? (S52)

Setting Eq. S52 to zero and making the same assumptions as in the previous
section the set-point of this controller is calculated as

k
B (ksdu—ko) =0 = Af=Au= (S53)
3

521



Rate constants and initial concentrations (Fig. 6)

The following rate constant values (in au) were used for all three type of
controllers: ki = 1.0; ko, see Fig. 5; kg = 1 x 10°, k; = 10.0, kg = 16.0, kg =
96.0, kip=1x 10_4, kit = ko = ko3 =1X 1073,

Initial concentrations for all three controllers: A, = 6.0, E; = 15.4.

Stationary Solutions for Controller Motif 2

By taking the double derivative of A with respect to time and assuming that
ky # 0 and E;# 0 while A and A are zero, we get
; . ke - ko
A=—ky A————F, =0 SH4
5 s+ B (S54)
To get Ay for the zero-order controller, Eq. S46 is inserted into Eq. S54
under the assumption that ko< E;, i.e., ko E;/(kio+E;)=ko leading to

: kekas
—koAgs — ————— (kgAgs — kg) =0 S55
2 (k23+EZ)2( 8 9) ( )
Observing that AsEg't:kg /ks, Eq. S55 can be rearranged to
Ay = bk ) gE (S56)
ko (kos + E;)?
Using v as
kegksk
o = - 6/8K23 (S57)
ko(kas + E;)?
Ay for the zero-order type of controller can be written as
Ay = AB (0 > 358
set (1 + Yo ( )

An analogous expression for A, can be derived for the autocatalytic con-
trollers. The resulting A,y expressions for all controllers can be summarized

as follows
Ass - AsE;it <1 _any > (859>

522



where
kekgkos B}
Tn =

k2(k23 + E;)?
with n = 0, 1, and 2 for the zero-, first- and second-order controllers, respec-
tively.

The ~ values of the three controllers are an indicator how the different con-
trollers perform. When 7,>>1, the offset/error between A and A% is low,
while when 7, <1 the controller performance is poor.

(S60)

Comparing Stationary and Numerical Solutions of A

Linear Increase of ks, with Time
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Figure S11: Comparison between stationary solution A, and numerical so-
lution A and the offset contributions =, for the three integral control imple-
mentations in motif 2 when k, increases linearly.

Fig. S11 shows the A, and numerical A values for the motif 2 controllers
when ks increases linearly with time. The zero- and first-order type of con-
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trollers have their A concentrations close to their set-points and show in-

creasing 7 values with time, i.e., reducing the error between A, and A,},.

Exponential Increase of £y with Time

During the exponential increase of ks the controllers’ A,y is close to the
set-point due to their large v values. However, for the two autocatalytic
controllers the ~ values rapidly decrease. When the ~’s reach zero the con-
trollers break down. Only the zero-order type of controller shows a tem-
porary increase of 7. As the concentration of F; becomes low F; cannot
maintain the functionality of the negative feedback loop and the zero-order
controller breaks down (see Fig. 5b, right panel). As a result, the 7y value
decreases (Fig. S12). For the second-order autocatalytic controller the break-
down starts to occur already at about 15 time units, due to the low 7, value
while this controller’s F; value is still relatively high.
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7 ) 1200 7 > 1.6104
A Ase 104
6 S 1000 6 T 1.4 104
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3 41|\ \ | 600 8401 ! 810
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< 2 T \ < 2 v \\ 4.103
- \'\ 200 /2 \‘ 3
! 1 N\ | 210
0 0 0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time (au) time (au)

Figure S12: Comparison between stationary solution Ag; and numerical so-
lution A and the offset contributions =, for the three integral control imple-
mentations in motif 2 when ks increases exponentially.
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Hyperbolic Increase of k; with Time

The ky undergoes at the start of the second phase a jump from 1 to 8 and
then increases hyperbolically. Initially, the hyperbolic increase is relatively
slow and the controllers are able to adapt after the ko-jump to the slowly
increasing ko, indicated by the relative high (but decreasing) v values.
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= 1'1037 ko = m E . N zero-order controlier : 20 =
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<2 w20 ©
110'F TN
1 1 10
110% o3 166 29 w2 415 0 0
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time (au) .
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7 - 1.2+10* 7 7 — 910*
6 A /Ase 4 ,4 ,Ase': ' 404
110 6 -1 810
55 first.orde i 108 55 \ 710,
3 N rstorder cantroller 810 = 3 “ﬁ\ second-order controller 6'1‘34 =
P N\ 61038 < 24 3 510 =
2 3 N A 2 3 AN 410
< ~ | P < N 4 o
<2 ! I {4100 & < Yo 310* &
I 3 2 - 210*
1 n 1210 | 10,
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0 0 0 e . | 010°
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Figure S13: Comparison between stationary solution A, and numerical so-
lution A and the offset contributions ~,, for the three integral control imple-
mentations in motif 2 when £y increases hyperbolically.

The zero-order controller performs best and is able to hold its A value close
to A, for the longest time (see Fig. 5¢, middle panel).

set
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Supporting Information 5

Comparing Stationary and Numerical Solutions
of A with the Different Implementations of In-
tegral Control for Motif 6
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Figure S14: Schematic representations of the three implementations of in-
tegral control in motif 6. Components outlined in blue: zero-order type of
controller; red: first-order autocatalytic controller; black: second-order au-
tocatalytic controller.

Zero-order Implementation of Integral Control

. k7 - kog - A
A:kl—kz-AJrk(;—ﬁ (S61)
22 o
) k,-E, - A
E,=k— ———— 2
o 3 k’5+EO (86)

The set-point of the zero-order type of controller is calculated by assum-
ing that ks<E, (ideal conditions) such that E,/(ks+FE,)=1. Setting then

Eq. S62 to zero gives

k
A=A =2 (S63)

set — ]{Z4
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To calculate A, for changing k; values we take the double derivative of A
with respect to time and assume that &, # 0 and E, # 0, while A and A are
zero, i.e.,

k7 . k22 . Ass
(koa + E,)?

By inserting Eq. S62 into Eq. S64 under the assumption that E,/(ks+E,)=1
and setting the resulting equation to 0 we get

A=k + E,=0 (S64)

kg -y hog - Ass kuhrkos - AL

ko + — =0 365
' (koo + E,)? (koo + E,)? (865)

which can be written in a quadratic form as

k oy - (ko + B,)?
A2~ Ass(—3> - = =0 366
> k4 ky - ke - koo (866)
Using A, =k3 1 and 7o as
fr - (koo + E,)?

Yo = 1 ( 22 T ) (867)

k4 : k? : k22

the stationary solution A, of the zero-order controller is given by:
AL AN
Ay = ( 5“) + ( 5“) + 70 (S68)

Autocatalytic Implementation of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S68. As an example
we use the first-order autocatalytic implementation of integral control. The
rate equations for A and E, are:

k7 - koo - A

A:kl—kQ-AJrkG—m
22 o

(S69)

E,=kis—kiy - FEy+ks Ey—ky-E,-A (S70)
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By neglecting the contributions of k5 and k14 in Eq. S70 the set-point A% is
calculated as the steady state in A when k; and ks are constants. By setting
Eq. S70 to zero we get
E ks
Eo,ss(kS — k4 . Ass) - O = ASEC% - Ass - ]{;_ <S71>
4
To calculate A,, when k; is a function of time the double de‘:fivative of A
with respect to time is taken and assuming that ke # 0 and E, # 0, while
A and A are assumed to be zero. Inserting Eq. S70 (neglecting ki3 and kq4)
into Eq. S64 we obtain the following quadratic equation in A, analogous to

Eq. S66: .
k ky - (koo + E,)?
A2 A 2) -2 =0 S72
” (/f4) ky - kg koo - Eo (572)
with the solution
Al Al
where . )
ky - (ko + E)
= S74
T ki ke ke B, 5
The generalized solution for all controller types is given as
AL AN
A= [ et Zoset
. (2>+ (2) + T (S75)
where ) ,
ky - (K E,
- 1 (ko2 + E,) (S76)

" kaky o kay - BT
with n = 0, 1, 2 for the zero-, first- and second-order reactions, respectively.
Overview of the Performance of the Controllers

Fig. S15 gives an overview of the performance of controller motif 6 with the
three implementations of integral control (Fig. S14).
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Figure S15: Performance of the three implementations of integral control
(Fig. S14) for controller motif 6 when k; increases linearly (a, left panel),
exponentially (b, left panel), and hyperbolically (c, left panel).

Rate constants and initial concentrations (Fig. S15)

The following rate constant values (in au) were used for all three type of
controllers: ki, see Fig. S15; ky = 1.0, k3 = 3.0, ky = 1.0, ks = 1 x 107%, kg
=1 x 10", ky = 1 x 103, Koy = 3 x 1072,

Initial concentrations for all three controllers: Ay = 3.0, E,o =11.2.
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Comparing Stationary and Numerical Solutions of A

Linear Increase of k; with Time
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Figure S16: Comparison between stationary solution A,y and numerical so-
lution A and the offset contributions ~, for the three integral control imple-
mentations in motif 6 when k; increases linearly with time.

Fig. S16 shows the A,; and numerical A values for the zero-order type of con-
troller 6 when k; increases linearly with time. The zero- and first-order type
of controllers move their A concentrations close towards their homeostatic
set-points as indicated by their decreasing v, and v, values. The second-
order autocatalytic controller is not able to defend its homeostatic set-point
indicated by the increasing v, with time.
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Exponential Increase of k; with Time

During the exponential increase of k; none of the integral control implemen-
tations perform well as indicated by the increase of the respective ~ values
of the offset contributions. Only the zero-order type of controller shows a
temporary approach of A to A% as indicated by the decreasing v,. However,
as the concentration of E, becomes too low to maintain the functionality

of the negative feedback loop, the zero-order controller breaks down and 7y
increases.
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Figure S17: Comparison between stationary and numerical solutions A
and A together with the offset contributions +, for the three integral control

implementations in motif 6 when k; increases exponentially as a function of
time.
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Hyperbolic Increase of k; with Time

Here k; undergoes at the start of the second phase a jump from 1 to 8 and
then increases hyperbolically. Initially, the hyperbolic increase is relatively
slow and the controllers are able to adapt to the slowly increasing k;. The
~ values of the three controllers is an indicator how the different controllers
perform (Fig. S18). For the zero-order controller 7, decreases and indicates
that the offset/error between A and A% decreases. However, as k; grows

rapidly near the border when k; reaches infinity, the controller breaks down
and A increases rapidly with time.
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Figure S18: Comparison between stationary solution A,s and numerical so-
lution A and the offset contributions ~, for the three integral control imple-
mentations in motif 6 when k; increases hyperbolically with time.

The autocatalytic controllers are able to compensate for the initial ki-jump
and for the slowly increasing ki. As k; increases rapidly towards infinity the
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autocatalytic controllers are not able to decrease FE, rapidly enough (such
as the zero-order controller can) due to their autocatalytic production terms
of E,. Due to its hyperbolic ability to decrease E, the zero-order controller
performs best and is able to hold its A value close to A% for the longest

time.
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Supporting Information 6

Comparing Stationary and Numerical Solutions
of A with the Different Implementations of In-
tegral Control for Motif 3

Fig. S19 indicates the three implementations of integral control in motif 3.
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Figure S19: Reaction schemes of motif 3 with three implementations of in-
tegral control.

Rate Equations and Set-Point for the Zero-Order Con-
troller

The implementation of integral control by zero-order degradation of F; has
the following rate equations for A and Fj:

A=k —kyA+keE; — kr-A (S77)

FE;, = — S78
kos + A ko + E; ( )
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The set-point A% is calculated for ideal zero-order conditions, Le., kio<E;

such that F;/(kio+FE;)=1. Using these conditions and setting F;=0, the
set-point is calculated as the steady state value of A, A,,:

: kg-kaa
EE=0=————k S79
k24 + Ass ! ( )
Solving for A, gives the set-point:
E; ks
Aselt - Ass - k’24 ]{;_ - 1 (SSO)
9

Rate Equations and Set-Point for the First-Order Au-
tocatalytic Controller

When implementing integral control by a first-order autocatalytic reaction
in E; the rate equations are:

A=k —kyA+keE; — kr-A (S81)

- ks-Ei-kos

E; = ky — ko By + — ko-E; 382
11 12 k24+A 9 ( )

The rate constants k11 and kq5 are considered to be small with the purpose to
keep E; at a low nonzero level. In the calculation of the controller’s set-point
the contributions by ki; and k15 to E; are neglected. Using this assumption

together with E;=0 and E;7£0, the set-point is calculated as in the previous
section, i.e.

: kg ks
(k24 + Ass 9) ( )
leading to the same set-point
E; ks
Aselt = Ags = koy /{Z_ -1 (884>
9

as in Eq. S80.
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Rate Equations and Set-Point for the Second-Order Au-
tocatalytic Controller

When implementing integral control by a second-order autocatalytic gen-
eration of F; and a second-order degradation with respect to F;, the rate
equations become:

A=k —kyA+keE; —kr-A (S85)

. ks-E?-koy
E, =k — ko B + ———
11 12° L + T + A

As for the first-order controller the rate constants k11 and k2 are considered
to be small and are neglected in the calculation of the controller’s set-point.
Assuming E;=0 and F;£0, the set-point is calculated as in the previous
sections, i.e.

— ko-E? (S86)

- k8'k24 2
(k24 + Ass 9) ( )
leading to
k
AsEeit = Ass = ko (_8 - 1) (888)
kg

Rate constants and initial concentrations
The following rate constant values (in au) were used for all three type of
controllers: k;=1.0, ks, see Fig. 7; ks=1.0, k4=61.0, ks=1x10"", ks=10.0,

k7=0.0, ks=31.0, kg=1.0, ki;=k121.0x1073. The inhibiting constant of E;
synthesis by A is koy=0.1.

Initial concentrations for all three controllers: Ay = 3.0, E; o = 0.2.
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Stationary Solutions for A using Controller
Motif 3

Zero-order Controller

Calculating A from Eq. S77 by assuming that A=A=0, we get
A=—ky- A=k A+ keE; (S89)

By setting Eq. S89 to zero the stationary solution A, (when k0 and E;0)
is given by: .
A,y = Ko (S90)
K
To solve for Ay, Eq. S78 is inserted into Eq. S90, which leads to the following
quadratic equation in Agg:

ek kek ,
A2+ A, (_ T k) _ ks ym (S01)
) ko
Eq. S91 shows that when k>=0 the controller’s steady state is at its set-point,

ie., A=A In case k;27é0 Ay is

1
set*

k ks \ 2 _
Ass - - (70_; 24) + \/(70_; 24) + ’YOAsEelt (892>

where Tk
7o = =2 (S93)

ko

and .
ABi = ey (—8 - 1) (S94)

ko

Autocatalytic Implementation of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S92. As an example
we use the first-order autocatalytic controller.
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Taking, as above, the double derivative of A with respect to time and assum-
ing that k- # 0 and E, # 0, while A=A=0, we get again Eq. $90. Inserting
Eq. S82 into Eq. S90 while assuming that k1; and k15 are negligible we obtain
the following equation in Ay analogous to Eq. S91:

A2 4 A, (kf"ZgEi + k;24> _ RekoEi ym (S95)

set —
2 2
The quadratic expression of A, for the first-order autocatalytic implemen-

tation is derived in the same way as for the zero-order controller leading to
Eq. S95. The solution of A, for the first-order controller is

A, —— (71 +2k’24) n \/(71 +2k’24) 1Aset (396)

kekoE;
2

where

"= (S97)
and the same A%, as in Eq. S94.

For the second-order autocatalytic controller we have an analogous solution
for A, as Eq. S96, i.e.

Ass = — <—,72 _;k24) + \/(72 _;k24> 2Aset (898>

E?
S T (599)
3

with v now

Comparing A, A,; and ~, for the Different Controllers

Fig. S20 shows A, Ass and 7, for the zero-order (n=0), first-order (n=1), and
second-order (n=2) controllers when ky increases linearly. In general there
is a good agreement between the numerically calculated A from the rate
equations and the calculated steady states Ags. The second-order type of
controller has high and increasing v, values, which keeps A for this controller
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Figure S20: Comparison between stationary solution Ay and numerical so-
lution A and the offset contributions ~, for the three integral control imple-
mentations in motif 3 when ks increases linearly.
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close to A% This can be seen when inspecting the quadratic equation for
Agq
A2+ A (Yt koa) — - A =0 (S100)

When +,, becomes very large in comparison to A2, and ks, then Eq. S100 can
approximately be written as

A Y —n A =0 = A, =A% (S101)

set

showing that A, is close to A%

set*

Fig. S21 shows A, A, and =, for the different controllers when ks increases
exponentially.
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Figure S21: Comparison between stationary solution A, and numerical so-
lution A and the offset contributions -, for the three integral control imple-
mentations in motif 3 when £y increases exponentially.

The zero-order controller is not able to defend the exponential growth of ks
at all, while the first-order type of controller shows a constant offset contri-
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bution ;. Only the second-order controller is able to defend its set-point
while 7, is constantly increasing such that Ay, is close to A%, (Eq. S101).

Fig. S22 shows A, A,, and the =, for the different controllers when k5 in-
creases hyperbolically.
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Figure S22: Comparison between stationary solution A,y and numerical so-
lution A and the offset contributions ~, for the three integral control imple-
mentations in motif 3 when ks increases hyperbolically.

Only the second-order type of controller is able to defend its set-point during
the hyperbolical increase of k, with a minor offset from A%
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Supporting Information 7

Comparing Stationary and Numerical Solutions
of A with the Different Implementations of In-
tegral Control for Motif 7

Fig. S23 indicates the three implementations of integral control in motif 7.
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’l/@ /// _‘i@ ///I _‘i@
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0 ‘e S0, *\@7 o.@®*
- 14 - hld
413 \ /k13 k14\

zero-order implementation
of integral control

first-order implementation
of integral control

second-order implementation
of integral control

Figure S23: Reaction schemes of motif 7 with three implementations of in-
tegral control.

Zero-order Implementation of Integral Control

The rate equations for the zero-order type of controller (Fig. S23, left panel
outlined in blue) are as follows, where k9, and ks play the role of an inhibition
constant and a Michaelis constant, respectively:

A:k1+k6—]€2'A—k7‘A'EO (8102>

ki-E,  kan

: 1
ks + E, ko + A (5103)

E, = ks —
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The set-point of A is calculated for ideal zero-order condition with respect
to E, (Eq. S103), i.e., ks< E, such that
ko1

Ey=ky—ky-
3 4 /€21—|—A

(S104)

Setting Eq. S104 to zero gives the set-point A% as the steady state value

ASS
k
APe = A = ky (—4 —~ 1) (S105)
ks
In the calculations below the set-point for the motif 7 controllers is A%2=6.0.

To calculate Ay, when kzl # (0 and E 75 0 we take the double derivative of A
with respect to time and assume that A=0 and A=0

A=k —kE,A (S106)

By inserting Eq. S103 into Eq. S106 with the assumption that ks<<FE, and
setting the resulting equation to zero we get

: ky - ko
ki —ky - Asg| ks — ———— ] =0 S107
! ! ( ’ k21 + Ass) ( )
which can be written in a quadratic form as
s 2 Fikar
A — A, koy — k - = 1
Ss (k?g 21 — R21 + ]{33]{37> ]{33/{37 0 (S 08)
Using AZo=(ky/ks) ko1 —ka1, we rewrite Eq. S107 as
A% — Ao (AZ5 +70) = Yoka1r =0 (S109)
with )
_ (S110)
Yo = eshir

The stationary solution Ay is then given by:

A A
Ass = (—“t; %) + \/ (—“t; 70) + 4ka17o (S111)

Equation S111 shows that when k; is constant (k:1:0) then =0 and A,,=A%.

set*
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Autocatalytic Implementations of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S109. As an example
we use the first-order autocatalytic implementation of integral control. The
rate equations for A and E, are:

A=k +ks—kyA—k:-A-E, (S112)

- k21
E,=hkiy—kuEy+ks E,—ky- E,-
13 14 3 4 ]{721+A

Neglecting in Eq. S113 the basal contributions of k13 and k4 to E,, APe can
be calculated by setting E, to zero, i.e.

(S113)

: ko
E,=E,(ks—ki——— ] =0 S114
( ’ 4l’€21 +Ass) ( )

Solving for A, and assuming that F,#0 gives the controller’s set-point as in
Eq. S105, i.e.,

Abe — Ay = kg (@ — 1) (S115)

set —
ks
In a similar manner A% for the second-order autocatalytic controller can be

calculated leading to the same result as Egs. S115 and S105.

To calculate Ay, for the first-order autocatalytic controller we take, as above,
the double derivative of A with respect to time and assume that k0 and
EO%O, together with A=A=0. The solution for A,, for the first-order con-
troller is analogous to Eq. S111

Ao 4 ABs 1\
Ass - ( set2 71) + \/(—set2 71) +4k2171 (Sll6>

where 7, is .
 kskrE,

Ay for the second-order controller can be calculated by Eq. S116 where
is replaced by 79 '
sk B2

V2 (S118)
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Overview of the Performance of the Controllers

Fig. S24 gives an overview of the performance of controller motif 7 with the
three implementations of integral control (Fig. S23).
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Figure S24: Performance of the three implementations of integral control
for controller motif 7 (Fig. S23) when k; increases linearly (a, left panel),
exponentially (b, left panel), and hyperbolically (c, left panel).

In case k; increases linearly, the zero-order controller (Fig. S24a, middle
panel, outlined in blue) shows a constant deviation (”offset”) in A from AZs.

The offset arises, because the zero-order controller is able to compensate for
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the linear increase in kp, but this takes some time. Since the zero-order
controller cannot accelerate E, beyond a linear rate law, contrary to the
first-and second-order controllers, the offset for the zero-order controller re-
mains constant. Fig. S25 shows that the offset contribution 7 for the linear
controller is constant while the corresponding v, and v, values for the first-

and second-order controllers decrease in time and move A to A%

When k; increases exponentially (Fig. S24b, middle panel) the zero-order
controller (outlined in blue) is not able to compensate for the k; increase.
The first-order controller (outlined in red) is able to counteract the exponen-
tial k1 increase, but because this controller’s rate law can only be exponential
the controller cannot accelerate E, beyond an exponential increase and there-
fore shows an offset in A. On the other hand, the second-order controller has
an intrinsic hyperbolic rate law that can go beyond (be faster) than any ex-
ponential growth rate and has therefore the ability to reduce the offset, as
seen by the decreasing 7, values for this controller (Fig. S26, second-order
controller).

When k; increases hyperbolically the zero- and first-order controllers show
better adaptation to AZg than the second-order type of controller when k;
is still low. However, when k; increases rapidly the second-order controller

shows a much better performance, but with a considerable offset from A%,

Rate constants and initial concentrations

The following rate constant values (in au) were used for all three type of
controllers: ki, see Fig. S24; ko = 0.0, k3 = 1.0, ky = 61.0, ks = 1 x 107, kg
= k‘7 = 100, k‘lg = k’14 =1x 1073, k’gl =0.1.

Initial concentrations for all three controllers: Ay = 6.0, E,, =0.19.
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Comparing A, A, and v, for the Different Controllers

Fig. $25 shows A, Ay, and y,=k1/(ksk;E?") (n=0,1,0r 2) for the different
controllers when k; increases linearly. The ~, values are an indicator for the
difference between A and A% ("offset”) (Eq. S111). The constant -y, for the
zero-order controller indicates a constant offset, while the decreasing v; and
~v9 values for the first-order and second-order controllers indicate that these

controllers have decreasing offsets and move A closer to A%,
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Figure 525: Comparison between stationary solution Ay, and numerical so-
lution A and the offset contributions 7, =k, /(ksk7E”) for the three integral
control implementations in motif 7 when % increases linearly.

Fig. S26 shows A, A, and %:k,:l/(krghEg) (n=0,1,0r 2) for the different
controllers when k; increases exponentially. The increasing vy for the zero-
order controller indicates the controller’s breakdown.
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Figure S26: Comparison between stationary solution A, and numerical so-
lution A and the offset contributions -, for the three integral control imple-
mentations in motif 7 when £ increases exponentially.

Fig. 27 shows A, Ay, and y,=k1/(ksk;E?) (n=0,1,0r 2) for the different
controllers when k; increases hyperbolically. Since all ~,’s are increasing
none of the controllers can successfully defend their set-points.
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Figure S27: Comparison between stationary solution A, and numerical so-
lution A and the offset contributions ~, for the three integral control imple-
mentations in motif 7 when £ increases hyperbolically.
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Supporting Information 8

Comparing Stationary and Numerical Solutions
of A with the Different Implementations of
Integral Control for Motif 8

Zero-Order Implementation of Integral Control

The reaction scheme of motif 8 is shown in Fig. 8 (main paper). The rate
equations for the zero-order type of controller are:

1 k7k22A
A=k — ko A+ ks — ———— S119
' ? ‘ kg + E, ( )

T hkn+A kst E,
The set-point of A is calculated as the steady state of A for constant k; and

ko values when F, is removed by zero-order kinetics, i.e., when k;<FE, and
E,=0:

kakar
——— — ks =0 S121
k21 + Ass ! ( )
Rearranging Eq. S121 gives
E ks
Ay = A =k | -~ 1 (S122)
4

Stationary Solution of Zero-Order Controller for In-
creasing k;

We assume that A=A=0, while k; and E, are nonzero. Calculating A under
these conditions we get
i krkas

A=k +—2 B . A,.=0 S123
" (kas + BE,)? (5123)
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Inserting Eq. S120 into Eq. S123 and rearranging gives the following quadratic
equation in A,

ks k;l(k22 + E,)? ki (koo + E,)?
A2 b Ay kg (1= 22 22T Zo) gy DIVR2TE Po) 124
s F [21( k) e e e
,AEot
Defining ~,, as
) 22
_ Falhn + Eo)” (S125)

= kakrkoo BV

for n = 0, 1, 2 with respect to the zero-, first-, and second-order controllers,
the solution of Eq. S124 (zero-order controller) is

1 AN 2
Ass = 5145;‘% + ? + \/(%) + §A3Ee(;t’70 + (%) + k2170 (8126>

First-Order Implementation of Integral Control

The rate equations for the first-order type of controller are:

. kokon A
A=k —ky A+ kg — ——— S127
! ? 0 koo + E, ( )
: ksko1 E,
E, = — k4 E, S128
ka1 + A * ( )

The (ideal) set-point of A is calculated as the steady state of A when FE,#0
and E,=0, i.e.:

kska1
—— —ky) - E,=0 S129
(k21 + Ass 4) ( )
leading as in Eq. S122 to:
E ks
Ase(;f - Ass - ]{321 k‘_ - 1 (8130)
4
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Stationary Solution of First-Order Controller for In-
creasing k;

As above for the first-order type of controller, we assume that A=A=0, while
ky and E, are nonzero. Calculating A under these conditions we get

Kz kg :
(ki + Eyp T A =0 (5181)

Inserting Eq. S128 into Eq. S131 and rearranging gives the following quadratic
equation in A

A=k +

k
Ags + ASS . [kgl <]. — ]{7_3> —’}/1] == k21 M (Sl32>
4

_AFo

set

The solution for Ay for the first-order type of controller when k10 and
E,#0 is given by:

1 AN 2
A, = §Afe°t + % + \/( ;et> + §A;Ee?71 + (%) + ka1 (S133)

Second-Order Implementation of Integral Control

The rate equations for the second-order type of controller are:

. ]{371{32214
A=k —kyA+ ks — ———— S134
1 2 6 o ( )
. kgkglEz 2
E, = ¢ — ky B2 S135
ko1 + A ! ( )

The ideal set-point of A is calculated as the steady state of A when E,#0
and F,=0, i.e.:

k3k21 2
— k|- Ef=0 S136
(k21 + Ass 4) ¢ ( )
leading as in Eqgs. S122 and S130 to:
k
AsEe(;f - Ass = k21 (k?_3 - 1) (Sl37)
4
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Stationary Solution of Second-Order Controller for In-
creasing k;

The derivation for A of the second-order controller is analogous to the
derivations of the zero- and first-order controllers. A, for the second-order
controller is

1 AN 2
Ass e §Afeot + % + \/(%) + §ASE;‘,’72 + (%) + k2172 (8138>

Rate constants and initial concentrations

The following rate constant values (in au) were used for all three type of
controllers: ki, see Fig. 9; ky = 1.0, k3 = 61.0, ks = 1.0, ks = 1 x 1077 kg =
10.0 k)7 =1x 103, klg = k14 = OO, le = 01, k22 =1x 10_2.

Initial concentrations for all three controllers: Ay = 6.00, E, o =12.0.
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Comparing Stationary and Numerical Solutions of A

Linear Increase of k; with Time
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Figure S28: Comparison between stationary solutions Ay, and numerical
solutions A and the offset contributions -, for the three integral control
implementations in motif 8 when k; increases linearly with time.

Fig. S28 shows the A,, and numerical A values for the zero-order type of
controller 8 when k; increases linearly. The zero- and first-order type of
controllers move their A concentrations close towards their homeostatic set-
points as indicated by their decreasing vy and 7, values. The second-order
autocatalytic controller is not able to defend its homeostatic set-point indi-
cated by the increasing v, values.
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Exponential Increase of k; with Time

During the exponential increase of k; none of the integral control implemen-
tations perform well as indicated by the increase of their v, values. Only
the zero-order type of controller shows a temporary approach of A to AZ
as indicated by the decreasing v9. However, as the concentration of E, be-
comes too low to maintain the functionality of the negative feedback loop,

the zero-order controller breaks down (Fig. 9b, right panel) and 7, increases.
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Figure S29: Comparison between stationary solutions Ag, and numerical
solutions A and the offset contributions -, for the three integral control
implementations in motif 8 when k; increases exponentially.

Hyperbolic Increase of k; with Time

Here k; undergoes at the start of the second phase a jump from 1 to 8 and
then increases hyperbolically. Initially, the hyperbolic increase is relatively
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slow and the controllers are able to adapt to the slowly increasing k;. The
v, values of the three controllers is an indicator how the different controllers
perform (Fig. S30). For the zero-order controller the inital 7, decrease indi-
cates that the offset between A and AZ% decreases and A moves closer to A%

However, as k; increases very rapidly near the border when k; appraoches
infinity, the controller breaks down and A increases rapidly with time.
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Figure S30: Comparison between stationary solution Ay, and numerical so-
lution A and the offset contributions =, for the three integral control imple-
mentations in motif 8 when £ increases hyperbolically.

The first-order controller is able to cope with the initial decrease and has A
values near AYs for some time. However, the controller is not able maintain
homeostasis as k; increases more and more rapidly and breaks down. While
the second-order controller performs best and is able to hold its A value close
to A% for the longest time, also this controller eventually breaks down when

ky approaches rapidly infinity.
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Supporting Information 9

Comparing Stationary and Numerical Solutions
of A with the Different Implementations of In-
tegral Control for Motif 4

Fig. S31 indicates the three implementations of integral control in motif 4.
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Figure S31: Reaction schemes of motif 4 with three implementations of in-
tegral control.

Zero-Order Implementation of Integral Control

The rate equations for the zero-order type of controller (Fig. S31, left panel
outlined in blue) are as follows, where ko3 and ko4 play the roles of inhibition
constants:

. kekas
A=k — kg A+ —"""— — kA S139
1 2 (ins + E3) 7 ( )
- kokos s
E;, = kg — S140
® (kos + A) (k1o + E) ( )

The set-point of A is calculated for ideal zero-order condition with respect
to E; (Eq. S140), i.e., kjo<E; such that E;/(kip+FE;)=1 and Eq. S140 can
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be rewritten as:

- kokaa
E, =ky— ———— S141
* (ko + A) (S141)
Setting Eq. S141 to zero gives the set-point A% as the steady state value
ASS
. k
AsEeZt - Ass = ko4 (k_ﬁ) - 1) (8142)
8

In the calculations which are given below we set A% =3.0.

To calculate A when ks # 0 and E; # 0, we take the double derivative of
A with respect to time and assume that A=0 and A=0

kekas '

(kos + E;) "

By inserting Eq. S141 into Eq. S143 and setting it equal to zero, we get
 kigkos(kokay — kghoy — ks As,) kokskas (AL — As,)

A= —kyA, — (S143)

koA, = = seb S144
? (ks + E;)%(kog + Ass) (kos + E;)?(kas + Ass) ( )
where N
k9k24 - k8k24 = k8k24 (k—g - 1) = kSAsEeit (8145>
8

by using Eq. S142. Note that Eq. S144 implies that when ky=0 then A,,=AF:

set*
Rearranging Eq. S144 leads to a quadratic expression in Ag

A2 4 (ks + M)Ass - M-Afgt =0 (S146)
ka(kos + E;)? ko (kos + E)?

Introducing 7, as

kekskos BT
Yo = (S147)
ko (kos + E;)?

where n = 0, 1, 2 for the zero-, first- and second-order controller, respectively,
A, can be written as:

k k ?
Ay =— <—24 ;r 70) - \/( = 2+ %) +0AL, (S148)
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In order to keep homeostasis in A the zero-order controller meets increasing
ko values by decreasing FE;, which leads to increased 7, values. The offset
AEi — A, can be calculated by rearranging Eq. S146
A2 4 kgy Ay
APy A, = Do T P2l (S149)

set
Yo

When 70>>k24Ass+Ags then Ass%AsEeit.

Autocatalytic Implementations of Integral Control

The stationary solutions for the two autocatalytic implementations of integral
control are derived in an analogous manner as for Eq. S146. For the first-
order autocatalytic implementation of integral control the rate equations for
A and E; are:

p kekos
A=k —ky A+ —""T"""_ —k-A S150
| — ko A+ Umt By (S150)
E, = — k1o E; B - == 151
i = k11 — k12 By + ks I (koy + A) (S151)

Neglecting in Eq. S151 the background synthesis and degradation contribu-
tions with respect to E; by setting k13 and k14 to zero, Afgt can be calculated
by setting E; to zero, i.e.

‘ kokay )
Ei=FE|ks——F—F— =0 5152
< s (k24 + Ass) ( )
which leads to the same set-point as for the zero-order controller (Eq. S142),
le. L
Ay = Ase = kas (k—g - 1) (S153)
8

To calculate A, for the first-order controller when ks # 0 and E; # 0, we
take again the double derivative of A with respect to time and assume that

A=0 and A=0
kekas

(kos + Ej)?
By inserting Eq. S152 into Eq. S154 and setting it equal to zero we get
 Eikgkos(kokoy — kgkoy — kg Ags) Eikekskos (AL — Asy)

oAy, = = set — S155
: (kog + E;)?(kos + Ags) (kas + E;i)?(kos + Ass) ( )

A= —kA,, — E; =0 (S154)
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where, as for Eq. S145, we use the expression for A%,

k A
kokas — kskos = kghoa (k—g - 1) = ks AL, (5156)
8

Eq. S155 can be rearranged into the same quadratic equation as Eq. S146
Ags + (k24 + Vl)Ass - 71'Aiit =0 (Sl57)

with the solution

k k 2
Ay = — <%) + \/( 2 ;_ fyl) + fylAsEeit (S158)

using v from Eq. S147

For the second-order controller Ay is calculated by Eq. S158 where ~; is
replaced by ~s.

Overview of the Performance of the Controllers

Fig. S32 gives an overview of the performance of controller motif 4 with the
three implementations of integral control (Fig. S31). In case ks increases lin-
early, the zero-order controller (Fig. S32a, middle panel, outlined in blue) per-
forms best. The 7y value is considerably larger than 7, and v, (see Fig. S33)
leading to negligible offsets (Eq. S149). The zero-order controller also per-
forms best when ky increases exponentially (Fig. S32b, middle panel) or even
hyperbolically (Fig. S32c, middle panel) indicated by the higher 7y value of
the zero-order controller in comparison with the other controllers.

Rate constants and initial concentrations
The following rate constant values (in au) were used for all three type of

controllers: ki = 1.0, ko, see Figs. S32; kg = 1 x 10* ky = 10.0, kg = 1.0, kq
= 31.0, kip=1x 10_4, ki1 = k12 = 0.0, kos = 1 X 10_4, koy = 0.1.

Initial concentrations for all three controllers: Ay = 3.0, E; o = 0.03.
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Figure S32: Performance of the three implementations of integral control
(Fig. S31) for controller motif 4 when ky increases linearly (a, left panel),
exponentially (b, left panel), and hyperbolically (c, left panel).
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Figure S33: Comparison between stationary solutions Ay, the numerical
solutions A, and 7, for the three integral control implementations in motif 4
when k5 increases linearly.

Comparing A, A,, and ~, for the Different Controllers

Fig. S33 shows A, A, and the -, values for the different controllers when ko
increases linearly. The zero-order and first-order controllers perform better
than the second-order controller as indicated by the larger and increasing 7,
and 7, values. In comparison with the first-order controller the zero-order
controller shows higher v, values and a more rapid adaptation to the set-
point.

Fig. S34 shows A, A, and the ~, values for the different controllers when ks
increases exponentially. During the exponential increase of ky the zero-order
controller defends its set-point, while both autocatalytic controllers perform
poorly (Fig. S32b, middle panel), which is also indicated by the decreasing
~v1 and v, values.
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Figure S34: Comparison between stationary solutions Ay, the numerical
solutions A, and +, for the three integral control implementations in motif 4
when k9 increases exponentially.

Fig. S35 shows A, A, and 7, for the different controllers when ks increases
hyperbolically. In this case all controllers show decreasing v values. For
the zero-order controller and also for the first-order controller 7y and 7, are
relatively large, which keep the A values of these controllers close to A%,
When £k, increases rapidly (above 40 time units) both the zero-order and
first-order controllers break down, but the zero-order controller stays closer
to AZ: than the other controllers (Fig. S32¢, middle panel). The second-order

set
autocatalytic controller performs less well with A values well below AZ.

563



1-10* , 6 110°
‘ 5 zero-order controller
110° 8 % 405 F = - —
= k2: : \%4 \’YO ‘4%5 110 \g/
3 1402 P -(t-10 24 — -
- 1:0 g = e
= — <2 110°
110 P ‘
1
110° ' 0 ! 110°
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
time (au) time (au)
6 [ g 250 6 6
5 :f\\\ first-arder controller _ : 5 b 5
— | Y1 : 200 = | second-order controller —
=4 AN 103 S 4 8
T : 8 | 2 -
23 N AL Y Ay 3
<t [ B — g
; 5 N, ™ 100 < <ol 5 ¢
: 4 AN 5 i N
1 i 1 | CE ~<D : 1
0 i 0 0 ] ~\
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
time (au) time (au)

Figure S35: Comparison between stationary solutions A,s, the numerical
solutions A, and =, for the three integral control implementations in motif 4
when ks increases hyperbolically.
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