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Abstract

Integral control is ubiquitously used in industrial processes to keep variables robustly regulated at a given setpoint.
Integral control is also present in many biological systems where it, implemented through reaction kinetic networks
of genes, proteins and molecules, protects the organism against external variations. One difference between industrial
control systems and organisms is that oscillatory behavior seems to be more common in biology. This is probably because
engineers can choose to design systems that avoid oscillations. Looking at regulation from the viewpoint of biological
systems, the prevalence of oscillations leads to a question which is not often asked in traditional control engineering: how
can regulatory and adaptive mechanisms function and coexist with oscillations? And furthermore: does integral control
provide some kind of robust regulation in oscillatory systems? Here we present an analysis of the effect of integral control
in oscillatory systems. We study nonlinear reaction kinetic networks where integral control is internally present and how
these systems behave for parameter values that produce periodic and chaotic oscillations. In addition, we also study
how the behavior of an oscillatory reaction kinetic network, the Brusselator, changes when integral control is added to
it. Our results show that integral control, when internally present, in an oscillatory system robustly defends the average
level of a controlled variable. This is true for both periodic and chaotic oscillations. Although we use reaction kinetic
networks in our study, the properties we find are applicable to all systems that contains integral control.
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Highlights

• Biological reaction kinetic networks can show oscil-
latory and chaotic behavior.

• We study the effect of integral control in systems
that show oscillations.5

• We show that integral control has a regulatory effect
even during oscillations.

• We study the behavior of the Brusselator with and
without added integral control.

• Integral action defends the average value in both pe-10

riodic and chaotic oscillations.

1. Introduction

From a control engineering point of view it is clear
that negative feedback with integral control is an attrac-
tive mechanism for providing robust regulation. Integral15

control is also common in biology. Many studies have in-
deed identified integral control to be internally present in
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reaction kinetic networks of regulatory biochemical sys-
tems [1, 2, 3, 4], and there is an ongoing effort in synthetic
biology to design integral control motifs that can be used20

in engineered cells [5, 6, 7] . However, because of practical
constraints and limitations, biological controllers do most
often not operate with the same mathematical simplicity
and purity as man-made controllers in electromechanical
systems [5, 6, 7, 8, 9].25

Although the theory behind integral control is well es-
tablished, not much work has been done on its effect in
oscillatory systems. This may be because oscillations are
traditionally avoided in man made control systems. It is
relatively straightforward to design systems that don’t os-30

cillate, so why consider systems that do?
There are many biochemical systems that display oscil-

latory behavior [10, 11]. Examples include metabolic gly-
colysis [12, 13], circadian rhythms [14, 15], and synthetic
genetic networks [16, 17, 18, 19]. Oscillatory behavior is35

also observed in pure chemical reactions like the Belousov-
Zhabotinskii reaction [20, 21]. This reaction is often stud-
ied as a model for more complex biochemical processes,
for instance in relation to synchronization of oscillations
across unicellular populations [22, 23]. Most of the oscil-40

latory systems in biology show periodic oscillations, but
there are also systems that show irregular and chaotic
oscillations under specific conditions [24, 25, 13]. Such
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chaotic behavior is seen in chemical oscillators [26, 27],
enzyme-catalyzed reactions [28, 29], excitable cells [30, 31],45

and in glycolysis [32, 33]. In addition to experimental ob-
servations chaos has also been shown to exist in mathemat-
ical models of metabolic networks, for example in a model
of glycolysis [33], and in a model of metabolism and redox
balance in mitochondria [34].50

In this work we study integral control in reaction ki-
netic networks and focus on regulation from the viewpoint
of biochemical systems. The properties we find should
however be generally applicable to all systems that con-
tain integral control.55

1.1. Integral control in reaction kinetic networks

We have previously presented a set of simple two com-
ponent network motifs with structures that can provide
integral control [4, 35]. Two such motifs are used in this
study to examine how integral control affects oscillatory60

networks. An outflow controller (type 5 in [4]) is used
here in the main text, and an inflow controller (type 2
in [4]) is used in the Supplementary Material (SM). The
outflow controller is shown in Fig. 1a; the solid lines rep-
resent mass flow, and the dashed lines represent signaling.65

A chemical species A, called the controlled species, is reg-
ulated through negative feedback by a chemical species E,
called the controller species. The controller species com-
pensates for changes in A, caused by disturbance in the
inflow (or outflow) of A, by adjusting a compensatory out-70

flow j = k3AE/(K
A
M +A). The motif is called an outflow

controller because it adjusts an outflow.
The change in E is described by the following rate

equation

Ė = k5A−
k6E

KE
M + E

, (1)

where the removal of E is described by a Michaelis-Menten
expression. Integral control is most easily implemented
by having zero-order removal of E with respect to itself,
but other arrangements are also possible [36]. Assuming
zero-order removal (saturation with KE

M � E) the rate
equation for E becomes

Ė = −k5
(
k6
k5
−A

)
, (2)

which is similar to the standard integral control law [35].
The equation for Ė has A as its only variable, that is:
Ė = h(A). The steady state condition, h(A) = 0, gives a
simple expression for the defended level of A (the setpoint):

Aset =
k6
k5
. (3)

The function of this controller motif can be illustrated
by the block schematic representation in Fig. 1b. This
representation, which is commonly used in control engi-75

neering, shows that the concentration of the controller E
is the integrated difference (error) between the setpoint
and the fed back measurement of A.

Figure 1: Negative feedback outflow controller. (a) Reaction
network representation and rate equations for the motif. The con-
troller variable E is activated by A and feeds back by adjusting the
outflow of A. We treat a changing inflow of A through the parame-
ter kip as the primary disturbance to the system, see the text under
section 2 Methods. (b) Control engineering type block schematic rep-
resentation showing how the motif can be separated into a controller
and a controlled system. The primary disturbance (kip) is marked in
red. The j() block represents how the controller (E) affects the con-
trolled system (A), i.e., by a compensatory flow j = k3AE/(KA

M+A).

2. Methods

We will use two different approaches to examine the80

effect of integral control in oscillatory reaction kinetic net-
works. The first approach (in sections 3.1 and 3.2) is to
use a reaction kinetic network where integral control is
already present, i.e., the controller motif from Fig. 1a.,
and extend/alter this network until oscillatory behavior85

appear. The second approach (in section 3.3) is to add in-
tegral control to an already oscillating system. For this we
will use the oscillatory reaction kinetic network known as
the Brusselator [37, 38] and add integral control in form of
only the E-part from a controller motif, i.e., add Eq. 1 and90

an E-dependent outflow of the variable to be controlled.
The first approach can be thought of as similar to how

oscillatory behavior may develop in existing regulatory
reaction kinetic networks in cells and organisms, either
through evolution, or through internal changes within a95

single organism. The second approach is more an engi-
neer’s approach where one has a system and then adds
something to the system to see how it alters behavior.
Since the system already oscillates this method makes it
possible to see how the oscillatory behavior differs with100

and without integral control in the system.
We will throughout the work presented here use inte-

gral control motifs that act on the outflow of the species
to be controlled. This is similar to an industrial controller
that controls the level in a water tank by controlling an105
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actuator in the form of an outflow valve or an outflow
pump. In other words, the actuator removes the controlled
species, called A, from the system when it is in excess.
Since the actuator is unable to add A to the system, i.e.,
provide a negative outflow, it is most suited to compensate110

for disturbances in the inflow to the system. We will thus
treat parameters that changes the inflow of A as the main
disturbances to the system.

Note that the situation is opposite for a reaction ki-
netic system where integral control is provided by an in-115

flow controller motif (see SM6). A controller that compen-
sates by adjusting an inflow is best suited to compensate
against changes in outflow, i.e., disturbances in outflow.
For a more detailed discussion about the differences be-
tween inflow and outflow controller motifs, what type of120

disturbances they are suited to compensate for, and what
happens when disturbances that they are not fitted to com-
pensate against start to dominate, we refer to our previous
work in [4, 39].

Computations were performed by using Matlab (math-125

works.com). Numerical integrations were done with the
variable step stiff solver ode15s (supplied with Matlab). A
relative tolerance of 10−9, an absolute tolerance of 10−12,
and a maximum step size of 0.1 was specified as solver
options. State variables (A, E, Z, etc.) will typically rep-130

resent concentrations of chemical compounds.
The word equilibrium point is herein used to describe

a constant solution to a system of differential equations,
i.e., a point where ẋi = 0 for all i state variables.

2.1. A note on degree of perfectness135

The term setpoint is herein used as the theoretical
steady state value of A given perfect zero-order removal
of E in the above controller motifs. In other words, un-
der pure and perfect integral control. The removal will
however never be exactly zero-order in real biochemical
networks, i.e., KE

M will have a value different from zero.
This will shift the actual stationary value of a controller
motif away from the theoretical setpoint. The difference
between the setpoint and the actual stationary value is a
measure of the controller’s accuracy [4], or better put in-
accuracy [39], and it is related to the value of the fraction
f(E) given as:

f(E) =
E

KE
M + E

. (4)

This fraction represents the degree of zero order removal
of E, and thus the degree of perfect integral control. To
exemplify, consider a stationary case where E = 10 and
KE
M = 0.1. Then f(E) ≈ 1 and we have tight control

(small inaccuracy). In another situation where E = 0.4140

and KE
M = 0.1, we get f(E) = 0.8 implying 20% deviation

between A and Aset.
This inaccuracy can be almost impossible to detect if

very low KE
M values like 10−6 are used. We have in this

study selected to use KE
M values that makes the effect vis-145

ible. See [4] and [40] for more details.

3. Results

We start the first approach with a motif that already
contains integral control. The presented controller motif
from Fig. 1a, and the rest of the complete set of motifs [4],150

can be extended to create systems that show sustained
oscillations [41]. Such extensions can be done without
changing the structure of the controller part (E), leaving
a functional integral controller in the oscillating system.

3.1. Control of average concentration during periodic os-155

cillations

Consider an oscillatory version of the outflow controller
with added autocatalysis, shown in Fig. 2a. The equation
for change in E is the same as before (Eq. 1), but the
change in A is now described by:

Ȧ = kip + k2A−
k3AE

KA
M +A

. (5)

The rate constant kip is still the inflow disturbance and k2

Figure 2: A negative feedback outflow controller with os-
cillatory behavior. (a) Outflow controller with autocatalysis in A
(Eqs. 5 and 1). The controller variable E is activated by A and feeds
back by adjusting the outflow of A. We treat a changing inflow of A,
the parameter kip, as the primary disturbance to the system. (b) Bi-
furcation diagram showing how the amplitude of the oscillations in
A changes with the strength of autocatalysis k2. Parameters: kip=4,

k3=3.8, k5=0.65, k6=5.4, KA
M=0.15, and KE

M=0.5. Initial condi-
tions: A0=25.95, E0=7.63.

is the autocatalytic part. This motif oscillates for a wide
range of parameter values. Stronger autocatalysis (higher
k2) leads to oscillations with greater amplitude. Figure 2b160

shows a bifurcation diagram of how the amplitude of the
oscillations in A changes with the strength of autocataly-
sis.

Examples of the behavior in A and E for a stepwise
change in kip is shown in Figs. 3a and 3b. Interestingly the165

average of A, denoted <A> (black line in Fig. 3a), seems
to be only transiently affected by the disturbance. We
did several similar simulations/experiments to this and to
other oscillating controller motifs, and they all indicated
the same: The average level of A appears to be regulated.170

The results of a full sweep study of the average level of A
versus the strength of inflow disturbance for this outflow
motif is shown in Fig. S1 in SM1.
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Figure 3: Response to inflow disturbance changes in an oscil-
latory outflow controller. (a) Oscillations in A shown for a step-
wise inflow disturbance in kip from 6 to 9 at t=100, and from 9 to 12
at t=200, as indicated. The black line shows the periodic average of
A, calculated between peaks. Parameters: k2=1.5, k3=3.8, k5=0.65,
k6=5.4, KA

M=0.15, andKE
M=0.5. Initial conditions: A0=33, E0=14.

(b) Oscillations in and average of E during the same disturbance.

The general property of integral control, that a con-
troller regulates A to a setpoint, is derived from the steady-175

state condition, Ė = h(A) = 0. The steady-state condition
can however not be used when the controllers are oscillat-
ing.

In order to derive the property of integral control dur-
ing periodic oscillations we start by the definition of peri-
odicity. For each repeating cycle E is back at exactly the
same value

E(t+ T ) = E(t), (6)

where T is the period time, the time of one cycle. The
change in E cannot be assumed to be zero, as in nonoscil-
latory systems (steady state condition), but the integrated
change in E over one period must be zero:∫ t+T

t

Ė dt = E(t+ T )− E(t) = 0. (7)

This must also be the case for any integer number n of
periods from t to t + nT . We now introduce the periodic
average value of Ė, denoted <Ė>, which must also be
zero:

<Ė> ,
1

T

∫ t+T

t

Ė dt = 0. (8)

The rate equation of E for any motif can be inserted into
Eq. 8. Inserting Ė from Eq. 1 into Eq. 8 gives:

<Ė> =
1

T

∫ t+T

t

(
k5A−

k6E

KE
M + E

)
dt. (9)

By applying zero-order kinetics, i.e., KE
M → 0, this reduces

to

<Ė> = k5

(
1

T

∫ t+T

t

Adt

)
− k6

(
1

T

∫ t+T

t

1 dt

)
(10)

= k5

(
1

T

∫ t+T

t

Adt

)
− k6, (11)

where the periodic average of A, denoted <A> can be
identified. Using this and <Ė> = 0 (Eq. 8) we find that
the controller maintains the periodic average of A at a
setpoint which we term <A>set:

<A> ,
1

T

∫ t+T

t

Adt =
k6
k5

= <A>set. (12)

Note that this derivation also holds for nonoscillatory con-
troller motifs. A system in steady state is a trivial solution180

of Eq. 6.
Similar to the stationary case (Eq. 3), the setpoint

<A>set in Eq. 12 is a theoretical setpoint that depends
on KE

M → 0. The actual average <A> may thus differ
somewhat from <A>set at realistic conditions when KE

M185

has a nonzero value (see section 2.1).

3.2. Controller action in the chaotic regime

We will in this section extend our results and look into
the function of integral control in systems with sustained
nonperiodic oscillations. To do this we will first show how190

systems based on the presented controller motifs can be
extended from periodic to chaotic oscillating systems.

In systems of ordinary differential equations chaos can
only appear if the system has a dimension of three or
higher and only if at least one of the equations are non-195

linear. These conditions do not, however, guarantee the
presence of a chaotic solution. Even if we don’t know all
the necessary and sufficient conditions for chaos, the com-
position of chaotic systems in three dimensions is relatively
well known [42, 43].200

One way to build a system which should be able to
show chaos, at least for some parameter values, is to com-
bine a two dimensional oscillator with a switch; a type of
structure first conceived by O. Rössler in some of the ear-
liest studies of chaotic systems [44, 45]. The idea is best205

explained by the behavior in phase space. A trajectory
spirals outwards from an unstable focus towards where the
oscillator in two dimension would have formed an attrac-
tive limit cycle. Somewhere on this path the switch is
activated and it lifts the trajectory up and into an area in210

phase space where the flow is reversed. The trajectory is
then brought back down closer to the unstable focus than
it was before it was lifted out. This is called reinjection
[44, 43]. For this to work the state variable defining the
switch should have comparably fast dynamics, so that it215

creates a manifold in phase space that guides the move-
ment of the other two oscillating state variables.

With this in mind we expanded the oscillating outflow
controller (Fig. 2a) with an extra state variable Z that acts
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Figure 4: Extended outflow controller capable of showing chaotic behavior. (a) Chaotic outflow controller built by combing an
oscillating controller (green, identical to Fig. 2a) with a switch (blue, made out of a negative feedback similar to the controller structure,
but with faster dynamics). (b) Phase space with the manifold created by the fast dynamics of the Z-switch (given by Eq. 16). Blue arrows
show the vector field of Z. A trajectory (in black) spiralling outwards from a focus point is reinjected, enabling the occurrence of chaos.
Parameters: kip = 4, k2=1.5, k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=KA
M,2=0.15, KE

M=0.5, and KZ
M=0.03. The trajectory

starts in [5.5, 4.5, 0.04] (red cross). (c) The chaotic attractor for this system shown in phase space. (d) Bifurcation diagram showing how the
amplitude of the oscillations in A changes with disturbance in inflow kip (other parameters as above). (e) Bifurcation diagram showing how
the amplitude of the oscillations in A changes with the strength of the autocatalysis k2 (other parameters as above). Simulations in (d) and
(e) are run for 500 time units before collection of data to avoid transients.

as a single threshold switch. The reaction kinetic structure
is shown in Fig. 4a where the original oscillating structure
is colored in green and the new addition is colored in blue.
The rate equations for this new motif are:

Ȧ = kip + k2A−
k3AE

KA
M,1 +A

− k4AZ

KA
M,2 +A

(13)

Ė = k5A−
k6E

KE
M + E

(14)

Ż = k7A−
k8Z

KZ
M + Z

. (15)

The equation for Z is similar to E and is really just an
extra negative feedback and outflow controller on A, but
its dynamics is faster with relative high values on rate220

constants k7 and k8.
The surface created by the fast dynamics of Z divides

the phase space into two regions, shown in Fig. 4b. The

surface is given by

FZ(A,E,Z) = k7A−
k8Z

KZ
M + Z

= 0. (16)

Figure 4b also illustrates how this system, for a certain set
of parameters, shows reinjection. A trajectory starts to
move on the horizontal part of the surface without much
change in Z. When the oscillations cause the value of A to225

rise above a threshold at around A = 10 the switch is ac-
tivated and the trajectory is lifted upwards in phase space
by an increasing Z; the trajectory is guided by the man-
ifold. As Z increases Ȧ is reduced (Eq. 13). Ultimately
Ȧ turns negative and we have reversed flow compared to230

the lower part of phase space. As A is reduced so is Z
and the trajectory is reinjected into the horizontal part of
the surface. This then repeats before the trajectory again
starts to move on the horizontal part of the surface, only
somewhat closer to the focus which it oscillates around.235

This behavior continues indefinitely; the trajectory moves
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on a chaotic attractor as shown in Fig. 4c. A more detailed
view of the direction of flow is given in Fig. S2 in SM2.

Whether the system displays this chaotic behavior or
more simple periodic oscillations is dependent on the pa-240

rameter values. As noted we are mainly interested in
changes in behavior due to changes in inflow, and will
thus focus on how the system responds to changes in the
strength of autocatalysis k2 and the disturbance kip.

Figure 4d shows a bifurcation diagram for the ampli-245

tude of A for an increasing inflow disturbance, kip, and
Fig. 4e shows the same for increasing autocatalysis k2.
These bifurcation diagrams reveal the characteristic pe-
riod doubling route to chaos. Further studies of the chaotic
attractor for this system, including Poincaré sections, first-250

return maps, and a movie or the movement of the attractor
in phase space, is given in SM3.

The interesting questions are now: What happens with
the average level of A during chaos? Will the integral
action in E still provide robustness against disturbances
in inflow? We first examined this by simulating the chaotic
system for a range of different disturbances, and studied
how the average level of A was affected. Before presenting
the results we note that the definition of a periodic average
<A> from Eq. 12 is not useful for chaotic systems since
there is no defined period T . Instead of calculating the
periodic average, we have calculated the average over a
sufficiently long length of time τ as:

<A>τ ,
1

τ

∫ t0+τ

t0

Adt. (17)

The results from many simulations with kip in the range
from 4 to 40 are combined in Fig. 5, which shows the
average level of A and E. We have here used τ = 50 (what255

makes a sufficiently long τ is discussed towards the end of
this section). The results indicate that the average level of
A is still defended and that the presence of chaos does not
alter the regulatory properties of the system. The average
level of the controller species E increases with the level of260

the kip disturbance. This makes sense from the structure of
the reaction kinetic network, Fig. 4a; an increased inflow of
A through kip is compensated by an increased E-mediated
outflow of A.

The response to stepwise changes in inflow disturbance265

(kip) is shown in Fig. 6. The system is challenged with a

step in kip from a periodic region (kip = 13) to a chaotic

region (kip = 15), and the controller responds by increasing
the average level of E, which again increases the compen-
satory outflow of A. Fig. 6 also shows the response to a270

further step in the disturbance from kip = 15 to kip = 20.
Consequently, the integral controller E maintains the

average level of A near the theoretical setpoint, as shown in
Fig. 5. The average value of A is maintained even though
the system moves in and out of chaotic behavior as the275

inflow disturbance changes. The system changes between
chaotic and periodic behavior as indicated in the bifur-
cation diagram in Fig. 4d. The small difference between

Figure 5: Control of the average of A under chaotic con-
ditions. (a) Average level of A, <A>50 (blue circles), for the
chaotic outflow controller in Fig. 4a (Eqs. 13-15) for different lev-
els of inflow disturbances. The black squares show the average
level of E, and the dashed blue line shows the theoretical set-
point of A, <A>set = k6/k5=8.3. The averages are calculated
over a time length of τ=50. Parameters: k2=1.5, k3=3.8, k4=3.7,
k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=KA
M,2=0.15, KE

M=0.5, and

KZ
M=0.03. Initial conditions: A0=8.30, E0=3.18 and Z0=0.16.

Transient effects are avoided by letting simulations run for a time
length of 100 before starting the calculation of averages.

<A>τ and the theoretical setpoint can be attributed to
the level of E and the parameter KE

M . Higher level of280

E means that its removal becomes more saturated, hence
the f(E) fraction (Eq. 4) is closer to 1 and the controller
becomes more accurate, see also section 2.1.

Analytically deriving the properties of integral control
during chaotic conditions may not seem as straightforward
as in the periodic case. We can no longer use periodicity
as we did in Eqs. 6–12. The integrated change of E from
a point in time t0 to a point in time t0 + τ will for an
arbitrary value of τ be equal to some number ε, which is
the difference between E(t0 + τ) and E(t0). That is:∫ t0+τ

t0

Ė dt = E(t0 + τ)− E(t0) = ε. (18)

For a system with a chaotic attractor we have that
ε is bounded when τ → ∞, given that the trajectory is285

on the attractor at time t0 (transients have died out). A
trajectory already on a chaotic attractor (after transients)
will forever move on the attractor, and thus E(t0 + τ)
cannot move further away from E(t0) than the extent of
the attractor along the E-axis in phase space.290

Taking the time average of Ė as in Eq. 17 we have that:

<E>τ =
1

τ

∫ t0+τ

t0

Ė dt =
ε

τ
. (19)

By continuing the derivation as in Eqs. 8–12 we find that
integral control (implemented by zero-order kinetics) de-
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Figure 6: Example response for the chaotic outflow con-
troller to a stepwise change in inflow. (a) Response to an
inflow disturbance given as a stepwise change for the chaotic outflow
controller in Fig. 4a (Eqs. 13-15). The disturbance kip is stepped
from 13 to 15 at t=50, and from 15 to 20 at t=150, as indicated.
The level of A is shown in blue while the average of A, <A>50, is
shown in black. (b) Level and average of E. (c) Level and average of
Z. Parameters: k2=1.5, k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7,
k8=75, KA

M,1=KA
M,2=0.15, KE

M=0.5, and KZ
M=0.03. Initial condi-

tions: A0=6.91, E0=6.65 and Z0=0.07. The averages are calculated
over fixed intervals with a length of τ=50 starting from t=0 to t=50,
from t=50 to t=100, and so on.

fends the average level of the controlled variable A at:

<A>τ =
1

τ

∫ t0+τ

t0

Adt =
k6
k5

+
ε

k5τ
. (20)

Furthermore when τ → ∞, this reduces to the same the-
oretical setpoint as in the periodic case (Eq. 12), that is:

lim
τ→∞

<A>τ =
k6
k5

= <A>set. (21)

This proves that integral control provides robust regula-
tion even when the system behaves chaotically.

In practice τ does not have to go to infinity; it is suffi-
cient to have τ large enough to make the contribution from
ε negligible. From our experience it is enough to have a295

τ value that allows the trajectory to cover most of the at-
tractor. Around 10 times the quasi-period, or 10 times
around the attractor, is usually sufficient.

It is possible to relate the setpoint of <A>τ and the
behavior of<E>τ seen in Fig. 5 to an unstable equilibrium300

point of the overall system. This is shown in SM4 and
discussed further in the next section where we add integral
control to an already oscillating system.

The above method for calculating the average of a vari-
able is convenient as it works well for stationary, periodic,305

and chaotic behavior without much need for prior infor-
mation about how the system behaves or the shape and
position of the attractor in phase space. An alternative ap-
proach that is arguably more mathematical elegant, and

equivalent to the periodic average, is to calculate the aver-310

age between two successive intersections with a Poincaré
section. This method is used in SM5 to calculate the aver-
ages during a change in inflow disturbance in the chaotic
outflow controller (the same experiment as in Fig. 6), and
the method gives similar results. However elegant, this315

method is more cumbersome as it requires prior informa-
tion about the attractor in order to choose a fitting place-
ment of the Poincaré section.

3.3. Adding integral control to an already oscillating reac-
tion kinetic network320

In the preceding parts we started with a reaction ki-
netic network that already contained an integral controller,
and extended this system to show its behavior under peri-
odic and chaotic oscillations. We will now take a different
approach by starting with an oscillatory reaction kinetic325

network that does not contain integral control, and study
how its behavior changes when integral control is added to
the system.

The Brusselator is a widely studied theoretical reac-
tion kinetic network that shows limit cycle oscillations.
It was proposed by Lefever, Nicolis and Prigogine and is
named after the city of Brussels where they were based
[37, 38]. The Brusselator can be expressed with two chem-
ical species, X and Y , having the following rate equations
[38, 46]:

Ẋ = kip − k2X + k3X
2Y − k4X (22)

Ẏ = k2X − k3X2Y. (23)

A reaction network representation of the Brusselator is
shown in Fig. 7a (do not consider the green part yet). To
illustrate the effect of integral control we have selected
to treat the independent inflow of X as a disturbance to
the system, i.e., we let the rate constant kip vary. The
Brusselator system has one equilibrium point,

X∗ =
kip
k4
, Y ∗ =

k2k4
kipk3

, (24)

that may be stable or unstable depending on the value of
the rate constants. When the equilibrium is unstable the330

system has a stable limit cycle that gives rise to periodic
oscillations. Note that the equilibrium value of X is de-
pendent on the amount of inflow of X through the reaction
described by the disturbance kip.

The goal here is not to give a thorough examination335

of the stability and behavior of the Brusselator, which has
been done elsewhere [47, 48, 38, 46], but to look at how
its behavior changes when an integral controller is added
to the system.

The response of the Brusselator to stepwise changes340

in the disturbance kip is shown in Figs. 7b and 7c. For
the parameter values that we use (listed in the caption
of Fig. 7) we see that the Brusselator is stable and that
there are steady state solutions for kip = 0.5 and kip = 0.3.
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Figure 7: Behavior of the Brusselator with and without added integral control. (a) Brusselator (white background) and an added
outflow controller motif (green background) that provides integral control of X. The system behavior will be analyzed for varying production
of X, i.e., the kip parameter is treated as a disturbance. (b) and (c) Behavior of the pure Brusselator, Eqs. 22–23 (without added integral

control). The plots show the concentration of the chemical species X and Y in blue for different values of the disturbance kip. The periodic

average is plotted in black when the system oscillates. The disturbance kip is changed from 0.5 to 0.15 in steps at the times indicated in the
figure. Parameters: k2=0.95, k3=0.23, k4=0.15. Initial conditions: X0=Y0=0.1. (d)–(f) Behavior of the Brusselator with added integral
control, Eqs. 25–27 (from t=100). The plots show the concentration X, Y , and E in blue, in addition to the average of these variables in
black calculated over fixed intervals with a length of τ=200 starting from t=200 to t=400, from t=400 to t=600, and so on. The controller
is activated at t=100 by changing the value of parameters k5 to k7 from zero to their value listed in the following. The disturbance kip is
changed from 0.5 to 0.25 in steps at the times indicated in the figure. Parameters: k2=0.95, k3=0.23, k4=0.15, k5=2.7, k6=1.2, k7=0.16,
and KE

M = 0.03. Initial conditions: X0=3.3, Y0=1.3, E0=0.1.

The Brusselator starts to oscillate when kip is stepped from345

0.3 to 0.25. The simulation results show that the value of
X (and Y ) during steady state and the periodic average
<X> (and <Y >) during oscillations change with varying
disturbance values, as expected from Eq. 24.

Consider now that we want to control the (average)
value of X in the Brusselator by adding an integral con-
troller in the form of the controller motif marked with
green in Fig. 7a. The extended equations for this con-
trolled Brusselator are:

Ẋ = kip − k2X + k3X
2Y − k4X − k7XE (25)

Ẏ = k2X − k3X2Y (26)

Ė = k5X −
k6E

KE
M + E

. (27)

The key point now is that the integral controller changes
the equilibrium value of X, making it independent of the

parameters in the original Brusselator. As in Eqs. 3, 12,
and 21 the controller introduces a setpoint for X at k6/k5,
which is only dependent on the parameters in the con-
troller part of the system. The new equilibrium point is
(assuming KE

M � E):

X∗ =
k6
k5
, Y ∗ =

k2k5
k3k6

, E∗ =
kipk5 − k4k6

k6k7
. (28)

Given the previous results from sections 3.1 and 3.2350

we should now expect that the integral controller does not
only hold X at the setpoint for parameters where the equi-
librium is stable, but also that it for parameters that cause
the system to oscillate (periodic or chaotic) keeps the av-
erage value of X at the setpoint. Simulation results shown355

in Figs. 7d to 7f confirm that this indeed is the case. When
the controller is activated (at t = 100 in Fig. 7d) the value
of X is moved from 3.33 (kip/k4) to the setpoint of the
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controller at 0.44 (k6/k5). The controller then defends the
setpoint as the disturbance kip is changed. The system360

with integral control starts to oscillate as kip is reduced to
0.4 (at t = 200 in Fig. 7d) and to 0.3, but the average level
of X is, apart from some transient behavior, kept at the
setpoint. This is also the case when the system displays
chaotic oscillations, as seen with a kip of 0.25 (from t = 800365

in Fig. 7d).
The introduction of an integral controller seems to make

the solutions of the combined system less stable, or more
oscillatory, than for the system without added control. We
see that a lesser change in kip is needed to induce oscil-370

lations. This makes sense as an integral controller from
linear theory is known to reduce the stability margin of
a system by causing phase lag. Nevertheless, the integral
controller provides a controlling effect during oscillations
in that it keeps the average level of A at a defined setpoint375

independent of disturbances.

4. Discussion

Our results show the ability of integral control, imple-
mented by reaction kinetics, to regulate the average level
of a controlled variable in systems showing either periodic380

or chaotic oscillations.

4.1. The controller motif and integral control

All the examples presented here use the same outflow
controller motif (type 5 in [4]). The motif essentially pro-
vides a setpoint for the controlled variable, and acts as385

an integral controller that changes the value of the con-
troller variable E until the controlled variable (A, or X)
is equal to the setpoint. A key feature is that the setpoint
only depends on parameters related to the kinetics of the
controller species E itself; it is independent of the parame-390

ters of the surrounding system that the controller controls.
This means that if we are able to add a controller motif to
an already existing reaction kinetic network, for example
by use of gene editing and synthetic biology, we can, at
least as far as the practical methods allow, design it to395

have the setpoint we want [4, 8].
What the setpoint really is, and what integral control

manifests itself as in the combined process-controller sys-
tem, is an equilibrium point where the controlled variable
has the value of the setpoint. This is clearly demonstrated400

by the addition of integral control to the Brusselator in
section 3.3. The equilibrium of X is moved from a point
dependent on the parameters of the Brusselator system,
kip/k4 (Eq. 24), to a point dependent on the parameters of
the controller system, k6/k5 (Eq. 28). It is from this easy405

to understand how integral control in the case when the
equilibrium is stable provides setpoint tracking, and dis-
turbance rejection against disturbances in any parameters
apart from k5 and k6.

However, although adding integral control provides a410

new (controllable) equilibrium point, there is no guarantee

about the reachability and stability of this point. What
our results show here is the effect integral control has
when the equilibrium point it provides is unstable and en-
closed by a limit cycle or a chaotic attractor. Our results415

show that integral control in this case keeps the average
level of the controlled variable equal to the value it has in
the unstable equilibrium point (setpoint). Mathematically
speaking, if the controlled variable is X then the integral
controller fixes the X coordinate position of the attrac-420

tor in state space. Disturbance rejection for the average
level of the controlled variable readily follows, because the
value of the controlled variable in the unstable equilibrium
point still depends only on the controller parameters (k5
and k6).425

4.2. Oscillations, chaos, and steady states

Robust control of the average level of a variable can
be seen as a generalization of the well known steady state
property of integral control, as the average level and the
steady state level are overlapping for nonoscillatory sys-430

tems. The steady state condition, i.e., assuming steady
state by setting the derivatives equal to zero, is normally
used to derive the property of integral control. This con-
dition cannot be used directly when the system, which
the integral controller is a part of, shows oscillatory be-435

havior. Nevertheless, as long as there is an attractor, en-
closing the unstable equilibrium point, that attracts and
confines the trajectories, the system is still in what we can
call a stable regime. The trajectories are not diverging,
but bounded with repetitive (although not always exactly440

predictable) behavior. Seen from its outside borders the
attractor behaves just like an asymptotically stable equi-
librium point. The conditions we have used in Eqs. 7 and
19 can be viewed as an extension, or replacement, of the
steady state condition. The condition in Eq. 7 can be used445

for systems that show periotic oscillations; and it can also
be used for nonoscillatory systems, for which it becomes
the same as the ordinary steady state condition. Likewise,
the condition in Eq. 19 can be used for chaotic, periodic,
and ordinary nonoscillatory systems.450

While the ability to robustly defend an average value
is exciting, there are some caveats. Disturbances do not
change the average value, but they do change the ampli-
tude and frequency of the oscillations. The variations in
amplitude is clearly seen in the two bifurcations plots in455

Figs. 4d and 4e for the chaotic outflow controller. For ex-
ample a k2 of 0.6 and 2.4 both produce simple periodic
oscillations with the same average value of A, but with
almost a twofold difference in amplitude.

4.3. Biological significance460

According to the classical concept by Cannon, home-
ostasis keeps the concentrations of certain compounds within
tolerable limits and thereby contributes to the internal sta-
bility of cells and organisms [49]. Our results explain how
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integral control enables biological systems to maintain ro-465

bust homeostasis in the average, even when they show pe-
riodic or chaotic behavior. In other words it shows that
internal regulation against external disturbances (param-
eter changes) can be maintained even when systems are
oscillating. Integral control provides an active regulatory470

mechanism that extends beyond just the stability of the
attractor.

Some may argue that the concepts of chaos and home-
ostasis appear incompatible even though there are exam-
ples of chaotic behavior in biological systems [50, 51, 52].475

On one hand we have homeostasis as a mechanism to
achieve adaptation and stability (and some would argue
constancy), while on the other hand chaos is generally as-
sociated with processes which look unpredictable and ran-
dom. In the end the question of whether a chaotic system480

with internal integral control can be said to be homeostat-
ically regulated is a question of whether to strictly define
homeostasis as only constancy. Such a strict definition has
before lead to new concepts like homeodynamics being in-
troduced to cover the broader range of regulatory behavior485

[52]. However, instead of dividing it all up, it may more
constructive to generalize and extend the concept of home-
ostasis to include regulatory networks with oscillatory and
chaotic behavior [53].

Oscillatory behavior is, as mentioned in the introduc-490

tion, quite common in biological systems. One explanation
for this is that regulatory networks that provide adapta-
tion and control with very small modifications can be made
to show oscillatory behavior. The evolutionary step from
an adapting reaction kinetic network to a oscillating one495

is small. Evolutionary processes may have modified reac-
tion kinetic networks in a way that opens up for oscilla-
tions without necessarily having them display this behav-
ior right away. Organisms may then, by further evolution,
have evolved signalling mechanisms based on oscillations500

of regulated compounds.
The step from simple periodic oscillations to chaotic os-

cillations also seems to be within relatively easy evolution-
ary reach, as illustrated by the presented reaction kinetic
networks. New interconnections and feedbacks are created505

as organisms evolve to become more complex. Similar to
the here presented networks, the presence of multi-looped
negative feedbacks have been known to enhance complex
and chaotic dynamics [54, 55, 11]. Our results indicate
that such behavior can exist side by side with homeostasis;510

active regulation by integral control defends homeostasis
even under oscillatory and chaotic conditions by keeping
the average level under control.
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SM1: Control of average concentration against different inflow dis-
turbances during oscillations

Figure S1 shows the results of a full sweep study of the average level of A versus the strength
of inflow disturbance, kip, for the outflow controller in Fig. 2a in the main text. Simulations are
run for different levels of inflow disturbance kip and the averages of A and E are calculated. The
periodic average of A, <A>, is maintained near <A>set = k6/k5 (see Eq. 12 in the main paper).
The actual average level is somewhat lower than the theoretical setpoint because KE

M is relatively
large in this example (KE

M = 0.5); refer to section 2.1 of the main paper for an explanation. This
is particularly the case for low values of E where f(E) is significantly lower than 1. Aside from
this, the average level of A is as good as independent of the disturbance.

Figure S1: Control of the periodic average of A under oscillatory conditions. Periodic
average level of A, <A> (blue circles) for the oscillatory outflow controller in Fig. 2a (Eqs. 5
and 1). The black squares show the periodic average of E, and the dashed blue line shows the
theoretical setpoint of A, <A>set=k6/k5=8.3. Parameters: k2=1.5, k3=3.8, k5=0.65, k6=5.4,
KA
M=0.15, and KE

M=0.5. Initial conditions: A0=25.95, E0=7.63. Transient effects are avoided
by letting simulations run for a time length of 100 before starting to calculate the averages.

The effect of integral control in oscillatory and chaotic reaction kinetic networks 2
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SM2: Flow in phase space and reinjection in the chaotic outflow
controller

Figure S2 shows how reinjection happens in the chaotic outflow controller. The manifold created
by the fast dynamics in the Z-variable (Eq. 16 in the main paper) divides the phase space into
a region with downward and a region with upward flow in the Z-direction, as shown in Fig. S2a.
When the oscillations pass over the switch threshold and into the area with upward flow they are
guided by the manifold upwards in phase space. As they move upward they reach a region where
the flow is reversed, as shown in Fig. S2b. The reversed flow brings the trajectories over the slow
manifold and into the region with downward flow. The trajectories move down and are reinjected
into the spiralling oscillator. What actually makes the reversed flow is the k4AZ/(KA

M,2+A) part
in the equation for Ȧ (Eq. 13 in the main paper).

Figure S2: Slow manifold and direction of flow in phase space for the chaotic out-
flow controller. (a) Manifold created by the fast dynamics in the Z-variable (green), example
trajectory (blue), and arrows showing the flow in Z-direction (black). The manifold divides the
phase space into a region with downward flow and a region with upward flow. (b) Manifold
created by the fast dynamics in the Z-variable (green), example trajectory (blue), and arrows
showing the flow in AE-direction (black). There is reversed flow already for Z = 6. Parameters:
kip = 4, k2=1.5, k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=K
A
M,2=0.15, KE

M=0.5,
and KZ

M=0.03. The trajectory starts in [5.5, 4.5, 0.04] (red cross).

A comment about the F -manifold created by the fast dynamics in Z (Eq. 16 in the main
paper): This surface only guides the slow movement of the trajectories. The faster the dynamics
in Z compared to the dynamics in the rest of the system, the closer the trajectories will be to this
surface. The trajectories will move exactly on the surface in the limit case when the dynamics in
Z are instant. In that case we will have a 2D oscillator moving on the surface and there will no
longer be chaos.

The effect of integral control in oscillatory and chaotic reaction kinetic networks 3
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SM3: Movie – Poincaré sections, first-return maps, and movement
of the attractor in phase space for the chaotic outflow controller

Refer to movie file: SM3.mp4.

As part of our analysis of the extended outflow controller (Fig. 4a in the main text) we
recorded the chaotic attractor’s position and shape in phase space for bifurcations in the inflow
disturbance, kip, from 1 to 20, i.e., over the same range as shown in the bifurcation diagram in
Fig. 4d in the main text. The results are collected in the movie SM3.mp4, which shows how the
attractor evolves as kip increases. Each frame in the movie consists of four plots, as shown in
Fig. S3 and explained in the following.

The two upper plots (Fig. S3) show the attractor in phase space and its projection into the
AE-plane. The attractor changes shape and position as kip increases, but its center of mass
appears to stay in the same position relative to the A-axis. This illustrates the effect of integral
control; by keeping the average of A at a setpoint, the controller locks the attractor’s position on
the A-axis.

A half-plane (black and green) is drawn together with the attractor on the two upper plots
in the movie. This is used to create the Poincaré section and first-return maps shown in the two
lower plots in the movie. Poincaré sections and first-return maps are convenient tools to analyze
(chaotic) attractors. The half plane is defined by,

0 < A < 6.5, E =
9kip
32

+
19

8
, 0 < Z < 7, (S1)

so that it always is placed in a part of the attractor where no folding takes place and where all
intersections with this half plane are from the same side [43]. The Poincaré section (lower left
plot in the movie) shows where trajectories cross the half plane. Periodic oscillations produce
one (e.g., kip = 1.1), or several (e.g., kip = 3), distinct points on this plot as the trajectory always
cross the half plane in the same places. (This point often looks like a straight line in the movie
due to auto-scaling of the axis.) Chaotic oscillations on the other hand shows up as a bent curve,
e.g., kip = 9.15, as shown in Fig. S3 (lower left).

The Poincaré section is also used to draw the first-return map which is shown in the lower
right plot in the movie. The first-return map reveals how intersection n+1 of the Poincaré section
depends on intersection n. Chaotic attractors are often characterized by the appearance of their
first-return maps [42, 43]. We will not go into further detail here than to note that the first-return
map change in appearance for different chaotic values of kip. A value of kip = 3.45 produces a
unimodal map with two monotonic branches that meets in a minimum point, whereas kip = 9.15
produces a multimodal map as shown in Fig. S3 (lower right).

The effect of integral control in oscillatory and chaotic reaction kinetic networks 4
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Figure S3: Overview of plots shown in the movie SM3.mp4. The movie runs at two
frames per second and each frame shows the results from one simulation with a particular value
for the inflow disturbance kip, which is changed in steps of 0.05 from frame to frame. The other
parameters are: k2=1.5, k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=K
A
M,2=0.15,

KE
M=0.5, KZ

M=0.03. Each simulation is started with A0=8.30, E0=3.18, and Z0=0.16 as initial
conditions, but allowed to run for 500 time units before plotting to avoid startup transients.
The plot in the upper left position shows the attractor in phase space and a half plane given by
E = (9/32)kip + 19/8, 0 < A < 6.5, 0 < Z < 7. The plot in the upper right position shows
the projection in AE-space. The plot in the lower left position shows the Poincaré section where
the trajectories cross through the half plane, and the plot in the lower right position shows the
corresponding first-return map.

The effect of integral control in oscillatory and chaotic reaction kinetic networks 5
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SM4: The setpoint for the chaotic outflow controller and its con-
nection to the equilibrium point of the system

As done for the Brusselator in section 3.3 of the main text, it is also possible to relate the setpoint
of <A>τ and the behavior of <E>τ for the chaotic outflow controller to an unstable equilibrium
point of the overall system. The system equations for the chaotic outflow controller are repeated
below (Eqs. 13–15 in the main paper):

Ȧ = kip + k2A− k3AE

KA
M,1 +A

− k4AZ

KA
M,2 +A

(S2)

Ė = k5A− k6E

KE
M + E

(S3)

Ż = k7A− k8Z

KZ
M + Z

. (S4)

We could potentially find all possible equilibrium points for this system by setting the left
hand side equal to zero and solving the resulting equations. Unfortunately it is difficult to find an
explicit analytical solution without making some simplifications. We are here only interested in
the equilibrium point that has its A coordinate equal to the setpoint, and will therefore consider
the ideal case where E acts as a perfect integral controller, i.e., assume that KE

M � E. This holds
pretty well for the parameters we use, and better and better as kip increases, see the SM3 movie
(top panels). Using this assumption and setting Eq. S3 equal to zero gives:

A∗ =
k6
k5
. (S5)

It is tempting to use the same assumption for Z, i.e., that KZ
M � Z. This would lead to an

additional explicit value for A∗, something which is problematic. The assumption that KZ
M � Z

does however not hold for the parameter values that we use. The value of Z stays close to KZ
M for

a large portion of the time, as can be seen in the trajectories in the SM3 movie. Solving Eq. S4
for Z (Ż = 0) and inserting A∗ from above gives:

Z∗ =
k7A

∗KZ
M

k8 − k7A∗ =
k7

(
k6
k5

)
KZ
M

k8 − k7

(
k6
k5

) . (S6)

Solving Eq. S2 for E∗ (Ȧ = 0)

E∗ =
kip
k3

[
KA
M,1 +A∗

A∗

]
+
k2
k3

[
KA
M,1 +A∗]− k4

k3
Z∗

[
KA
M,1 +A∗

KA
M,2 +A∗

]
, (S7)

and then inserting A∗ and E∗ from Eqs. S5 and S6 gives:

E∗ =
kip
k3

KA
M,1 +

(
k6
k5

)
(
k6
k5

)
+

k2
k3

[
KA
M,1 +

(
k6
k5

)]
− k4
k3

 k7
(
k6
k5

)
KZ
M

k8 − k7

(
k6
k5

)
KA

M,1 +
(
k6
k5

)
KA
M,2 +

(
k6
k5

)
 . (S8)

Note that the actual position of this equilibrium point will differ slightly in the practical case,
depending on the value of KE

M . We have seen in the main text that the equilibrium is unstable.
However, the results in the main paper has shown that the average level of A is kept close to A∗

(Fig. 5), and we will thus expect the same for the average value of E and Z. As shown in Fig. S4,

The effect of integral control in oscillatory and chaotic reaction kinetic networks 6
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this is indeed the case. Looking at Fig. S4b and on the first term in Eq. S8 we clearly see how
the average level of E increases proportionally to the level of inflow disturbance.

The difference between <A>τ and the theoretical setpoint can be attributed to the level of
E and the parameter KE

M . E increases with kip and the removal of E becomes more saturated.
The f(E) fraction (see section 2.1 in the main text) gets closer to 1 and the controller operates
more and more like a perfect integral controller.

Figure S4: Average levels and ideal equilibrium point. Average levels (blue circles) of
the three state variables in the chaotic outflow controller (Eqs. S2-S4) plotted together with the
ideal equilibrium point (A∗, E∗, Z∗) (dashed blue lines) for different levels of inflow disturbances.
(a) Average level of A, <A>100, and A∗ (Eq. S5). (b) Average level of E, <E>100, and E∗

(Eq. S8). (c) Average level of Z, <Z>100, and Z∗ (Eq. S6). The averages are calculated over a
time length of τ=100. Parameters: k2=1.5, k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7, k8=75,
KA
M,1=K

A
M,2=0.15, KE

M=0.5, and KZ
M=0.03. Initial conditions: A0=8.30, E0=3.18 and Z0=0.16.

Transient effects are avoided by letting simulations run for a time length of 100 before calculating
the averages.
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SM5: Averaging over successive intersections of a Poincaré section

Since chaotic systems do not have a defined period we calculated the average over a specific length
of time τ in the main paper. This method is convenient, easy, and works well, but it is arguably
not as elegant as the calculation of the periodic average. An alternative approach that is more
equivalent to the periodic average is to calculate the average between two successive intersections
with a Poincaré section. We have done this for the same experiment as shown in Fig. 6 in the
main paper, and the results are shown in Fig. S5 on the following page. We have here used the
Poincaré plane given in Eq. S1, and its placement is shown in Fig. S5d–f. Each crossing of the
Poincaré plane is detected and marked with a red asterisk on the time series of A, E, and Z in
the figure. The average between to successive crossings is calculated by taking the integral of the
signal divided by the time between the crossings.

The results are similar to what is shown in the main paper. Both the average of A over a
specific length of time, and the average of A between two successive crossings of the Poincaré
plane, are kept constant despite disturbances (changes in the inflow parameter kip).

We selected not to use this Poincaré section based method for the results presented in the
main paper. This is because the method is cumbersome as the attractor has to be manually
inspected to make sure that the corresponding Poincaré plane is placed in a part of the attractor
where no folding takes place, and where all intersections with the Poincaré plane is from the same
side [43]. A new Poincaré plane thus has to be defined for each different system, and for each
different set of parameters. It may furthermore also be necessary to move the Poincaré plane
as the system is perturbed by disturbances, as these are changes in parameter values that cause
the attractor to move and change shape (see SM3). This makes this method inconvenient to use;
especially for studies where one wants to do a large sweep over different parameter values.

The effect of integral control in oscillatory and chaotic reaction kinetic networks 8
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Figure S5: Example response for the chaotic outflow controller to a stepwise change
in inflow with averages calculated between successive crossings of a Poincaré plane.
(a) Response to an inflow disturbance given as a stepwise change for the chaotic outflow controller
in Fig. 4a (Eqs. 13-15 in the main text). The disturbance kip is stepped from 13 to 15 at t=50,
and from 15 to 20 at t=150, as indicated. The level of A is shown in blue while the average of
A, <A>, calculated between successive crossings of a Poincaré plane (marked with red asterisks)
is shown in black. (b) Level and average of E. (c) Level and average of Z. Parameters: k2=1.5,
k3=3.8, k4=3.7, k5=0.65, k6=5.4, k7=7.7, k8=75, KA

M,1=K
A
M,2=0.15, KE

M=0.5, and KZ
M=0.03.

Initial conditions: A0=6.91, E0=6.65 and Z0=0.07. (d–f) Placement of the Poincaré plane used,
and the shape of the attractor for different kip values.

The effect of integral control in oscillatory and chaotic reaction kinetic networks 9
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SM6: Effect of integral action in an inflow controller

The second motif used in this study is an inflow controller (type 2 in [4]) shown in Fig. S6. The
reaction network for the controller part, E, is the same as in the outflow controller, but instead
of acting on the outflow of A it acts on the inflow. Also, since this controller compensates with
an inflow it is natural that the disturbance is an outflow (kop). The overall negative feedback
in this motif is achieved by E inhibiting the inflow of A (with inhibition constant KE

I ). Thus,
an increase in E will decrease the compensatory inflow of A. Except for the difference in how
these motifs act on A they both have integral control of A as long as the removal of E is close to
zero-order (KE

M � E).

Figure S6: Negative feedback inflow controller. Reaction network representation and rate
equations for the motif. The controller variable E is activated by A and feeds back by inhibiting
the inflow of A.

Periodic oscillations

Oscillations are in this controller achieved by having an extra component a in series with A. The
reaction kinetic network is shown in Fig. S7a, and the rate equations for this system are:

ȧ =
k1K

E
I

KE
I + E

− k2a

Ka
M + a

(S9)

Ȧ =
k2a

Ka
M + a

−
kopA

KA
M +A

(S10)

Ė = k5A− k6E

KE
M + E

. (S11)

This controller can provide robust control of A under both stationary and oscillatory condi-
tions. The rate constant kop represents the outflow disturbance of A. The controller species E
varies according to changes in kop and adjusts the compensatory flux j = k1K

E
I /(K

E
I + E) by

inhibition (with inhibition constant KE
I ).

Figures S7b-S7d show the oscillatory behavior in a, A and E for a stepwise change in kop. The
regulation of the periodic average in A, <A>, can be seen by the straight black line in Fig. S7c.
The periodic average of A is robustly maintained at <A>≈10.3 and is near independent of
the disturbance. The level of <A> is only somewhat lower than the theoretical setpoint, i.e.
k6/k5=10.77. This motif shows a more accurate, or perfect, control than the one in the main
text; the inaccuracy is lower compared to the outflow motif with autocatalysis. The explanation
behind this difference is as follows: The oscillatory behavior and maximum level of E in Fig. S7d

The effect of integral control in oscillatory and chaotic reaction kinetic networks 10
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is comparable to the behavior and level of E in Fig. 3b. The value of KE
M in the two examples

are, however, different at 0.01 and 0.5. This affects the f(E) factor (see Eq. 4), and thus the
controller accuracy.

Figure S7: Negative feedback inflow controller with oscillatory behavior. (a) Inflow
controller of third order without autocatalysis in A (Eqs. S9–S11). The controller variable E
is activated by A and feeds back by inhibiting the inflow of a. (b) Oscillations in a shown for
a stepwise outflow disturbance in kop (from 4 to 6 at t=500 as indicated). Parameters: k1=20,
k2=9, k5=0.13, k6=1.4, KE

I =0.2, Ka
M=1, KA

M=0.1, and KE
M=0.01. Initial conditions: a0=16.62,

A0=6.10 and E0=0.01. (c) Oscillations in A (blue) and periodic average of A (black) during the
experiment. (d) Oscillations in E during the experiment.

Chaotic oscillations

We extend the inflow motif (Eqs. S9–S11) with a Z-component to enable chaos. The overall
dimension of this motif is four; a, A, and E makes out the original limit cycle oscillator in three
dimensions, and Z is a one dimensional switch. The overall reaction kinetic model is shown in
Fig. S8a, and the rate equations are:

ȧ =
k1K

E
I

KE
I + E

− k2a

Ka
M + a

+ k4Z (S12)

Ȧ =
k2a

Ka
M + a

−
kopA

KA
M +A

(S13)

Ė = k5A− k6E

KE
M + E

(S14)

Ż = k7 −
k8ZA

KZ
M + Z

. (S15)

Notice that A now activates the outflow of Z and that Z activates the inflow of A; this is the
opposite structure compared to how Z is arranged in the outflow controller shown in Fig. 4a.
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The dimension of this inflow controller makes it difficult to get an intuitive understanding
of how chaos appears. The AEZ-phase space shown in Fig. S8b is an attempt to illustrate the
typical chaotic behavior in phase space by using color as a way to encode the fourth state variable
a. Trajectories circulate downwards like on a spring that is lying on an incline. They make a
small number of rotations with increasing amplitude in A and a until a very high value of a
(bright pink in the figure) is reached; this is then followed by a crash into the bottom of phase
space with Z ≈ 0. The trajectories then follows the AE plane (Z ≈ 0) before they are lifted up
by an increasing Z and reinjected at the top of the spring.

Depending on the strength of outflow disturbances, kop, this controller can show both stable,
periodic, and chaotic behavior. A bifurcation diagram for a certain set of parameter values is
shown in Fig. S8c. The system is asymptotically stable to a point for low values of kop; it starts to
oscillate when kop ≥ 2.02 and follows a period doubling route to chaos. The system is then mostly
chaotic until around kop = 7.87 where it again shows periodic oscillations. Increasing kop above
9 will cause the system to become unstable and cause a, E and Z to diverge towards infinity;
this happens because the set of parameters used limits the flow from a to A to a maximum of 2
(k2 = 2).

An example of the controller’s response to a stepwise increase in outflow is shown in Figs. S8d-
S8g. Increasing kop from 4 to 6 causes the system to do a couple of more circulations before each
reinjection (seen as more oscillations with increasing amplitude in the time series), but the average
level of A is kept constant. Further studies show, as expected, that the average value of A is kept
at its setpoint of k6/k5 = 10.77 over the whole relevant range of outflow disturbances. These
results are shown in Fig. S9. The regulation of <A>1000 is within ±2%, highlighting again the
importance of KE

M and f(E). The regulation of <A> during chaos is much tighter for this motif
with aKE

M = 0.01 than for the autocatalytic motif with aKE
M = 0.5 (Fig. 5). We remark, however,

that the small differences between <A>1000 and the theoretical setpoint, and the variance in this
difference seen in Fig. S9, can be attributed to both the level of E and the effect of the f(E)
factor, and to the time length used for averaging, ref. Eqs. 20–21.
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Figure S8: Extended inflow controller capable of showing chaotic behavior. (a) Chaotic
inflow controller where the green part is identical to the oscillatory model in Fig. S7a, and the
blue part is an additional feedback added to enable chaotic behavior. (b) Typical chaotic behavior
shown in AEZ-space. The fourth state, a, is encoded as color from cyan (a=0) to pink (a=20)
(linear relationship). Parameters: kop=4, k1=20, k2=9, k4=0.05, k5=0.13, k6=1.4, k7=7, k8=0.7,
KE
I =0.2, Ka

M=1, KA
M=0.1, KZ

M=0.1, and KE
M=0.01. Initial conditions: a0=0.26, A0=8.92,

E0=16.27 and Z0=33.34. (c) Bifurcation diagram showing how the amplitude of oscillations in A
changes with the strength of the outflow disturbance kop. (Simulations are run for 5000 time units
before collecting data to avoid transients.) (d) Response to a disturbance given as a stepwise
change in outflow kop (from 4 to 6 at t=1000). Chaotic behavior of a shown in blue and average of
a, <a>500 shown in black. (e) Chaotic behavior of A (blue) and average of A, <A>500 (black).
(f) and (g) Chaotic behavior (blue) and averages (black) of E and Z during the experiment. The
averages are calculated over fixed intervals with a length of τ=500.
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Figure S9: Control of the average of A under chaotic conditions. Average level of A,
<A>1000 (blue circles) for the chaotic inflow controller in Fig. S8a (Eqs. S12–S15) for differ-
ent levels of outflow disturbances. The dashed blue line shows the theoretical setpoint of A,
<A>set=k6/k5=10.77. The averages are calculated over a time length of τ=1000. Parameters:
k1=20, k2=9, k4=0.05, k5=0.13, k6=1.4, k7=7, k8=0.7, KE

I =0.2, Ka
M=1, KA

M=0.1, KZ
M=0.1,

and KE
M=0.01. Initial conditions: a0=0.26, A0=8.92, E0=16.27 and Z0=33.34. Transient effects

are avoided by letting simulations run for a time length of 1500 before calculating <A>1000.
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SM7: Movie – Trajectories moving on the attractor for the chaotic
inflow controller

Refer to movie file: SM7.mp4.

This movie shows an animation of how the trajectories move in phase space for the chaotic
inflow controller. The left plot in the movie shows the same AEZ-space as Fig. S8b, with the
fourth state, a, linearly encoded as a color from cyan (a=0) to pink (a=20). The right plot in
the movie shows the same results, but plotted in AZa-space with E linearly encoded as a color
from cyan (E=0) to pink (E=25).
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SM8: Alternative configuration of a chaotic inflow controller

The two controller motifs of the main text (outflow motif) and the supplementary information
(inflow motif) were first extended to exhibit limit cycle type periodic oscillations, and then ex-
tended again with a new variable Z to facilitate for the occurrence of reinjection in phase space,
and thus chaos. In both examples Z creates a feedback loop through itself and the controlled
species A, but is not directly affected by, or directly affects, the original controller species E.

Here we present an alternative configuration where Z instead is affected by E and where
Z affects itself by a feedback loop through all the components of the system (a, A and E).
This chaotic inflow motif, shown in Fig. S10a, does for a certain set of parameters show a much
more spiky behavior than the other two motifs. This system displays a behavior where the
controlled variable A shows spikes with about 50-fold higher peak values than the setpoint value,
see Fig. S10e. These spikes are however very short in length, and the overall average of A is still
defended at its setpoint.

The behavior of this system in phase space is visualized in Fig. S10b. The behavior can be
divided into a slow and a fast phase. The movement in the EZ-plane (A ≈ 0) is slow, seen from
the relative slow decay of E and Z in Figs. S10f and S10g. A shift in behavior then occurs when
the trajectory in the EZ-plane hits the AZ-plane (E ≈ 0). There is a rapid spike in a due to
the lack of inhibition on its inflow; this spike propagates through the system as a spike in A, and
E. The inhibition by E of a is quickly restored, and the concentrations of both a and A drops
rapidly back to low values as there is no saturation of the outflow of a and A in this system (the
removal of a and A is follows a linear relationship instead of Michaelis-Menten).

The rate equations for this system are:

ȧ =
k1K

E
I

KE
I + E

− k2a− k3aZ (S16)

Ȧ = k2a− kopA (S17)

Ė = k5A− k6E

KE
M + E

(S18)

Ż = k7 −
k8Z

KZ
M + Z

. (S19)

The bifurcation diagram in Fig. S10c shows how this system behaves for different strengths
of outflow disturbance (kop) from 1 to 10. Again we see that the system follows a period doubling
route to chaos, much like the inflow controller in SM6 (Fig. S8c). Chaos starts at kop=2.98, and
the system is then mostly chaotic for the rest of the considered range. The peak values of the
spikes vary greatly for different kop values. The average level of A is nonetheless kept remarkably
stable over this range of outflow disturbances, see Fig. S11. The regulation of <A> is actually
much tighter than for any of the examples used in the main text. The reason for this is that a
very low KE

M value is used in this example (10−6), which lets E operate very close to a perfect
integral controller.
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Figure S10: Alternative configuration of an extended and modified inflow controller
showing chaotic behavior. (a) Chaotic inflow controller extended from the oscillatory aAE
motif (Fig. S7a). The controller is extended with an additional species Z, which is affected by
E and which acts on a creating a feedback loop through all components of the system. (b) Typ-
ical chaotic behavior shown in AEZ-space. The fourth state, a, is encoded as color from cyan
(a=0) to pink (a=1000) (linear relationship). Parameters: kop=4, k1=106, k2=2, k3=0.2, k5=1,
k6=2, k7=0.5, k8=10, KE

I =10−6, KZ
M=10−7, and KE

M=10−6. Initial conditions: a0=8.390·10−4,
A0=4.135·10−4, E0=26.51 and Z0=214.54. (c) Bifurcation diagram showing how the amplitude
of oscillations in A changes with the strength of the outflow disturbance kop. Simulations are run
for 3000 time units before collecting data to avoid transients. (d–g) Response in a, A, E, and Z
(blue) to a disturbance given as a stepwise change in outflow kop (from 4 to 6 at t=1000). Note
that average values (black) are shown on the right axis. The averages are calculated over fixed
intervals with a length of τ=500.
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Figure S11: Control of the average of A under chaotic conditions. Average level of A,
<A>2000 (blue circles) for the chaotic inflow controller in Fig. S10a (Eqs. S16–S19) for differ-
ent levels of outflow disturbances. The dashed blue line shows the theoretical setpoint of A,
<A>set=k6/k5=2. The averages are calculated over a length of τ=2000 time units. Parame-
ters: k1=106, k2=2, k3=0.2, k5=1, k6=2, k7=0.5, k8=10, KE

I =10−6, KZ
M=10−7, and KE

M=10−6.
Transient effects are avoided by letting simulations run for 3000 time units before calculating
<A>2000.
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