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Abstract
In the 1960’s Brian Goodwin published a couple of mathematical models showing 
how feedback inhibition can lead to oscillations and discussed possible implications 
of this behaviour for the physiology of the cell. He also presented key ideas about 
the rich dynamics that may result from the coupling between such biochemical 
oscillators. Goodwin’s work motivated a series of theoretical investigations aiming 
at identifying minimal mechanisms to generate limit cycle oscillations and decipher-
ing design principles of biological oscillators. The three-variable Goodwin model 
(adapted by Griffith) can be seen as a core model for a large class of biological sys-
tems, ranging from ultradian to circadian clocks. We summarize here main ideas 
and results brought by Goodwin and review a couple of modeling works directly or 
indirectly inspired by Goodwin’s findings.

Keywords Goodwin model · Limit cycle oscillations · Feedback inhibition · 
Circadian rhythms

1  The Goodwin Oscillator: Feedback Inhibition, Non-linearity, 
and Limit Cycle

The development and adaptation of living organisms rely on the temporal ordering 
and spatial self-organization of cellular events. Regulatory mechanisms play a cen-
tral role in various aspects of cell physiology, including the control of tissue size 
(proliferation/apoptosis), the metabolic balance (e.g. glucose homeostasis), as well 
as the response to environmental stress (immunity) and to periodic environmental 
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changes (day/night cycle). These mechanisms originate at the cellular level, through 
the regulation of enzyme activity and of gene expression. Feedback inhibition, 
whereby enzyme activity is repressed by one of the metabolic products constitutes 
one of the major regulatory mechanism. While several examples of feedback inhi-
bition were reported in the sixties (Jacob and Monod 1961a, b; Umbarger 1961), 
the dynamical implication of this mechanism was not yet formally investigated until 
Brian Goodwin entered the scene.

Goodwin’s first publications on this subject were a seminal book based on his 
1959 Ph.D. thesis and a follow-up paper where he expounded a couple of thought-
ful ideas, supported by mathematical models and results of numerical simulations 
(Goodwin 1963, 1965). His motivation stems from several well documented exam-
ples of feedback inhibition. For example, cytidine triphosphate (CTP) was known to 
inhibit aspartate transcarbamoylase (ATCase), the first enzyme in the biosynthesis 
of pyrimidines in B. subtilis (Masters and Donachie 1966). Similarly, it was shown 
that tryptophan inhibits anthranilate synthetase, an enzyme involved in its biosyn-
thesis pathway, in E. coli (Cohen and Jacob 1959). To describe such a mechanism, 
Goodwin devised a mathematical model simulating the time evolution of two vari-
ables, which can be interpreted as follows: a given gene is transcribed into mRNA 
(variable X) which is then translated into protein (variable Y). The latter acts as a 
repressor: it inhibits mRNA synthesis (Fig. 1A). This repression is described by a 
nonlinear, hyperbolic function: f = K∕(K + Y) , which decreases with increasing 
inhibitor concentration (Y) and determines the transcription rate. The other pro-
cesses follow zero-order or first-order kinetics (Fig. 1B). Numerical integration of 
these equations produces self-sustained oscillations of X and Y (Fig. 1D). This first 
observation challenges the commonly accepted idea that concentrations would even-
tually stabilize at equilibrium. This minimal model also highlights the critical role of 
nonlinear negative feedback in the generation of oscillatory behaviour and serves as 
a basis to investigate the physiological consequences of such oscillations.

Anticipating that this type of regulatory circuit would not be found as an isolated 
system in the cell, Goodwin (1963, 1965) explored possible dynamical behaviours 
resulting from the interaction between two oscillators. He considered the case of two 
repressors that can repress both the genes coding for itself and the gene coding for 
the other repressor. Through numerical simulations, performed for various sets of 
parameter values, he observed several types of non-trivial behaviours: entrainment 
(obtained when one oscillator drives the second one), beating (quasi-periodicity), 
synchronization with various phase relationships, subharmonic resonance (associ-
ated to frequency demultiplication) or asynchronous quenching (oscillation death). 
Importantly, Goodwin remarked that the type and stability of the resulting behaviour 
depend on the amplitude of the free oscillators (itself related to the non-linearity of 
the repression) and on their relative frequencies (Goodwin 1963). Goodwin com-
mented on the possible physiological roles that such complex regulatory networks 
may have. For example, anti-phase oscillations may underlie the circadian organiza-
tion in the algae Gonyaulax where certain processes (such as photosynthesis) show 
a peak of activity during the day while other processes (such as luminescence) are 
maximal at night.
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An important caveat of the two-variable model should be underlined. Due to the 
zero-order kinetics of the degradation rates, the variables, supposed to represent 
chemical concentrations, may become negative (Fig. 1D), questioning the validity 
of the model to describe biological observations. This limitation can however be 
circumvented by using Michaelis–Menten type of degradation kinetics (Fig.  1C). 
This guarantees that the variables remain positive and practically undamped oscil-
lations are observed when the Michaelis constants K1 and K2 become negligible in 
comparison with, respectively, X and Y (Fig. 1E). However, with increasing K1 and 
K2 values, the oscillations become more and more damped. When K1 and K2 values 
are negligible Goodwin’s two-dimensional oscillator shows robust homeostasis due 
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Fig. 1  (A) Scheme and (B) equations of the two-variable conservative Goodwin model. (C) Equations of 
the modified two-variable Goodwin model with Michaelis–Menten degradation kinetics. (D) Oscillations 
obtained by numerical integration of the two-variable model given in (B), for the following parameter 
values: α1 = 2, α2 = 1, δ1 = δ2 = 1, K = 0.5. At time t = 30 the value of variable X is increased. (E) Damped 
oscillations obtained by numerical integration of the modified model given in (E) for the same parameter 
values as in (D) and K1 = K2 = 0.001
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to integral control in X, where X oscillates around the set-point Xset = δ2/α2 (Thorsen 
et al. 2014). As an alternative to a linearization of the equations, the period can be 
approximated by writing the equations in form of a harmonic oscillator (Box 1).

Box 1  Estimation of the Period for the Two-Variable Goodwin Model

Assuming that the Michaelian constants K1 and K2 are small, then equations in Fig. 1C reduce to 
the equations in Fig. 1B. In this case, the model can be approximated by an harmonic, homeostatic 
oscillator and the period can be estimated as follows.

We can rewrite the first order ODE system as a single second order equation:
Ẍ = −

"1K

(K+Y)2
Ẏ = −

"1K

(K+Y)2

(

"2X − $2

)

Ẍ

"2
+ X =

#2

$2

= Xset

Thus, X oscillates around its “set” value, Xset =
!2

"2

 at a frequency given by !2 =
"1"2K

(K+Y)2
.

Note that Xset does not depend on α1 or δ1 (homeostatic oscillations).
At steady state, Ẋ = Ẏ = 0 , Xss = Xset =

!2

"2

 , and Yss = K
!1−"1
"1

 . The period is thus estimated as

T = 2!

"
= 2!
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√

$1

$2

K

For the parameter values used in Fig. 1, the estimated period is T = 2π.

It should also be stressed, as demonstrated by Goodwin, that his two-variable 
model from 1963 is conservative (Box 2). It thus lies in the class of harmonic oscil-
lators, idealized by the pendulum or the spring (under ideal conditions), much like 
the Lotka-Volterra predator–prey or autocatalytic chemical oscillator models (Lotka 
1920; Volterra 1926). The oscillations depend on the initial conditions. As a con-
sequence, there is no damping (no energy dissipation) and, after a perturbation, the 
amplitude of the oscillations does not recover its initial value (Fig. 1D). Recogniz-
ing that this type of oscillators does not account for the presumably robust nature 
of biological clocks, Goodwin then devised a three-variable extension of the previ-
ous model (Goodwin 1963, 1965; Fig. 2A, B). Using first-order degradation rates, 
he ensured that the variables remain positive, and that adding a delay (through the 
third variable) would favor the occurrence of self-sustained oscillations. This type 
of oscillations, referred to as limit cycle oscillations, are robust in the sense that, 
after an instantaneous perturbation in concentrations, the system would eventually 
recover its defined amplitude and period (Fig. 2C).
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Box 2  The Two-Variable Goodwin Model is a Conservative System

Goodwin’s two-variable oscillator is an example of a conservative system, which means that, in anal-
ogy to classical mechanics, an “energy function” H (or Hamiltonian) can be found of the form

H(X,Y) = − ∫ ẊdY + ∫ ẎdX

which satisfies the Hamilton–Jacobi equations of motion, i.e.
!H

!Y
= −Ẋ; !H

!X
= Ẏ

Assuming that K1 and K2 (Fig. 1C) are negligible, we insert the expressions of Ẋ and Ẏ  into the 
above equation for H, integrate, and obtain (by setting the integration constant to zero):

H(X,Y) = −!1K ln (K + Y) + "1Y +
!2

2
X2 − "2X

The oscillations of Goodwin’s two-variable model can be described as closed trajectories on the 
H(X, Y) surface. The figure below shows the H-function for the parameters used in Fig. 1 (α1 = 2.0, 
α2 = 1.0, δ1 = δ2 = 1.0, K = 0.5), as well as its projection onto the (X, Y) plane. The close curve is the 
trajectory obtained for H = 0.3.

Repression in this three-variable model is described by a sigmoidal, Hill func-
tion, f = Kn∕(Kn + Zn) (Fig. 3A). A condition, derived by Griffith (1968), to obtain 
limit cycle oscillations in this system is that the Hill exponent (sometimes referred 
to as the cooperativity degree, and often named, arguably, Hill coefficient), n, must 
be larger than 8. The oscillations reported by Goodwin for n = 1, obtained with an 
analog computer, obviously resulted from numerical artifacts. Nevertheless, today, 
the idea that biological rhythms may be viewed as limit cycle oscillations is taken 
for granted (Goldbeter 1996; Forger 2017). Phenomena such as periodic metabolic 
processes, neuronal activity, calcium signalling, or circadian rhythms are indeed 
commonly modeled by limit cycle oscillators (Goldbeter 1996) and their analysis 
benefits from a well-established theoretical framework (Forger 2017).

The emergence of oscillations in negative feedback systems led Brian Goodwin 
to explain the observation that certain enzymes show a periodic increase in their 
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activity, once per division cycle, as reported in several studies on E. coli and B. sub-
tilis (Masters and Donachie 1966, and references therein). Such a temporal ordering 
of events during the cell cycle cannot be explained by the sequential doubling of 
the gene copies during the DNA replication cycle as such model would predict that 
genes could only be transcribed according to a fixed sequence (determined by their 
position in the genome) and that it would be impossible to induce an enzyme at any 
point in the cell cycle or to reverse the order in which enzyme steps occur during the 
cell cycle. An oscillatory system, entrained by periodic cell division, can however 
account for this flexibility provided that the autonomous period of the oscillator is 
close to the cell division time (Goodwin 1966, 1967). Later, Tyson showed that this 
condition implies that the half-life of the enzyme must be much shorter than the cell 
division time (Tyson 1979).

X
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C

B

Fig. 2  (A) Scheme of the three-variable Goodwin model. (B) Equations of the Goodwin-Griffith three-
variable model. (C) Limit cycle oscillations obtained by numerical integration of the model given in (B), 
for the following parameter values: α1 = 5, α2 = α3 = 5, γ1 = γ2 = γ3 = 0.5, n = 10, K = 1. At time t = 30 the 
value of variable X is increased
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Fig. 3  (A) Linear vs non-linear response curves. In biomolecular systems, non-linearity typically origi-
nates from saturable enzyme reaction (Michaelis–Menten kinetics, f (S) = K∕(K + S) ) and cooperative 
processes (Hill kinetics, f (X) = Kn∕(Kn + Sn) , here shown for a low Hill exponent (grey curve) and a 
large Hill exponent, black curve). (B) Various mechanisms that can lead to a Hill kinetics: (a) Positive 
cooperative binding of the substrate S to multiple catalytic sites of an enzyme. (b) Multi-site phospho-
rylation. (c) Complex formation of a transcriptional factor prior to the binding to the promoter of a gene. 
(d) Cooperative binding of a transcription factor to multiple binding sites in the promoter of a gene

2  Theoretical Developments: In Search of Ingredients to Promote 
Oscillations

The three-dimensional Goodwin model, due to its apparent simplicity and due to its 
rich dynamics, rapidly attracted the attention of mathematical biologists. Their work 
not only led to analytical developments and theorems but also provided important 
insights on the design of biological oscillators, and their behaviour in presence of 
noise or external periodic stimulation.
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Early theoretical works on the Goodwin model were devoted to prove the 
existence of limit cycle oscillations (Griffith 1968; Allright 1977) or to analyti-
cally solve the two-variable model (Singh 1977). In numerous subsequent arti-
cles, authors have proposed variants and extensions of Goodwin’s oscillator in 
search of processes favoring the emergence of limit cycle oscillations. Those 
extensions include nonlinear reaction rates (Walter 1974; Palsson and Groshans 
1988), time delay through multiple reaction steps (Tyson and Othmer 1978; 
Invernizzi and Treu 1991), incorporation of an explicit time delay (MacDon-
ald 1977; Bliss et al. 1982), and multi-loop negative feedbacks (Mees and Rapp 
1978).

In a short paper, Tiwari and Fraser (1973) reported the first stochastic simula-
tions of the Goodwin model. They assumed that the synthesis of mRNA obeys 
a Poisson process and that the kinetic constants (delay in translation, degrada-
tion rates, etc.) are random variables, exponentially distributed. By screening 
different parameter values, while keeping the Hill exponent to n = 1, they found 
that, in general, the variables displayed irregular but non-damping oscillations 
(Tiwari and Fraser 1973; Tiwari et al. 1974). This highlights the possible con-
structive role that noise can have in the emergence of self-sustained oscillations.

Fraser and Tiwari (1974) recognized that stochastic oscillations resulting from 
a single feedback loop would not constitute a reliable clock but they predicted 
that a number of such circuits, operating independently or coupled to each other, 
could produce a more precise rhythm. They developed a computer program to 
efficiently simulate networks of Goodwin oscillators cyclically connected: the 
repressor of each circuit represses the gene of the next circuits, and the repressor 
of the last circuit represses the gene in the first circuit. Their numerical simula-
tions showed that a network with an odd number of genes cyclically connected 
can oscillate over a wide range of conditions and that stochasticity favors the 
emergence of oscillations. Remarkably, 25 years later, a very similar design was 
experimentally implemented in E. coli to demonstrate that oscillations can read-
ily be generated through a network of three cyclically repressing genes, a system 
named the Repressilator (Elowitz and Leibler 2000).

Periodic entrainment, already tackled by Goodwin, was reinvestigated by 
Woller et al. (2014). Combining analytical and numerical results, they showed 
that very different dynamics are obtained, depending on whether the Goodwin 
oscillator exhibits damped or limit cycle oscillations. More specifically they 
found that the entrainment region as a function of the modulating period is much 
larger when the free oscillator is in the damped regime. In contrast, when the 
free oscillator is in the limit cycle region, it exhibits, upon entrainment, a much 
richer dynamics: quasi-periodicity, birhythmicity, or coexistence of a limit cycle 
and quasi-periodicity. The fact that damped oscillators are more easily entrained 
over large domains of periods may be an advantage for circadian clocks, which, 
in natural conditions, run under light–dark cycles and must then be efficiently 
entrained, presumably without exhibiting complex dynamics (e.g. chaos or 
quasi-periodicity). Similarly, simulations of coupled Goodwin-like oscillators 
suggested that damped oscillators are more efficiently synchronized to each 
other (Gonze et al. 2005; Komin et al. 2011), which may explain why circadian 
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oscillations recorded at the single cell level in the mammalian pacemaker appear 
damped in many cells in isolated cell cultures (Webb et al. 2012).

3  The Hill Function and its Alternatives

Hill functions are commonly used to model genetic and biochemical systems. 
There are several ways to derive such a function from detailed molecular mecha-
nisms (Fig. 3B). In enzyme kinetics, the Hill function may result from the coop-
erative binding of multiple substrate or ligand molecules to an enzyme or a 
receptor (Segel 1975). At the transcriptional level, using the Hill function can be 
motivated by the formation of repressor protein complexes or by the cooperative 
binding of the repressor to the gene promoter (Keller 1995; Alon 2006). A large 
Hill exponent promotes oscillations (Griffith 1968) and allows analytical studies 
(Painter and Bliss 1981; Woller et al. 2013). However, the molecular processes 
mentioned here rarely yield Hill exponent values higher than 3 or 4. This led sev-
eral authors to question the validity of this function for n > 8 and to propose alter-
natives (Fig. 4).

Some works cited in the previous section already provide mechanisms allow-
ing a reduction of the minimum value of the Hill exponent required to obtain limit 
cycle oscillations. These mechanisms include delay via additional intermediary 
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Fig. 4  Variants and extensions of the Goodwin model. (A) Original Goodwin model. (B) Delay intro-
duced through additional intermediary variables (Tyson and Othmer 1978). (C) Non-linear degradation 
kinetics (Michaelis–Menten) (Gonze et  al. 2005). (D) Y-mediated, reversible activation/deactivation 
(e.g. via phosphorylation/dephosphorylation) of variable Z, standing here for a transcriptional activator 
(Cheng et  al. 2009). (E) Sequestration of a transcriptional activator A by protein Z (Kim and Forger 
2012). (F) Multi-site phosphorylation (Gonze and Abou-Jaoudé 2013)
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variables (Fig. 4B) or additional sources of non-linearity (Fig. 4C) (Walter 1974; 
Bliss et al. 1982). It should be noted that replacing a linear degradation step by 
one with Michaelian kinetics not only enables limit cycle oscillations with n = 1, 
but also relaxes the condition that all degradation rates must be nearly equal 
(Bliss et al. 1982, summarized in Fall et al. 2002 (see chapter 9)).

Motivated by observations from the Neurospora circadian clock, Cheng et  al. 
(2009) considered that the total concentration of the compound Z is constant but 
that Z can reversibly switch between an active state (e.g. phosphorylated form) and 
an inactive state (e.g. dephosphorylated form). They further assume that Z is a tran-
scriptional activator and that protein Y induces the deactivation of Z (Fig. 4D). The 
phosphorylation/dephosphorylation kinetics obeys Michaelis–Menten kinetics and 
displays zero-order ultrasensitivity (ZOU) (Goldbeter and Koshland 1981). This 
adaptation of the model allows to generate oscillations with a reduced value for the 
Hill exponent, characterizing, here, the transcriptional activation.

In the context of circadian clocks in mammals and Drosophila, Kim and Forger 
(2012) considered a mechanism based on the sequestration of a transcriptional acti-
vator (A) by the repressor (Z) as another alternative to Hill function (Fig. 4E). In 
this model, a nonlinear threshold is obtained when the dissociation constant between 
A and Z is small, and limit cycle oscillations occur when a stoichiometric balance 
between A and Z is achieved. The difference between the Hill and the sequestration 
mechanisms was further investigated by Kim (2016). Besides other differences, the 
sequestration mechanism was shown to enable a better control of the period when a 
population of oscillators are coupled.

Finally, it should be stressed that a high Hill exponent can be reached by mecha-
nisms such as multi-site phosphorylation of a protein (Gunawardena 2005). A model 
that explicitly describes such a process agrees well with the original Goodwin 
model provided that the phosphorylation/dephosphorylation kinetics is fast enough 
(Fig. 4F) (Gonze and Abou-Jaoudé 2013).

4  Period Control and Temperature Compensation

A fundamental characteristic of any oscillatory behaviour is the period. It is impor-
tant to understand how kinetic parameters affect the period because the function of 
a cellular oscillator critically depends on it. Goodwin already showed that, in his 
three-variable model, protein stability is the major determinant of the period of 
the oscillations. When discussing properties of coupled oscillators, he also noted 
that relatively long-period rhythms such as circadian or monthly rhythms, can be 
explained in terms of nonlinear interactions and do not necessary require slow 
kinetic processes (Goodwin 1965).

As mentioned earlier, some oscillatory enzymes exhibit a periodic increase in 
their activity which matches the cell division cycle. The enzyme oscillator is actu-
ally entrained by the cell cycle (Goodwin 1966). This entrainment is only possible 
if the period of the oscillator is close to the cell division time. Tyson (1979) ana-
lyzed a generalized Goodwin model (with additional intermediary components) to 
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understand how such a long period can be generated. He showed that if the coopera-
tivity in the negative feedback is not too large (compensated by the additional steps 
in the loop), then the period of the oscillations will be much longer than the half-life 
of the most stable component in the loop. On the other hand, if the cooperativity is 
very large, then the period of the oscillations can approach the longest half-life.

It is however not straightforward to intuitively predict the relationship between 
the half-life of a protein and the resulting period for arbitrary oscillator models. 
Intriguingly, even in closely related minimal models, the profile of the period as a 
function of a clock protein degradation rate can be markedly different. Whereas in 
the original three-variable Goodwin oscillator, the period decreases with the degra-
dation rate of variable Z, an opposite tendency is observed in a variant of the Good-
win model that incorporates additional intermediate variables, reversible processes 
(phosphorylation/dephosphorylation), and Michaelis–Menten kinetics (Goldbeter 
1995). A systematic analysis of the two models revealed that the degree of satu-
ration of various processes such as mRNA and protein degradation, as well as the 
kinetic order and velocity of the phosphorylation steps, have crucial effects on the 
period profile (Gérard et al. 2009).

Biochemical reaction rates depend on temperature. Kinetic rates generally 
increase with temperature, although, at high temperature, some enzyme reaction 
may slow down (due to the denaturation of enzymes). Such changes in kinetic rates 
are expected to influence the dynamics of the oscillator. Sensitivity to temperature 
may impair the function of the oscillator and thereby be harmful for the cell. The 
Goodwin model was used to establish the conditions that allow keeping the period 
relatively constant with respect to temperature, a property called temperature com-
pensation (see more below).

5  How to Make the Oscillations Robust and the Period Tunable?

The Goodwin oscillator demonstrates that with a minimum number of ingredients, it is 
possible to generate limit cycle oscillations. In biological systems, however, the mech-
anisms underlying oscillations are often more complex. They typically involve multi-
ple sources of non-linearity and interlocked feedback loops. It is therefore interesting 
to study the possible advantages of such designs (Novak and Tyson 2008). Inversely, 
we may also wonder how to construct a robust oscillator with a tunable period.

The role of saturable kinetics was already pointed out above. Kurosawa and col-
leagues (Kurosawa et al. 2002; Kurosawa and Iwasa 2002) investigated this question 
more systematically. They distinguished “in-loop” reaction steps (such as synthesis 
and phosphorylation) from “branch” reaction steps (degradation and back transport of 
the protein from the nucleus to the cytosol). They proved mathematically that kinetic 
saturation in the “in-loop” reaction steps tends to suppress the oscillations, whereas 
saturated “branch” reaction kinetics rather favors the occurence of the oscillations.

Tsai et  al. (2008) showed, through extensive computational simulations, that 
tunability of the period (while keeping the amplitude nearly constant) can be eas-
ily achieved when the negative circuit is coupled to a positive circuit. This tuna-
bility makes the interlocked feedback loop design suitable for biological rhythms 
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like heartbeats, cell cycle, or frequency-coding systems, which need to produce a 
constant output over a range of frequencies. Positive-plus-negative oscillators also 
appear to be more robust towards changes in parameter values, explaining why they 
are also found in contexts where an adjustable frequency is not needed, but where 
robustness to fluctuations in the environment is required, as in circadian clocks.

In the same line, Saithong et al. (2010) showed that interlocked multi-loop struc-
tures reinforces robustness by enhancing the response to external and internal vari-
ations. Interestingly, they also found that reducing the degree of nonlinearity could 
sometimes increase the robustness of models, implying that ad hoc incorporation of 
nonlinearity could be detrimental to a model’s performance.

Ananthasubramaniam and Herzel (2014) showed that the addition of positive feed-
backs to the Goodwin model promotes oscillations at lower degrees of cooperativity, 
and highlighted kinetic mechanisms that may facilitate the emergence of oscillations, 
such as self-activation and Michaelis–Menten degradation. The positive feedback loops 
are most beneficial when acting on the shortest-lived component, where they function 
by balancing the lifetimes of the different components of the oscillator. This benefit is 
measured by the reduction in the cooperativity degree required to generate limit cycle 
oscillations. Interestingly, these authors also showed that the benefit of multiple positive 
feedbacks is cumulative. Moreover, these positive feedback motifs allow oscillations 
with longer periods than that determined by the lifetimes of the components alone.

Baum et al. (2016) studied the robustness of period and amplitude of various pro-
totypical systems, which can be viewed as extensions of the Goodwin model. To this 
end, they adopted a comprehensive computational approach and focused on three 
features: negative vs positive feedback, Michaelis–Menten vs mass action kinetics 
in degradation and conversion reactions, and reactions vs regulatory processes. This 
work, as well as the previously cited studies, highlight the importance of reaction 
kinetics and feedback types for the variability of period and amplitude and therefore 
for the development of predictive models.

6  Applications of the Goodwin Model: From Metabolic Regulation 
to Circadian and Ultradian Rhythms

The differential equations that bear today Goodwin’s name were, as commented by 
him (Goodwin 1997), inspired by the discoveries of Jacob and Monod (1961a, b) 
on repressing and de-repressing gene regulatory mechanisms. Although Goodwin 
(1963, pp. 20–21) described the potential importance of negative feedback regula-
tion of genes for circadian oscillations, there was, however, no immediate attempt 
to apply the Goodwin equations to circadian rhythms. In early works, his so-called 
“epigenetic system” was mainly applied to the regulation of biosynthetic/metabolic 
pathways (Goodwin 1963, 1965, 1976), and protein synthesis (Maynard Smith 
1968), and served as a generic model to investigate the coupling between biochemi-
cal oscillators (Goodwin 1963, 1976).

The first negative feedback modeling of a circadian rhythm (including phase 
resetting behaviors) appears to be due to Johnsson and Karlsson (1972) when study-
ing the petal movements in Kalanchoë plants (Karlsson and Johnsson 1972). The 
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approach taken there is based on a control-engineering aspect, where a circadian 
variable c(t) oscillates around a reference point cref due to a certain time delay and 
nonlinear elements imposed on a negative feedback system. This control systems 
approach, which has been further developed and applied by Lewis (1999), can be 
considered to be analogous to Goodwin’s, but instead of focusing on the molecular 
repressing and de-repressing reactions as in the Goodwin oscillator, the Johnsson-
Karlsson model gives a description of the different biophysical subsystems within a 
negative feedback loop. Thus, the Goodwin oscillator can be considered as a molec-
ular representation of Johnsson and Karlsson’s control systems approach.

Ludger Rensing’s lab was probably the first to apply the Goodwin oscillator to 
circadian rhythms (Drescher et al. 1982). Among other experiments, they perturbed 
the circadian glow rhythm of Gonyaulax with single or double pulses of anisomycin 
and modelled the ensuing response/resetting kinetics with the Goodwin equations. 
The similarity of the response to chemical pulses observed in the experiments and 
simulated by the Goodwin model led Rensing and Schill (1985) to conclude that 
“the functional structure of the model may represent a possible structure of the cir-
cadian oscillator.”

A few years later, experimental studies on Drosophila (Hardin et al. 1990) and 
Neurospora (Aronson et al. 1994) confirmed the negative feedback structure of cir-
cadian rhythms predicted by Rensing and Schill, implemented as transcriptional-
translational negative feedback loops (Dunlap 1999). The X, Y, and Z variables 
of the Goodwin oscillator (Fig. 2A, B) could then be directly linked to the clock-
mRNA, clock-protein, and the repressor, forming the core of the circadian clock.

This correspondence allowed to predict the dynamics of circadian clock compo-
nents. The degradation terms in the Goodwin oscillator were found to have a signifi-
cant effect on the period length indicating that mutations in a clock gene leading to 
either shorter or longer period length may relate to more rapid or slower degradation 
rates for this gene’s mRNA or protein. This relationship between stability of clock 
components and the circadian oscillator’s period length has been used to account for 
the influence of temperature on Neurospora and Drosophila clock mutants (Ruoff 
et  al. 1996, 1999a). For Neurospora, the Goodwin model-based predictions were 
confirmed by showing that the half-life of the clock-protein FREQUENCY (FRQ) 
largely determines the circadian period (Ruoff et al. 2005), but, interestingly, only 
as long as the proteasomal complex which degrades FRQ remains intact (Larrondo 
et al. 2015). The Goodwin model was also tested by using perturbation pulses of 
heat and cycloheximide (Ruoff et al. 1999b), as well as single and double pertur-
bation pulses of light on the conidiation rhythms of different Neurospora clock 
mutants (Ruoff et  al. 2001). In all cases, predictions with the Goodwin oscillator 
agreed well with experiments.

Temperature compensation, one of the defining properties of circadian clocks 
(Pittendrigh 1954; Dunlap et al. 2004), has probably been the most important sin-
gle factor that sparked the interest of scientists in biological rhythms (Sweeney 
and Hastings 1960). Temperature compensation means that for different but con-
stant temperatures the period length is kept within a relatively narrow range. There 
have been many different approaches to explore how homeostasis of the period may 
be achieved (Ruoff et al. 1997). Among the first proposals, Hastings and Sweeney 
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(1957) suggested that the underlying chemical reactions of a circadian oscilla-
tor should oppose each other, and thereby damping the influence of the tempera-
ture on the period. By applying the Arrhenius equation to each rate constant of the 
clock component processes, it can be shown that all biochemical oscillator models, 
including the Goodwin oscillator, should be capable of temperature compensation. 
In general, a temperature insensitive period is achieved due to a balance between 
temperature-induced period increasing and period decreasing reactions, where the 
activation energies of the individual component processes serve as scaling factors 
for the individual reactions’ contributions to the period. In the Goodwin model the 
degradation reactions of the clock components X, Y, Z, oppose their synthesis reac-
tions (Ruoff et al. 2005).

In parallel with the works by Rensing and Ruoff, Goldbeter extended the Good-
win oscillator by including enzymatic degradation reactions, reversible phosphoryl-
ation/dephosphorylation steps, and nuclear transport (Goldbeter 1995). This model 
accounts for the circadian oscillations of PER mRNA and protein in Drosophila. 
The model has been tested with respect to temperature compensation (Leloup and 
Goldbeter 1997), where it was found that changes in the parameter values have 
opposing effects on the period in agreement with the “opposing balancing” concept 
described above.

Over the years the discovery of additional clock genes and multiple interlocked 
feedback loops led to the development of detailed molecular models (e.g. Leloup 
and Goldbeter 2003; Forger and Peskin 2003; Becker-Weimann et al. 2004; Mirsky 
et al. 2009; Relógio et al. 2011), but, interestingly, despite the presence of additional 
positive and negative feedback loops which may also contribute to the generation 
of stable oscillations, their core structure always relies on a Goodwin-like negative 
feedback loop. It is noteworthy that, despite its simplicity, the Goodwin model prop-
erly reproduces core features of the circadian clock, notably its response to short 
light pulses, jetlag and seasonal phase shifts (Ananthasubramaniam et al. 2020).

Besides circadian rhythms, a variety of ultradian rhythms, characterized by a 
period significantly smaller that 24 h, have also been identified, among which many 
originate from a feedback inhibition mechanism. Thus, the pulsatile secretion of 
hormones, the oscillatory behaviour of the NF-κB signalling transcription factor, or 
the oscillations of the Notch effector gene Hes1 are examples of ultradian rhythms 
that have been modeled by Goodwin-like equations (Smith 1980; Krishna et  al. 
2006; Zeiser et al. 2007). Recently, Santorelli et al. (2018) build a hybrid “Hes1” 
oscillator combining synthetic and natural parts and, remarkably, the oscillations of 
Hes1 expression, recorded at the level of single cells, are in good agreement with the 
prediction of a (slighly adapted) Goodwin model.

A delayed negative feedback loop, possibly augmented with additional feedback 
loops, thus appears at the core of various biological oscillators. It is however worth 
to note that not all biological oscillators are appropriately described by the Good-
win model. Glycolytic oscillations for example result from a positive feedback loop 
exerted by the product of a reaction on the enzyme that catalyzes its own produc-
tion (Goldbeter 1996). Calcium oscillations are generated by a mechanism called 
calcium-induced calcium release (CICR), whereby calcium triggers the release of 
calcium from intracellular  Ca2+ stores (e.g. endoplasmic reticulum) into the cytosol 
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(Goldbeter 1996). These examples, as many others, fall in the class of “amplified 
negative-feedback loops” oscillators, for which the positive loop is an essential com-
ponent of the oscillator (Novak and Tyson 2008).

7  Concluding Remarks: Towards a Theoretical Physiology of Behavior

Goodwin concluded his 1965 paper by stating that “the ultimate goal of these stud-
ies is a theoretical physiology of behavior, which will allow one to use the knowl-
edge of elementary control processes such as those governing enzymatic synthesis 
and activity as the basis for a comprehensive, predictive theory of biological organi-
zation” (Goodwin 1965). The number of theoretical papers on oscillatory systems in 
biology, inspired directly or indirectly by Goodwin, is continuously growing. Today 
detailed predictive models for circadian and ultradian rhythms are available. These 
models, constructed in close relationship with experimental data and sometimes 
parameterized by fitting to experimental time series, still fully exploit the notions of 
feedback, limit cycle, and synchronization evoked by Goodwin, and are of great help 
to understand biological organization.
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