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Abstract—Genetic manipulation is increasingly used to fine
tune organisms like bacteria and yeast for production of
chemical compounds such as biofuels and pharmaceuticals.
The process of creating the optimal organism is difficult
as manipulation may destroy adaptation and compensation
mechanisms that have been tuned by evolution to keep the
organisms fit. The continued progress in synthetic biology
depends on our ability to understand, manipulate, and tune
these mechanisms. Concepts from control theory and control
engineering are very applicable to these challenges. From
a control theoretic viewpoint, disturbances rejection and set
point tracking describe how adaptation mechanisms relate to
perturbations and to signaling events. In this paper we inves-
tigate a set regulatory mechanisms in the form of biochemical
reaction schemes, so-called controller motifs. We show how
parameters related to the molecular and kinetic mechanisms
influence on the dynamical behavior of disturbance rejection
and set point tracking of each controller motif. This gives
insight into how a molecular controller motif can be tuned
to a specified regulatory response.
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I. INTRODUCTION

A. Homeostasis, disturbance rejection and set point track-

ing

Homeostasis is described as the mechanism behind

the observed adaptation of an organism in a changing

environment [1], [2]. From a control theoretic point of

view homeostasis can be described by the properties of

disturbance rejection and set point tracking.

A physiological example of disturbance rejection is the

intravenous/oral glucose tolerance test (IVGTT/OGTT),

where the blood glucose concentration is measured at

regular intervals after injecting/eating large amounts of

glucose [3]. If the blood glucose level is above a pre-

defined level after a certain amount of time, the patient is

often diagnosed as diabetic [4]. Over the last half century,

such disturbance rejection studies are reported in a vast

number of publications, see e.g. [5], [6], and also a large

number of mathematical models are made with the aim

to capture the glucose and insulin dynamics, see e.g. the

comprehensive review of [7]. Both OGTT and IVGTT

represent an impulse (or short time pulse) disturbance

perturbation, whereas the chronic infusion of glucose [8]

represent a stepwise disturbance. Another physiological

example of adaptation to a stepwise perturbation change

is the adaptation of light sensitivity of the eye, which

includes both a compensatory change in pupillary size and

an adaptation of the photochemical system in the rods and

cones [9].

Physiological examples where set point tracking is

investigated are relatively rare, although set point deter-

mining mechanisms with respect to body temperature and

metabolism have beed discussed [10], [11].

Regulatory mechanisms can today be synthetically mod-

ified or added to make organism better suitable for a

specific job. Still, engineering of biochemical networks

has not yet achieved the status and robustness as engi-

neering of electrical and mechanical systems [12]. From

a synthetic biology perspective [13], [14], it is thus of

vital importance to have insight into the biochemical

mechanisms behind physiological regulatory systems. One

possible way to gain such insight is to analyze both the dis-

turbance rejection and set point tracking dynamics of such

systems in vivo, as well as doing in silico studies based

on different model candidates. The latter approach is a

well known technique used in control engineering. We will

in this paper start with the simplest form of biochemical

networks with regulatory function and identify by model

analysis and simulation how the dynamic response of such

networks can be tuned.

B. Controller motifs

A biochemical network with regulatory properties must

in its simplest form include at least two components, i.e.,

state variables, one controlled component and a controller

component. The controller component acts on the con-

trolled component in a way that compensates for external

disturbances. We have earlier presented a collection of

simple two-component regulatory networks [15], [16], and

we have used the name controller motifs to describe them.

These motifs consist of two chemical species, A and

E, both of them being formed and turned over. A may

represent an intracellular compound which is subject to

disturbances in the form of e.g. uncontrolled diffusive

transport of A in and out of the cell, and E may represent a

membrane bound compound such as a transporter protein

as shown in Fig. 1. Like many cellular compounds which

is subject to strict regulation (due to e.g. toxicity if

present in large amount), the concentration of A should

not exceed or be less than some limits. By connecting

the compounds A and E through cellular signaling events

such as activation and inhibition, species A becomes

the controlled variable, while species E becomes the

manipulated variable.

Based on the direction of the E-mediated flow, the

motifs fall into two categories termed inflow and outflow

controllers. The complete set of possible inflow and out-
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Figure 1. Illustration of a cell with a compound A being under
homeostatic control by an inflow controller (panel a) or an outflow
controller (panel b). Panel a: An inflow controller compensate for
outflow perturbations, koutpert (thick green line), in A by adding more A
through an E-mediated inflow (red line). Panel b: An outflow controller
compensate for inflow perturbations, kinpert (thick green line), in A by
removing excess of A through an E-mediated outflow (blue line).

flow controller motifs are shown in Fig. 2, and the steady

state properties of these controllers were presented in [15].

Based on the type of E-mediated inflow or outflow, the

controllers are further divided into activating (inflow 1/3

and outflow 5/7) or inhibiting (inflow 2/4 and outflow 6/8)

controller type, indicated by grey and white background

in Fig. 2, respectively.

In the following we will show how the parameters of

the controller motifs, i.e. rate constants, Michaelis-Menten

constants, activation constants and inhibition constants,

influence on the dynamic performance, and show how it

is possible to adjust the system’s response similar to the

tuning of industrial control systems.

II. RESULTS

A. Dynamic properties of controller motifs

The dynamic properties of a two component biochemi-

cal system (second order system) can be described in terms

of the undamped natural frequency ωn and the damping

ratio ζ. To illustrate how these two parameters relate to the

regulatory mechanisms in Fig. 2, we use outflow controller

5 as an example. For unique identification, we apply

subscript 5 on the appropriate parameters and variables,

and hence, the nonlinear rate equations for an outflow

controller 5 are given as [15]:

Ȧ = kinpert − koutpert·A− V Etr,5
max ·A·

E5
(
KE5

a + E5

) (1)

Ė5 = kE5

s ·A−
V

Eset,5
max ·E5

(

K
Eset,5

M + E5

) (2)

As discussed in [15], the set point A
out,5
set is found by

assuming ideal (theoretical) conditions, i.e. K
Eset,5

M =0

in (2), to give A
out,5
set =V

Eset,5
max

k
E5
s

. Once the theoretical set

point is established, we re-assume realistic conditions

and reorganize (2) into the integral control law equation

Ė5=Gi,5·(A
out,5
set −Ameas). This allows us to identify the

integral controller gain Gi,5 and the measurement signal
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Figure 2. Set of two-component homeostatic controller motifs [15] clas-
sified as inflow and outflow controllers, where grey or white background
indicate activating or inhibiting controller types, respectively.

Ameas as:

Ė5 =−kE5

s ·
E5

K
Eset,5

M + E5

·

︸ ︷︷ ︸

(

V
Eset,5
max

kE5

s
︸ ︷︷ ︸

−A·
K

Eset,5

M + E5

E5
︸ ︷︷ ︸

)

Gi,5 A
out,5
set Ameas

Note that the measurement signal Ameas actually includes

information about the control signal E5 which is not

common in industrial control engineering. Note also that

as long as K
Eset,5

M >0, the actual value of A will be less

than the theoretical set point A
out,5
set . Nevertheless, the set

point tracking properties are good since the control error

e, calculated as:

e=(Aout,5
set −Ameas) (3)

is zero. The difference between the actual level of A and

the theoretical set point Aset is termed inaccuracy [17].



A general result valid for all controller motifs is that both

rate constants for synthesis and degradation of E, i.e. kEs
and V Eset

max , are a part of the set point Aset [15]. At the

same time, one of these rate constants is also a part of the

integral controller gain Gi.

In order to identify the parameters ωn,5 and ζ5, we

once again assume ideal conditions, i.e. K
Eset,5

M =0, and

continue by linearizing the model in (1) and (2) around

an arbitrary working point Ass and E5,ss. Since the

set point consist of two individual parameters, i.e. kEs
and V Eset

max , we select V Eset
max to be our input. We then

find the closed looped transfer function from the Laplace

transformed input ∆V
Eset,5
max (s) to the Laplace transformed

output ∆A(s) as:

M(s)=

(
(kout

pert+V
Etr,5
max )·V

Eset,5
max −kin

pert·k
E5
s

)
2

V
Eset,5
max ·K

E5
a ·V

Etr,5
max ·k

E5
s

s2+
kin
pert·k

E5
s

V
Eset,5
max

·s+

(
(kout

pert+V
Etr,5
max )·V

Eset,5
max −kin

pert·k
E5
s

)
2

V
Eset,5
max ·K

E5
a ·V

Etr,5
max

Using that V
Eset,5
max =kE5

s ·Aout,5
set , we find ωn,5 and ζ5 as:

ωn,5 =

√

kE5

s ·
((

koutpert + V
Etr,5
max

)
·Aout,5

set − kinpert

)

√

KE5

a ·V
Etr,5
max ·Aout,5

set

(4)

ζ5 =
kinpert

√

KE5

a ·V
Etr,5
max

2·

√

V
Eset,5
max ·

((
koutpert+V

Etr,5
max

)
·Aout,5

set − kinpert

) (5)

From (4) and (5) we see that, depending on the per-

turbation levels (inflow versus outflow perturbations), it

is possible to obtain negative values for ωn,5 and ζ5.

These negative values correspond to circumstances where

the perturbation levels are such that the controller breaks

down [15]. Breakdown occurs when the net inflow pertur-

bation is larger than the capacity of the outflow controller,

i.e., greater than the maximum of the compensatory flow.

In this case there is no stable equilibrium in the system

and A integrates towards infinity. Such a state is unwanted

and may very likely be toxic for the cell. In this case the

values of ωn,5 and ζ5 are invalid and have no physical

meaning. Table I gives a summary of ωn and ζ for the

four inflow and four outflow controllers, together with the

expression for each set point Aset.

Note that there is a close relationship between the

expressions for ζ and ωn for each controller, and thus,

it is not possible to specify both ζ and ωn independently.

Since controller 5 is an outflow controller, the inflow

perturbation ∆kinpert(s) is considered the main disturbance,

and the transfer function characterizing the disturbance

rejection properties is:

N(s)=
s

s2+
kin
pert·k

E5
s

V
Eset,5
max

·s+

(
(kout

pert+V
Etr,5
max )·V

Eset,5
max −kin

pert·k
E5
s

)
2

V
Eset,5
max ·K

E5
a ·V

Etr,5
max

As expected, this transfer function has a zero in the

origin, implicating homeostatic behavior and perfect adap-

tation [18].

B. Tuning of individual controllers

As shown in [15], the steady state performance of the

individual controllers were found to be identical, given

a certain set of parameter values. A related issue is to

determine whether it is possible to tune the controllers to

obtain identical dynamical performance using the theoreti-

cal design parameters in Table I. Such tuning will be useful

in synthetic biology. Also on a more fundamental level, if

such tuning is possible it implies that it is impossible to

infer the underlining network structure, i.e., the particular

controller motif, responsible for an observed adaptive

process by measuring the dynamical properties of the

controlled variable alone.

We have selected to use the rate constants of the

synthesis and degradation of the controller species, kEs
and V Eset

max , together with the rate constant of the E-

mediated compensatory flow V Etr
max, as our tunable pa-

rameters. These parameters are relatively easy to tune

from the perspective of synthetic biology and offer a

greater tunable range than the parameters associated with

the nonlinearities in the model (KE
a , KA

I , and KE
I ). To

discuss one of the tunable parameters, the rate constant for

synthesis of E, kEs , can in practice be modified by altering

the promoter of the gene coding for E. One way to do

this is a fixed tuning of the promoter itself, e.g. the Cu-

dependent promoter of the CUP1-gene of Saccharomyces

Cerevisiae can be modified by mutations to show wide

range of different induction ratios [19]. Another option is

to use a dual mode promoter, a type of promoter who’s

regulation of protein production depends on two activators.

One activator would be the control variable A and another

would be a chemical compound that can be meticulously

added to the growth medium to achieve a certain level

of gene transcription and production of E, represented

in the model as the value of kEs . One such promoter

controlled by Testosterone and IPTG (isopropyl β-D-1-

thiogalactopyranoside) has recently been developed [20].

In order to best tune the parameters we have to know

about the operational limits of the system. For this pur-

pose, we define as in [15] an upper limit for the maximum

compensatory flux, jA,max=10, corresponding to a maxi-

mum level of Emax=15 for the activating controllers 1, 3,

5 and 7, and corresponding to Emin=0 for the inhibiting

controllers 2, 4, 6 and 8. We assume further that the

set point of A is Aset=1.0, the external concentration is

Aext=2. The kinetic constants for activation and inhibition

are chosen to avoid saturation effects: KE
a =2, KA

I =0.1
and KE

I =1.0. Moreover, the working point of perturba-

tions is specified as kinpert=2/koutpert=5 for inflow controllers

and kinpert=5/koutpert=2 for outflow controllers. Given these

overall system parameters, the tuning procedure of each

individual controller motif is based on specifying ζ (or

ωn, but not both) in a similar way as the pole placement

method, and determine the last three parameter values of

each motif, i.e. V Etr
max, V Eset

max and kEs .

To illustrate, we specify two different dynamical re-

sponses in the concentration of A for a step in Aset, i.e.

one critically damped (ζ=1) and one underdamped (ζ=0.2



Table I
THE SET POINT Aset , NATURAL UNDAMPED FREQUENCY ωn AND DAMPING RATIO ζ FOR CONTROLLER MOTIFS 1-8 IN FIG. 2 UNDER

THEORETICAL CONDITIONS, I.E. K
Eset
M

=0. FOR EACH CONTROLLER WE HAVE ADDED A SUBSCRIPT TO THE PARAMETERS FOR UNIQUE

IDENTIFICATION.

A
in,1
set =

k
E1
s

V
Eset,1
max

ωn,1=

√

V
Eset,1
max

(

kin
pert−kout

pertA
in,1
set +V

Etr,1
max Aext

)

√

K
E1
a V

Etr,1
max Aext

ζ1=
kout
pert

√

K
E1
a V

Etr,1
max Aext

2

√

V
Eset,1
max

(

kin
pert−kout

pertA
in,1
set +V

Etr,1
max Aext

)

A
in,2
set =

V
Eset,2
max

k
E2
s

ωn,2=

√

k
E2
s

(

kout
pertA

in,2
set −kin

pert

)

√

K
E2

I
V

Etr,2
max Aext

ζ2=
kout
pert

√

K
E2

I
V

Etr,2
max Aext

2

√

k
E2
s

(

kout
pertA

in,2
set −kin

pert

)

A
in,3
set =

k
E3
s KA

I

V
Eset,3
max

−KA
I ωn,3=

√

V
Eset,3
max

(

kin
pert−kout

pertA
in,3
set +V

Etr,3
max Aext

)

√

(

KA
I

+A
in,3
set

)

V
Etr,3
max K

E3
a Aext

ζ4=
kout
pert

√

(

KA
I

+A
in,4
set

)

V
Etr,4
max K

E4

I
Aext

2

√

k
E4
s

(

kout
pertA

in,4
set −kin

pert

)

A
in,4
set =

V
Eset,4
max KA

I

k
E4
s

−KA
I ωn,4=

√

k
E4
s

(

kout
pertA

in,4
set −kin

pert

)

√

(

KA
I

+A
in,4
set

)

V
Etr,4
max K

E4

I
Aext

ζ3=
kout
pert

√

(

KA
I

+A
in,3
set

)

V
Etr,3
max K

E3
a Aext

2

√

V
Eset,3
max

(

kin
pert−kout

pertA
in,3
set +V

Etr,3
max Aext

)

A
out,5
set =

V
Eset,5
max

k
E5
s

ωn,5=

√

k
E5
s

(

(

kout
pert+V

Etr,5
max

)

A
out,5
set −kin

pert

)

√

K
E5
a V

Etr,5
max A

out,5
set

ζ5=
kin
pert

√

K
E5
a V

Etr,5
max

2

√

V
Eset,5
max

(

(

kout
pert+V

Etr,5
max

)

A
out,5
set −kin

pert

)

A
out,6
set =

k
E6
s

V
Eset,6
max

ωn,6=

√

V
Eset,6
max

(

kin
pert−kout

pertA
out,6
set

)

√

K
E6

I
V

Etr,6
max A

out,6
set

ζ6=
kin
pert

√

K
E6

I
V

Etr,6
max

2

√

k
E6
s

(

kin
pert−kout

pertA
out,6
set

)

A
out,7
set =

V
Eset,7
max KA

I

k
E7
s

−KA
I ωn,7=

√

k
E7
s

(

(

kout
pert+V

Etr,7
max

)

A
out,7
set −kin

pert

)

√

(

A
out,7
set +KA

I

)

V
Etr,7
max K

E7
a A

out,7
set

ζ7=
kin
pert

√

(

A
out,7
set +KA

I

)

V
Etr,7
max K

E7
a

2

√

k
E7
s A

out,7
set

(

(

kout
pert+V

Etr,7
max

)

A
out,7
set −kin

pert

)

A
out,8
set =

k
E8
s KA

I

V
Eset,8
max

−KA
I ωn,8=

√

V
Eset,8
max

(

kin
pert−kout

pertA
out,8
set

)

√

(

A
out,8
set +KA

I

)

V
Etr,8
max K

E8

I
A

out,8
set

ζ8=
kin
pert

√

(

A
out,8
set +KA

I

)

V
Etr,8
max K

E8

I

2

√

V
Eset,8
max A

out,8
set

(

kin
pert−kout

pertA
out,8
set

)

corresponding to 50% overshoot) response. A strongly

underdamped system overshoots when adapting a change

in set point, but shows considerably better disturbance

rejection than a critically damped system. Thus, tuning for

the latter may be of interest in many biological systems.

We illustrate the procedure in detail by continuing on

the outflow controller 5 example, and start by considering

the rate expression for the compensatory flux, jA, from (1):

jA=V Etr,5
max ·A·

E5
(
KE5

a + E5

) (6)

By setting jA=jA,max=10 and inserting

E5=E5,max=15, A=A
out,5
set =1 and KE5

a =2 into (6), gives

V
Etr,5
max =11.33. Using the mathematical expressions for

A
out,5
set and ζ5 tabulated in Table I, we find V

Eset,5
max =2.04

and kE5

s =2.04 for ζ5=1 and V
Eset,5
max =51.0 and kE5

s =51.0
for ζ5=0.2, see Table II.

This corresponds to an integral controller gain of

Gi,5=−2.04 and Gi,5=−51.0, respectively, and a re-

sponse time of Tr≈0.8 seconds (ωn,5=2.5) and Tr≈0.1
seconds (ωn,5=12.5). The simulation results shown as

black curves in panels c, and d in Fig. 3, verify the tuning

specifications, both with respect to overshoot and response

time.

In order to compare the individual performance of each

controller, the above described tuning specifications are

applied for all controllers, and the results are shown in

Table II and verified by simulation in Fig. 3.

Note the identical values for Gi (greyed out in Ta-

ble II) for all the activating (inflow 1/3 and outflow

5/7) and all the inhibiting (inflow 2/4 and outflow 6/8)

controllers, respectively. Note also the opposite signs for

activating and inhibiting inflow and outflow controllers,

respectively, which is due to the combination of controller

type (activating/inhibiting) and controller configuration

(inflow/outflow).

Table II
THE PARAMETERS V

Etr
max , V

Eset
max , kEs AND THE INTEGRAL

CONTROLLER GAIN Gi (IN GREY) FOR EACH CONTROLLER MOTIF

SPECIFIED FOR CRITICAL DAMPED RESPONSE ζ=1 AND

UNDERDAMPED RESPONSE ζ=0.2. THE OTHER PARAMETERS ARE

DEFINED IN THE MAIN TEXT.

V
Etr
max V

Eset
max kEs Gi

C
ri

ti
ca

ll
y

d
am

p
ed

,
ζ
=
1

Inflow 1 5.67 2.04 2.04 2.04
Inflow 2 5.00 6.94 6.94 -6.94
Inflow 3 5.67 2.24 24.68 2.04
Inflow 4 5.00 84.03 7.64 -6.94

U
n

d
er

-
d

am
p

ed
,

ζ
=
0
.2

Inflow 1 5.67 51.0 51.0 51.0
Inflow 2 5.00 173.6 173.6 -173.6
Inflow 3 5.67 56.1 617.1 51.0
Inflow 4 5.00 2100.7 191.0 -173.6

C
ri

ti
ca

ll
y

d
am

p
ed

,
ζ
=
1

Outflow 5 11.33 2.04 2.04 -2.04
Outflow 6 10.00 6.94 6.94 6.94
Outflow 7 11.33 24.68 2.24 -2.04
Outflow 8 10.00 7.64 84.03 6.94

U
n

d
er

-
d

am
p

ed
,

ζ
=
0
.2

Outflow 5 11.33 51.0 51.0 -51.0
Outflow 6 10.00 173.6 173.6 173.6
Outflow 7 11.33 617.1 56.1 -51.0
Outflow 8 10.00 191.0 2100.7 173.6
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Figure 3. Dynamic properties of inflow and outflow controllers showing
the response in concentration of species A. The color codes for the
different inflow controller are: 1=black, 2=blue, 3=red and 4=green,
and the color codes for the different outflow controllers are: 5=black,
6=blue, 7=red and 8=green. For the set point tracking curves, the set
point changes from Aset=1.0 to Aset=1.1 at t=0. For the disturbance

rejection curves, the disturbance is a unit step change from 5 to 6 at t=0

in koutpert for inflow controllers and in kinpert for outflow controllers. Pan-
els a and b: Set point tracking (upper) and disturbance rejection (lower)
responses for inflow controllers tuned for critically damped (ζ=1) and
underdamped (ζ=0.2) responses, using the parameters shown in Table II.
Panels c and d: Set point tracking (upper) and disturbance rejection
(lower) responses for outflow controllers tuned for critically damped
(ζ=1) and underdamped (ζ=0.2) responses, using the parameters shown
in Table II.

The responses in Fig. 3 clusters into two groups, where

the first group is the E-activating inflow controllers 1/3

(black and red curves in Figs. 3a and 3b) and the E-

inhibiting outflow controllers 6/8 (blue and green curves

in Figs. 3c and 3d). The second group is the E-inhibiting

inflow controllers 2/4 (blue and green curves in Figs. 3a

and 3b) and the E-activating outflow controllers 5/7 (black

and red curves in Figs. 3c and 3d). The reason why equally

tuned controllers behaves slightly different is due to the

nonlinearity of each individual controller combined with

a relative large set point step change.

From Table I we see that the inflow and outflow

perturbations come into the expressions of ωn and ζ in

different ways. To visualize the effect of varying level of

perturbation, Fig. 4 shows dynamic responses of inflow

controller 3 for koutpert={3, 5, 7} (Fig. 4a) and outflow

controller 6 for kinpert={5, 7, 9} (Fig. 4b). The effect of
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Figure 4. Set point tracking (upper) and disturbance rejection dynamics
(lower) of species A using inflow controller 3 (panel a) and outflow con-
troller 6 (panel b) at different level of outflow and inflow perturbations,
respectively. The set point change is a step from Aset=1.0 to Aset=1.1
at t=0 and the disturbance is a step increase of 1 from original value
at t=0. In panel a the labeling on the curves corresponds to outflow
perturbations of koutpert∈{3, 5, 7}. In panel b the labeling on the curves

corresponds to inflow perturbation of kinpert∈{5, 7, 9}.

increased koutpert for inflow controller 3 is slower dynamics

with less damped response. On the other hand, outflow

controller 6 shows faster dynamics together with more

underdamped response at increased kinpert levels.

III. DISCUSSION

We have shown how a set of homeostatic controller

motifs can be tuned, in a similar way as in industrial

control systems, to exhibit a specified dynamic response

with respect to overshoot δ and response time Tr. We

have also shown analytically and through simulations how

i) the level of inflow/outflow disturbances and ii) the

values of different rate constants influence on the set

point tracking properties. The corresponding disturbance

rejection properties is also studied through simulations

using a unit step input signal in the disturbance.

An important implication of the fact that all controller

motifs can show identical dynamic responses is that one

cannot postulate a specific controller motif based on mea-

surement of disturbance rejection and/or set point tracking

alone. The motif type, i.e. inflow or outflow, activating

or inhibiting, rest on how the molecular mechanisms

behind the controller interact and not on the system’s

ability to show a specific response. The specific response

of physiological regulatory system is a result of tuning

the system’s kinetic parameters and the strength of the

perturbation.

There is a great effort going on in both academia and

industry to genetically manipulate organisms to produce

useful bioproducts. One of the landmark studies published

in Science last year was the implementation of the com-

plete biosynthesis of opioids in yeast [21], [22]. Opioids



like morphine are the primary drugs used for treatment of

severe pain and pain management, and production depends

on the cultivation of opium poppies. While the imple-

mentation of opioid biosynthesis in yeast is a tremendous

achievement, it still requires an improvement in overall

yield by a factor of 7 · 106 to compete with poppies [21].

Great improvements are expected [21], but this will require

an intricate tuning of the different parts of the biosynthesis

pathway.

From a synthetic biology point of view, the work in

this paper creates a basis one can use to identify which

and how properties of a reaction and participating pro-

teins/enzymes contributes to the dynamical response. For

instance, the natural undamped frequency ωn, which is

important for the swiftness of a controller motif, will for

outflow controller 5 increase if we by some means manage

to increase the production of E (increase kEs ) by e.g. in-

creasing the expression of mRNA coding for E (as shown

in Table I, a change in kEs will also change the set point).

A related example of such is reported in [12], where a

two promotor network system is constructed in silico from

realizable parts within the bacterium Escherichia coli. The

network includes both basal rates and activated/repressed

regulatory inputs, and hence, the network share similarities

with inflow controller 2 in Fig. 2. Two requirements were

used as tuning criteria for the network, i.e. ζ=1 (critically

damped) and large ωn indicating a response time Tr

as short as possible. In order to obtain the necessary

approximate zero order degradation of the repressor R

(corresponding to our species E), two effectors I1 and

I2 are included in order to force the repressor to work at

saturated conditions, i.e. corresponding to the theoretical

conditions, KEset

M =0, used in this paper.

An alternative approach to tuning is given in [14], where

the tuning is related to the so-called response curves.

These are steady state relationships between an input and

an output variable, e.g. the molecular concentration of

a transcription factor protein and the expressed protein,

respectively, and not time dependent tuning as discussed in

this paper. However, variations in kinetic parameter values

results in different steady state relationships.
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