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Context - Multiple
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Context - Failures will occur
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Common Solution is Redundancy:..
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Middleware for Fault Tolerance :.

Stavanger

H |t is difficult to support fault tolerance
® Tolerate object, node and network failures

B Techniques
® Redundancy
® Masking failures (failover)

B Reuse fault tolerance mechanisms
® Use a group communication system (e.g. Jgroup or Spread)

B Focus on development issues

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010



™

Group Communication
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Middleware for Fault Treatment .- .

Stavanger

B Further improve the system's dependability characteristics
® Consider: Deployment and operational aspects

B Autonomous Fault Treatment
® Recovery from node, object and network failures
® Not just tolerate faults, repair them as well
® \Without human intervention
® Let groups be self-healing (deal with its own internal failures)

B Goal: Minimize the time spent in a state of reduced failure
resilience

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010



12 . | LS

Evaluation Techniques

Stavanger

B Trivial performance evaluation of repair mechanism
® For a single failure injection

B But more interesting

® Can we find a way to quantify/predict the improvement in
availability by running experlments’?

® (Without running them for many »
years to get the exact numbers.) =
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Moving to large-scale (Cloud) -

Stavanger

B Assume now the number of services to deploy becomes
very large
® \We need to find placements for the services to avoid bottlenecks
® Multiple conflicting requirements/goals for these services
® Placement is a multi-criteria optimization problem

B Placement becomes NP-hard
® Centralized optimization techniques fall short quickly

H Also, if it were possible to compute the optimal placement
® \Would it still be valid when we are ready to deploy/reconfigure?

B Distributed heuristic to compute near optimal placements
® Based on a technique called Cross-Entropy Ant System
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Outline

B Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks
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Related work: Virtualization e
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Related work: Virtualization e
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Related work: Virtualization e

Stavanger
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Assumptions

Stavanger

B Pool of processors to host applications
B Replicated stateful applications
B (Wide area network)

B Shared-nothing architecture
® Neither disk or main memory is shared by processes
® Avoid distributed file systems
® State of application must be transmitted across network

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010



"Related work: S

University of

Centralized Recovery Decisions ==
® AQuA

® Leader of group affected by a failure joins the centralized
dependability manager to report failure

H FT CORBA
® Jgroup/ARM

® Report failures to centralized replication manager
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ARM Overview
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ARM Architecture
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Failure Monitoring e

Stavanger
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Crash Failure and Recovery

Stavanger
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Outline

® Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks
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Why go distributed? ‘S

Stavanger

M Less infrastructure - less complex

B No need to maintain consistent replicated (centralized)
database of deployed groups

B Less communication overhead
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DARM Overview ‘S

Stavanger
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Spread communication
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DARM Components ‘S
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The Factory Group

Stavanger

B Used to install replicas of a given service

B Keeps track of
® Node availability
® Local load of nodes

B Interacts with the DARM library

® To install replacement replicas

B Does not maintain any state about deployed replicas
® In case of failure: just restart factory to host new replicas
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Replica Placement Policy

Stavanger

B Purpose of replica placement policy: Describe how replicas
should be allocated onto the set of available sites and nodes

1. Find the site with the least # of replicas of the given type

2. Find the node in the candidate site with the least load;
ignoring nodes already running the service

B Objective of this policy. Ensure available replicas in each
likely partition that may arise
® Avoid collocating two replicas of the same service on the same node
® Disperse replicas evenly on the available sites
® Least loaded nodes in each site are selected
® (Same node may host multiple distinct service types)
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Fault Treatment Policy

Stavanger

B KeepMinimallnPartition:
® Maintain a minimal redundancy level in each partition

B RemovePolicy:
® Remove excessive replicas
® Replicas no longer needed to satisfy the fault treatment policy
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Crash failure-recovery behavio
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The DARM Library ‘S

Stavanger

B [ibdarm wraps around libspread and intercepts

® Connection requests to the daemon
— To verify and finalize runtime configuration of DARM
— Join DARM private group of the associated application

® Message receives - SP_receive()
— If message belongs to DARM private group pass message to DARM
— Otherwise pass message to application

— Call SP_receive() again: to avoid having to return control to the
application without passing a message

B libdarm also provides functions to set
® Minimum and maximum number of replicas for the group
® The recovery and remove delays for the group
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The DARM Library ‘S

Stavanger

B Membership messages for the DARM private group
® Used to decide whether fault treatment is needed

B Bootstrapping applications:
® Only a single instance of an application needs to be started

® Assuming the application is configured with some minimum
number of replicas

® DARM will install the required number of replicas
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Outline

B Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks
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Experiments

B \Want to determine
® the single partition recovery durations

® corresponding merge of partitions
(and removal of excessive replicas)
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Merge, removing 2 replicas
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Outline

B Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks
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safety. When your computer crashes,
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bang your head in frustration.”

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010



45 LS

Objective of Evaluation

Stavanger

B Provide estimates for dependability attributes:
® Unavailability
® System failure intensity
® Down time
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Attributes o
B Use stratified sampling

B Series of lab experiments are performed

® One or more fault injections in each experiment
— (all faults manifest themselves as crash failures)

® According to a homogeneous Poisson process

B Strata := the number of near-coincident failure events

® A posteriori stratification: Experiments are allocated to different
strata after experiment completion

® Three strata: single, double, and triple failures
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Attributes Uahversty of

B Offline a posteriori analysis
® Events are recorded during experiments
® Used to construct single global timeline of events
® Compute trajectories on a predefined state machine

B Analysis provide strata classification and various statistics
® The statistical measures are used as input to estimators for
dependability attributes:
— Unavailability
— System failure intensity
— Down time
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Target System - State Machine ...

Stavanger

B Failure-recovery behavior of a service
® Modeled as a state machine (next slide)
® Events are as seen by the service replicas

B The state machine is only used a posteriori
® To compute statistics of the experiment
® (not used to control fault injections)
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Partial State Machine
B Fault Injection can occur in View-3 /3.1y
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Timeline of events

B Place multiple processor failures close together
® Examine system behavior of such rare events
® (determine the rate at which they cause system failure)
® Use these results to compute system unavailability

® (Given MTBF for a single processor)

System failure
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The Failure Trajectory

Stavanger

B Characteristics obtainable from the failure trajectory

® Unavailability:
— Down time for trajectory |

Y;'d — g(lz) — Z I(XZJ S S)(t’ij-+-1 - t’ij)
j=1
— Unavailability

- E(Y?)
U= E(Y?) 4+ (n)\)

® Probability of failure (reliability)
— (formulas in the paper)

N d
— ~ E(Y)nA.
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Experimental Strategy

Stavanger

B Consider multiple near-coincident failures

B Classify experiments into strata Sk
® If k failure events occurred in the trajectory

B Each strata sampled separately

B Collected samples for each stratum
® Can obtain statistics for the system in that stratum
® E.g., the expected duration of a stratum Sk trajectory:

@k = E(T|Sk) and O = VCLT‘(T|Sk)
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Sampling Scheme

Stavanger

Koo T;
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Estimators

Stavanger

H In real systems, failure intensity A very low;
®ie, A1 >> Tmax
® 11¢ = probability of a trajectory reaching stratum Sk

Tk = ZViESk %

® Unconditional probability of a sample in
® Stratum S»

Ty = (n — 1))\@171'1

® Stratum S3
— (in the paper)
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Experimental Results

Stavanger

B Perform fault injections on target system according to
sampling scheme

® 3000 (lab) experiments performed
® Aiming for 1000 in each stratum

® Classified as stratum Sk if exactly k failures occur before
completion of experiment

Hein Meling, CANOE Workshop, Toronto, August 2010
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ARM (top) / DARM (bottom) ‘S

Stavanger

Table 1. Results obtained from the experiments (in milliseconds).

Classification|Count|©y = E(T'|Sk)|sd=+/ok| O, 95% conf.int.
Stratum S 1781 8461.77| 185.64| (8328.98, 8594.56)
Stratum S5 793 12783.91| 1002.22|(12067.01, 13500.80)
Stratum S's 407 17396.55| 924.90((16734.96, 18058.13)

Classiﬁcation‘ Count ‘ 0 = E(T|Sk) ‘ sd = /oL ‘ 0, 95% conf.int. ‘ Highest | Lowest

Stratay 2265 2569.22 478.23 (1631.89, 3506.55) 16659 1742
Stratas 591 4158.83 1039.10 (2122.18, 6195.47) 12869 2496
Stratas 110 5966.58 1550.90 (2926.82, 9006.35) 16086 3046
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Experimental Results

Stavanger

H 19 experiments (0.63%) were classified as inadequate
® 16 experiments failed to recover
® 3 experiments experienced additional not-intended failures
® Of the 16, two were for S1, 6 for S2 and 11 for S3
® These 16 are due to deficiencies in Jgroup/ARM

B These inadequate runs are accounted for as trajectories
visiting a down state for 5 minutes (typically a reboot)

B For DARM there were 2 inadequate experiments

Hein Meling, CANOE Workshop, Toronto, August 2010
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Prob. Density Function
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Density estimate of Jgroup/ARM crash recovery times
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Stavanger

Probability Density for Strata 2
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Table 2. Computed probabilities, unavailability metric and the system MTBF.

Experiment Recovery Period

Processor Recovery (5 min.)

Manual Processor Recovery (2 hrs.)

Processor Mean Time Between Failure (MTBF=A"") (in days)

100 200 100 200 100 200
71 | 0.99999314 0.99999657 0.99975688 0.99987845 0.99412200 0.99707216
7o | 6.855602 - 107° | 3.427801 - 107°(2.430555 - 10~ *[1.215278 - 10~ *|5.833333 - 10™2|  2.916667 - 10~*
7s 4.072921 - 107 '1{1.018230 - 10~ |5.595341 - 10~ ¥|1.398835 - 10~ |4.466146 - 10~°| 1.116536 - 10~°
U | 4.671318-1077]2.335617 - 1077 |2.777102 - 10~*|1.388720 - 10~*[6.627480 - 10~>|  3.323574 - 103
A7 20.3367 yrs 40.6741 yrs - - - -
Experiment Recovery Period Processor Recovery (5 min.) Manual Processor Recovery (2 hrs.)
Processor Mean Time Between Failure (pmtbf=A"1) (in days)
100 200 100 200 100 200
™ 0.9999979184 0.9999989592 0.9997568889 0.9998784583 0.9941238281 0.9970726237
T 2.0815438 - 10~ 1.0407719 - 106 | 2.4305555 - 10~* | 1.2152777 - 10~* | 5.8333333 - 103 | 2.9166666 - 10~3
T3 4.0903937 - 10712 | 1.0225984 - 10~12 | 5.5447048 - 108 | 1.3861762 - 108 | 4.2838541 -10~° | 1.0709635 - 10~°
U 4.1317108 - 10717 | 5.1646385 - 10718 | 2.7771024 - 10~* | 1.3887200 - 10~* | 6.6274921 - 102 | 6.6471508 - 103
A1 212 yrs 851 yrs - - - -
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Concluding Remarks

Stavanger

B DARM supports autonomous fault treatment
® Recovery decisions are distributed to the individual groups

® In previous systems recovery decisions were centralized
— Complex and error-prone

B DARM has been released as open source at:
® darm.ux.uis.no

® \We are performing more advanced measurements
® Client perceived availability
® Longer executions and with other parameters to get statistically
significant results
B Experimental results indicate that self-repairing systems
can obtain very high availability and MTBF

B Automated fault injection tool

® Proved very useful for uncovering a number of subtle bugs
® Allows for systematic stress and regression testing

Hein Meling, CANOE Workshop, Toronto, August 2010
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Open Issues

Stavanger

® Handling full group failures
® ARM have a centralized component to monitor all groups
® DARM only monitors the group from within itself

® Could let the factory handle this in some way
— Lease/Renew or simple pinging

B Management tasks to simplify deployment of applications
® Self-configuration
® Reconfiguration of nodes that can host replicas

B Express policies in terms of equations
B Implement more policies
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Group Failure Handling
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