Hein Meling
Department of Electrical Engineering and Computer Science
University of Stavanger, Norway

Self-repairing Replicated Systems
and Dependability Evaluation

Toronto, August 27, 2010
CANOE Workshop

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

™

University of
Stavanger

(

MY CoMUTER Pobsw'T
wezk! THE WirP
peNE c2islep!
WINT o 1 Fo?!

e

WU",? l{-, lTo
GONA BLOW !

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

™

University of
Stavanger

Som

SO GREAT
ABoUT BEING
ON - LINE Z/

klﬂ‘_ah,~,~/<>hq“~

=

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

™

University of
Stavanger

I will use Google before asking dumb questions. 1 will use Google before
asking dumb questions. T will use Google before asking Jumb questions.
| T will use Google before asking dJumb questions. 1 will use Google before
asking dumb questions. T will use Google before asking Jumb questions.
www.mrburns.nl before asking dumb questions. T will use Google before

| asking dumb questions. T will use Google before asking Jumb questions.
I will use Google before asking dumb questions. T will use Googlegz€nre
asking dumb questions. 1 will use Google before asking dumb qu

| 1T will use Google before asking dJumb questions. 1 will use Goog
asking dumb questions. T will use Google before asking dumb o'

| 1 will use Google before asking dumb questions. T will use Googirme

asking dumb questions. 1 will use Google before asking dumb (ﬁ

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

5

Context - Multiple

/ Node X1 Node X2 Site% / Node Y1 Node Y2 Site%

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

6 N

Context - Failures will occur

Stavanger

/ Node X1 Node X2 Site% /// Node Y1 Node Y2 Site“

A
\Network

pgrtition

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

’ N

Common Solution is Redundancy:..

/ Node X1 Node X2 Site% / Node Y1 Node Y2 SiteV\

! ! !

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

™

Middleware for Fault Tolerance :.

Stavanger

H |t is difficult to support fault tolerance
® Tolerate object, node and network failures

B Techniques
® Redundancy
® Masking failures (failover)

B Reuse fault tolerance mechanisms
® Use a group communication system (e.g. Jgroup or Spread)

B Focus on development issues

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

™

Group Communication

Stavanger

_ Logical unit
Clients

&

Group of
servers

©
@-
_

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

10

52) Y
$3 — }— 0 B S5 e

singleton views first full view partitioning merging

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

: N

Middleware for Fault Treatment .- .

Stavanger

B Further improve the system's dependability characteristics
® Consider: Deployment and operational aspects

B Autonomous Fault Treatment
® Recovery from node, object and network failures
® Not just tolerate faults, repair them as well
® \Without human intervention
® Let groups be self-healing (deal with its own internal failures)

B Goal: Minimize the time spent in a state of reduced failure
resilience

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

12 . | LS

Evaluation Techniques

Stavanger

B Trivial performance evaluation of repair mechanism
® For a single failure injection

B But more interesting

® Can we find a way to quantify/predict the improvement in
availability by running experlments’?

® (Without running them for many »
years to get the exact numbers.) =

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

13 LS

Moving to large-scale (Cloud) -

Stavanger

B Assume now the number of services to deploy becomes
very large
® \We need to find placements for the services to avoid bottlenecks
® Multiple conflicting requirements/goals for these services
® Placement is a multi-criteria optimization problem

B Placement becomes NP-hard
® Centralized optimization techniques fall short quickly

H Also, if it were possible to compute the optimal placement
® \Would it still be valid when we are ready to deploy/reconfigure?

B Distributed heuristic to compute near optimal placements
® Based on a technique called Cross-Entropy Ant System

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

14

Outline

B Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

- . ™

Related work: Virtualization e

Stavanger

Storage

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

16 LS

Related work: Virtualization e

Stavanger

Storage

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

17 LS

Related work: Virtualization e

Stavanger

Failover =
Reboot/start

SPOF

\
B _ _
\

————————

Storage

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

18 LS

Assumptions

Stavanger

B Pool of processors to host applications
B Replicated stateful applications
B (Wide area network)

B Shared-nothing architecture
® Neither disk or main memory is shared by processes
® Avoid distributed file systems
® State of application must be transmitted across network

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

"Related work: S

University of

Centralized Recovery Decisions ==
® AQuA

® Leader of group affected by a failure joins the centralized
dependability manager to report failure

H FT CORBA
® Jgroup/ARM

® Report failures to centralized replication manager

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

20

ARM Overview

Clients

Dependable
registry

\
Server A J -
|
R
/I
\
N
P |
P 4
Factories ! "
L= L L \
e \

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

2

ARM Architecture

(V)]
Replication =
G)<—|
Manager AT notify()
Management
A
createReplica()
removeRefical
queryReplicas()
createGrouwp() ping ()
removeGoup()
updateGroup()
subscribe()
unsubsciibe()
S
notify () g Management\
. = Client
O GUI

™

University of
Stavanger

JVM Node
$,(2)) /e
Protocol
Modules

e

JVM Node

Protocol
Modules

JVM

Protocol
Modules

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

22 LS

Failure Monitoring e

Stavanger
. _ - UM Node
Replication
Manager otify(lamAlive)
Supervision
“ Module
T N
notify(NodePresence) JV
: notify(ReplicaFailure)
LenisaaRakssssssssssssssssssssannnnsfusannns JIPTITE Facto
; ping() "y
Enotify(ViewChange)
VM Node
: JVM
Enotify(NodePresence) :
:notify(ReplicaFailure) Supervision | : . :
Module Supervision | _:
\\\\\\\v:fi?ub
JVM
Periodic FaCtO
. ping() "y
.............. Event drlven

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

23 . LS

Crash Failure and Recovery

Stavanger

N1

) 2;:‘,; N1 crashed ® |ecader
\notlfy(VlewChange

N2 °

'
\ (\notify(ViewChange) / \ \lotify(ViewChange)
r
N3 \
join
N4 (@) >

Nl
\ \ f notif> ViewCMnge) \
createReplica() &
RM] | / — -

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

24

Outline

® Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

2

Why go distributed? ‘S

Stavanger

M Less infrastructure - less complex

B No need to maintain consistent replicated (centralized)
database of deployed groups

B Less communication overhead

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

26
DARM Overview ‘S

Stavanger

Clients

\ ‘ Group leader
o o o e \
)

! - Factory leader

[}

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

27

Spread communication

Node A

Spread
Client

libspread

v

(

Spread \

Daemon /

™

University of
Stavanger

Node B

Spread
Client

libspread

{NZMT,DT

y
f Spread >

\ Daemon

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

DARM Components ‘S

Stavanger

Node
DARM
Client

libdarm |— W
Factory

libspread

l

Spread
Daemon

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

29 LS

The Factory Group

Stavanger

B Used to install replicas of a given service

B Keeps track of
® Node availability
® Local load of nodes

B Interacts with the DARM library

® To install replacement replicas

B Does not maintain any state about deployed replicas
® In case of failure: just restart factory to host new replicas

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Factory group install S

replacement replicas

n® Factory leader o_createReplicaOnNode()

Node 1 ‘\ / \\\\
Node 2 \
Node 3 >

o -
2 2
N, s
8 « 8 5 g ‘~/§\ N\
Node 4 L L 5 3 | >
3 Q
w

e

L

C

Node 5 /& /

odes | | (T |

\/ \/

createReplical()

libdarm

'-__~_/
v

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

31 LS

Replica Placement Policy

Stavanger

B Purpose of replica placement policy: Describe how replicas
should be allocated onto the set of available sites and nodes

1. Find the site with the least # of replicas of the given type

2. Find the node in the candidate site with the least load;
ignoring nodes already running the service

B Objective of this policy. Ensure available replicas in each
likely partition that may arise
® Avoid collocating two replicas of the same service on the same node
® Disperse replicas evenly on the available sites
® Least loaded nodes in each site are selected
® (Same node may host multiple distinct service types)

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

) LS

Fault Treatment Policy

Stavanger

B KeepMinimallnPartition:
® Maintain a minimal redundancy level in each partition

B RemovePolicy:
® Remove excessive replicas
® Replicas no longer needed to satisfy the fault treatment policy

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

33

Crash failure-recovery behavio

Fault treatment
pend/ng

createRephca Join

Legend: e leader Viewno.i:v,

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Failure-recovery with network
partitioning and merging

createReplica() Vs
N4 Lea ving

Legend: ® Leader Viewno.i: v,

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

3

The DARM Library ‘S

Stavanger

B [ibdarm wraps around libspread and intercepts

® Connection requests to the daemon
— To verify and finalize runtime configuration of DARM
— Join DARM private group of the associated application

® Message receives - SP_receive()
— If message belongs to DARM private group pass message to DARM
— Otherwise pass message to application

— Call SP_receive() again: to avoid having to return control to the
application without passing a message

B libdarm also provides functions to set
® Minimum and maximum number of replicas for the group
® The recovery and remove delays for the group

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

3

The DARM Library ‘S

Stavanger

B Membership messages for the DARM private group
® Used to decide whether fault treatment is needed

B Bootstrapping applications:
® Only a single instance of an application needs to be started

® Assuming the application is configured with some minimum
number of replicas

® DARM will install the required number of replicas

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

37

Outline

B Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

38 LS

Target system i

Stavanger

Fault
infjector

\
\

,/ i Replacement replica

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Network Partition/Merge S

University of

Experiments

B \Want to determine
® the single partition recovery durations

® corresponding merge of partitions
(and removal of excessive replicas)

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Fast Spread; 5

partition with 2 live replicas

Partition (2 live replicas, 1 added) — Density estimates for detection and recovery times (N=194)

1
©— I —— Partition detection, (u=0.9, 6=0.261)
Iy - — Replica create, (u=2.9, 6=0.209)
'[.-+ Final view, (u=3, 0=0.304)
.
[
— I
Te} | "

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Time since partition injected (s)
Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Fast Spread; 5

partition with 1 live replica

Partition (1 live replica, 2 added) — Density estimates for detection and recovery times (N=136)

—— Partition detection, (u=0.9, 6=0.284)
[- — Replica create, (u=2.9, 6=0.288)
n -+ - Final view, (u=5, 0=0.273)
n
0 "
N}
(]
]
(N
N7 1
(]
1
1
™ — I
[
(|
[
[
= U
[
I
[
[
—— [
[
[
[

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Time since partition injected (s)
Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Fast Spread;

: uy
Merge, removing 2 replicas

Network merge - Density estimates for detection and remove times (N=600)

; —— Merge detection, (u=2, 0=0.226)
o_|) - - Replica remove, (u=4.1, 0=0.23)
T I -+ Merged view, (u=6.1, 0=0.22)

n
"
"
0 — "
"
]
]
]
1
© I
1
e
]
1
< 1
|
1
(|
[
o (|
(I
1
[
[
o _/\/\/\,./\J L—l_/\.\ et Vel N

| | | | | | | | | | | |
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Time since merge injected (s)

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

43

Outline

B Introduction and motivation

B Related work

B Distributed Autonomous Replication Management (DARM)
B Simple Network Partition Evaluation of DARM

B Dependability Evaluation Technique

® Concluding remarks

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

™

University of
Stavanger

“It's the latest innovation in office
safety. When your computer crashes,
an air bag is activated so you won't
bang your head in frustration.”

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

45 LS

Objective of Evaluation

Stavanger

B Provide estimates for dependability attributes:
® Unavailability
® System failure intensity
® Down time

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Predicting Dependability D

Attributes o
B Use stratified sampling

B Series of lab experiments are performed

® One or more fault injections in each experiment
— (all faults manifest themselves as crash failures)

® According to a homogeneous Poisson process

B Strata := the number of near-coincident failure events

® A posteriori stratification: Experiments are allocated to different
strata after experiment completion

® Three strata: single, double, and triple failures

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

“Predicting Dependability D

Attributes Uahversty of

B Offline a posteriori analysis
® Events are recorded during experiments
® Used to construct single global timeline of events
® Compute trajectories on a predefined state machine

B Analysis provide strata classification and various statistics
® The statistical measures are used as input to estimators for
dependability attributes:
— Unavailability
— System failure intensity
— Down time

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

48

P4, 2.4GHz;
Linux 2.6.3;
Java JDK 5.0

100 Mbps
Ethernet

—— —' — —

Experiment

Engine

</ ##EB

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

49 LS

Target System - State Machine ...

Stavanger

B Failure-recovery behavior of a service
® Modeled as a state machine (next slide)
® Events are as seen by the service replicas

B The state machine is only used a posteriori
® To compute statistics of the experiment
® (not used to control fault injections)

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

50 LS

Partial State Machine
B Fault Injection can occur in View-3 /3.1y
all states X6
® Causes different trajectories Fault
in the state machine Injection
B Circular states: UP
View-1
B Squared states: DOWN X
"‘3 I, 3V“. 3r,2v
. X0 X3
Replica
Failed Replica
Created

View-2 @

Hein Meling, CANOE Workshop, Toronto, August 2010

Or,Ov
DO Replica
Failed

Friday, August 27, 2010

Failed

- -~77 7 OD-View-2" T =~
TS S \ew-3 View-1
Z\ - — - o < LI
A

View-3 - - oS i Universi
- ty of
View-1 3r[,) gv Stiisnass
View-2

" Replica
failed
Replica
created
Replica
& created

: Replica
fRephca failed
I failed

———

,'Replica

; created

\
‘ - - - -
View-2 = > - View-1| 2r, ov
D2
OD-View
View-1 : N ¥ View-1/ Replica

Replica

; OD-View-3 failed
failed

Replica
falled

failed Replica
created
Replica .
created Replica
Y v created
~ 12y YWiew-1 - View-1| 1r, ov
X5 % D1
v, .
View-1 Replica
. Replica ‘ failed a
Replicd)
- failed _ .
failed Replica View-1
€7 failed
N
or, Ov
DO
Replica
created op, Toronto, August 2010

Friday, August 27, 2010

“Measurement Approach: S

University of

Timeline of events

B Place multiple processor failures close together
® Examine system behavior of such rare events
® (determine the rate at which they cause system failure)
® Use these results to compute system unavailability

® (Given MTBF for a single processor)

System failure

/

Tt

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

University of
Stavanger

>
| -
®)
)
O
.e
S
| -
_I
Q)
e
=
'S
L
()
<
_I

X,(1

{

Injected crash faults in the target system

Seconds

14 15

13

11

10

(]

X3 1
X6 |

2010

W]

Friday, August 27, 2010

54 LS

The Failure Trajectory

Stavanger

B Characteristics obtainable from the failure trajectory

® Unavailability:
— Down time for trajectory |

Y;'d — g(lz) — Z I(XZJ S S)(t’ij-+-1 - t’ij)
j=1
— Unavailability

- E(Y?)
U= E(Y?) 4+ (n)\)

® Probability of failure (reliability)
— (formulas in the paper)

N d
— ~ E(Y)nA.

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

55 LS

Experimental Strategy

Stavanger

B Consider multiple near-coincident failures

B Classify experiments into strata Sk
® If k failure events occurred in the trajectory

B Each strata sampled separately

B Collected samples for each stratum
® Can obtain statistics for the system in that stratum
® E.g., the expected duration of a stratum Sk trajectory:

@k = E(T|Sk) and O = VCLT‘(T|Sk)

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

56 LS

Sampling Scheme

Stavanger

Koo T;
A (Mk=1) (Tk=2) (T =3)
| 7 7)
3__
24+ e :
i i
Y M S M— I R S

. t: '
L I I'm; Tmax

ijl .f}g .f}3
Processor failures

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

57 LS

Estimators

Stavanger

H In real systems, failure intensity A very low;
®ie, A1 >> Tmax
® 11¢ = probability of a trajectory reaching stratum Sk

Tk = ZViESk %

® Unconditional probability of a sample in
® Stratum S»

Ty = (n — 1))\@171'1

® Stratum S3
— (in the paper)

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

58 LS

Experimental Results

Stavanger

B Perform fault injections on target system according to
sampling scheme

® 3000 (lab) experiments performed
® Aiming for 1000 in each stratum

® Classified as stratum Sk if exactly k failures occur before
completion of experiment

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

5

ARM (top) / DARM (bottom) ‘S

Stavanger

Table 1. Results obtained from the experiments (in milliseconds).

Classification|Count|©y = E(T'|Sk)|sd=+/ok| O, 95% conf.int.
Stratum S 1781 8461.77| 185.64| (8328.98, 8594.56)
Stratum S5 793 12783.91| 1002.22|(12067.01, 13500.80)
Stratum S's 407 17396.55| 924.90((16734.96, 18058.13)

Classiﬁcation‘ Count ‘ 0 = E(T|Sk) ‘ sd = /oL ‘ 0, 95% conf.int. ‘ Highest | Lowest

Stratay 2265 2569.22 478.23 (1631.89, 3506.55) 16659 1742
Stratas 591 4158.83 1039.10 (2122.18, 6195.47) 12869 2496
Stratas 110 5966.58 1550.90 (2926.82, 9006.35) 16086 3046

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

60 LS

Experimental Results

Stavanger

H 19 experiments (0.63%) were classified as inadequate
® 16 experiments failed to recover
® 3 experiments experienced additional not-intended failures
® Of the 16, two were for S1, 6 for S2 and 11 for S3
® These 16 are due to deficiencies in Jgroup/ARM

B These inadequate runs are accounted for as trajectories
visiting a down state for 5 minutes (typically a reboot)

B For DARM there were 2 inadequate experiments

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

61

Prob. Density Function

u

University of
Stavanger

Density estimate of Jgroup/ARM crash recovery times

0.00|01 0 0.0901 5 0.00020 0.09025 0.00030

0.09005

0.00000

/I\ Max. 0.00116

—— Single node failure (N=1781, BW=126.9)
Two nearly coincident node failures (N=793, BW=652.9)
Three nearly coincident node failures (N=407, BW=637.2)

| |
10000 12000

| | | | | | |
14000 16000 18000 20000 22000 24000 26000

Time since injection of first crash failure (ms
J (e)in Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

Prob. Density S (DARM) LS

Stavanger

Probability Density for Strata 2

0.20 0.25
| |

0.15
|

0.05
|

0.00
|

I I I I
0 5 10 15

Duration of recovery (seconds)

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

ANele

Table 2. Computed probabilities, unavailability metric and the system MTBF.

Experiment Recovery Period

Processor Recovery (5 min.)

Manual Processor Recovery (2 hrs.)

Processor Mean Time Between Failure (MTBF=A"") (in days)

100 200 100 200 100 200
71 | 0.99999314 0.99999657 0.99975688 0.99987845 0.99412200 0.99707216
7o | 6.855602 - 107° | 3.427801 - 107°(2.430555 - 10~ *[1.215278 - 10~ *|5.833333 - 10™2| 2.916667 - 10~*
7s 4.072921 - 107 '1{1.018230 - 10~ |5.595341 - 10~ ¥|1.398835 - 10~ |4.466146 - 10~°| 1.116536 - 10~°
U | 4.671318-1077]2.335617 - 1077 |2.777102 - 10~*|1.388720 - 10~*[6.627480 - 10~>| 3.323574 - 103
A7 20.3367 yrs 40.6741 yrs - - - -
Experiment Recovery Period Processor Recovery (5 min.) Manual Processor Recovery (2 hrs.)
Processor Mean Time Between Failure (pmtbf=A"1) (in days)
100 200 100 200 100 200
™ 0.9999979184 0.9999989592 0.9997568889 0.9998784583 0.9941238281 0.9970726237
T 2.0815438 - 10~ 1.0407719 - 106 | 2.4305555 - 10~* | 1.2152777 - 10~* | 5.8333333 - 103 | 2.9166666 - 10~3
T3 4.0903937 - 10712 | 1.0225984 - 10~12 | 5.5447048 - 108 | 1.3861762 - 108 | 4.2838541 -10~° | 1.0709635 - 10~°
U 4.1317108 - 10717 | 5.1646385 - 10718 | 2.7771024 - 10~* | 1.3887200 - 10~* | 6.6274921 - 102 | 6.6471508 - 103
A1 212 yrs 851 yrs - - - -

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

64 LS

Concluding Remarks

Stavanger

B DARM supports autonomous fault treatment
® Recovery decisions are distributed to the individual groups

® In previous systems recovery decisions were centralized
— Complex and error-prone

B DARM has been released as open source at:
® darm.ux.uis.no

® \We are performing more advanced measurements
® Client perceived availability
® Longer executions and with other parameters to get statistically
significant results
B Experimental results indicate that self-repairing systems
can obtain very high availability and MTBF

B Automated fault injection tool

® Proved very useful for uncovering a number of subtle bugs
® Allows for systematic stress and regression testing

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

65 LS

Open Issues

Stavanger

® Handling full group failures
® ARM have a centralized component to monitor all groups
® DARM only monitors the group from within itself

® Could let the factory handle this in some way
— Lease/Renew or simple pinging

B Management tasks to simplify deployment of applications
® Self-configuration
® Reconfiguration of nodes that can host replicas

B Express policies in terms of equations
B Implement more policies

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

66 . . LS

Group Failure Handling

Stavanger

N1 3;:‘,; N1 crashed
) \notify(

lamAlive)
% N2 crashed

\ncitify(lamAIive) join

N3 >
\\ / n t| y (ViewChange)
join
N4

Oy \/ \ >
notify(ViewChange) nOt'f (lamAlive)
createReplica() \ \ \

] Bl (A >

N2

RM

: : — : : —
timeout

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

u

University of
Stavanger

Thanks!

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

68 LS

References

Stavanger

[1] Hein Meling, Alberto Montresor, Bjarne E. Helvik, and Ozalp Babaoglu.
Jgroup/ARM: a distributed object group platform with autonomous replication
management. Software: Practice and Experience, 38(9):885-923, July 2008.

[2] Hein Meling and Joakim L. Gilje. A Distributed Approach to Autonomous Fault
Treatment in Spread. In Proceedings of the 7th European Dependable
Computing Conference (EDCC). IEEE Computer Society, May 2008.

[3] Bjarne E. Helvik, Hein Meling, and Alberto Montresor. An Approach to
Experimentally Obtain Service Dependability Characteristics of the Jgroup/ARM
System. In Proceedings of the Fifth European Dependable Computing
Conference (EDCC), volume 3463 of Lecture Notes in Computer Science,
pages 179-198. Springer-Verlag, April 2005.

[4] Hein Meling. Adaptive Middleware Support and Autonomous Fault Treatment:
Architectural Design, Prototyping and Experimental Evaluation. PhD thesis,
Norwegian University of Science and Technology, Department of Telematics,
May 2006.

Hein Meling, CANOE Workshop, Toronto, August 2010

Friday, August 27, 2010

