
Testing robot controllers using constraint programming
and continuous integration

Morten Mossige a,b,c,⇑, Arnaud Gotlieb b,1, Hein Meling c,2

a ABB Robotics, 4349 Bryne, Norway
b Simula Research Laboratory, Lysaker, Norway
c University of Stavanger, 4036 Stavanger, Norway

a r t i c l e i n f o

Article history:
Received 24 March 2014
Received in revised form 19 September 2014
Accepted 19 September 2014
Available online 2 October 2014

Keywords:
Constraint programming
Continuous integration
Robotized painting
Software testing
Distributed real time systems
Agile development

a b s t r a c t

Context: Testing complex industrial robots (CIRs) requires testing several interacting control systems.
This is challenging, especially for robots performing process-intensive tasks such as painting or gluing,
since their dedicated process control systems can be loosely coupled with the robot’s motion control.
Objective: Current practices for validating CIRs involve manual test case design and execution. To reduce
testing costs and improve quality assurance, a trend is to automate the generation of test cases. Our work
aims to define a cost-effective automated testing technique to validate CIR control systems in an indus-
trial context.
Method: This paper reports on a methodology, developed at ABB Robotics in collaboration with SIMULA,
for the fully automated testing of CIRs control systems. Our approach draws on continuous integration
principles and well-established constraint-based testing techniques. It is based on a novel constraint-
based model for automatically generating test sequences where test sequences are both generated and
executed as part of a continuous integration process.
Results: By performing a detailed analysis of experimental results over a simplified version of our con-
straint model, we determine the most appropriate parameterization of the operational version of the con-
straint model. This version is now being deployed at ABB Robotics’s CIR testing facilities and used on a
permanent basis. This paper presents the empirical results obtained when automatically generating test
sequences for CIRs at ABB Robotics. In a real industrial setting, the results show that our methodology is
not only able to detect reintroduced known faults, but also to spot completely new faults.
Conclusion: Our empirical evaluation shows that constraint-based testing is appropriate for automati-
cally generating test sequences for CIRs and can be faithfully deployed in an industrial context.

! 2014 Elsevier B.V. All rights reserved.

1. Introduction

A complex industrial robot (CIR) is defined as a classical indus-
trial robot with an additional control system attached to perform a
given process. This additional control system is typical responsible
for controlling the process, which is typically painting, gluing,
welding, and so forth.

Developing reliable software for CIRs is a complex task, because
typical CIRs are comprised of numerous components, including
control computers, microprocessors, field-programmable gate

arrays, and sensor devices. These components usually interact
through a range of different interconnection technologies, for
example, Ethernet and dual port RAM, depending on delay and
latency requirements on the communication. As the complexity
of robot control systems continues to grow, the development and
validation of software for CIRs is becoming increasingly difficult.

The problem is even worse for robots performing process-inten-
sive tasks such as painting, gluing, or sealing, since their dedicated
process control systems can be loosely coupled with the motion
control system. In particular, a key feature of robotized painting
is the ability to precisely activate the process equipment along a
robot’s programmed path. However, many of the processes
involved in robotized painting are relatively slow compared to
the process of moving the mechanical robot. Consequently,
advanced computation-based techniques have been set up to take
advantage of knowledge of the slower physical processes to

http://dx.doi.org/10.1016/j.infsof.2014.09.009
0950-5849/! 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: University of Stavanger, 4036 Stavanger, Norway.
Tel.: +47 514 89 247.

E-mail addresses: morten.mossige@uis.no (M. Mossige), arnaud@simula.no
(A. Gotlieb), hein.meling@uis.no (H. Meling).

1 Tel.: +47 406 26 077.
2 Tel.: +47 518 32 080.

Information and Software Technology 57 (2015) 169–185

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.09.009&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.09.009
mailto:morten.mossige@uis.no
mailto:hein.meling@uis.no
http://dx.doi.org/10.1016/j.infsof.2014.09.009
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

compensate for these latencies. Validation of such a paint control
system, called an Integrated Painting System (IPS), is therefore
challenging. Current testing practices to reduce the number of soft-
ware faults apply techniques such as the manual design of unit and
integration testing, where both the test inputs and expected output
are defined by validation engineers. Testing the IPS requires access
to the physical layer to activate many of the painting robot’s fea-
tures. Much of the testing is based on running the full-scale system
with a moving robot and measuring IPS outputs with instruments
such as an oscilloscope. This results in long round-trip times and
little automation. In addition, many of the tests produced for one
configuration of the IPS cannot easily be reused to test another
configuration, since manual test configuration is required. These
techniques are labor intensive and error prone. Consequently, soft-
ware faults may still be detected late in the IPS design process,
often close to release date, leading to increased validation costs.

In this paper, we report on a methodology to fully automate the
testing of ABB’s CIR control systems. The work builds on initial
ideas sketched in a poster presentation [1]. Our approach draws
on continuous integration principles and well-established con-
straint-based testing techniques. It is based on an original con-
straint-based model for automatically generating test sequences
that are both generated and executed as part of a continuous inte-
gration process. By performing a detailed analysis of experimental
results over a simplified version of our constraint model, we deter-
mine the most appropriate parameterization of the operational
version of the constraint model. This version is now deployed at
ABB Robotics’s CIR testing facilities and used on a permanent basis.
This paper presents the empirical results obtained when automat-
ically generating test sequences for CIRs at ABB Robotics. In a real
industrial setting, the results show that our methodology is not
only able to detect reintroduced known faults, but also to spot
completely new faults. Our empirical evaluation shows that con-
straint-based testing is appropriate to automatically generate test
sequences for CIRs and can be faithfully deployed in an industrial
context.

1.1. Contributions

The contributions of the paper can be summarized as follows:

1. Our testing methodology introduces a new constraint-based
mathematical model focusing on IPS timing aspects. The con-
straints are used to describe both normal behaviors of the IPS,
as well as abnormal behaviors, so that it is possible to target
error states when generating test cases. The model is generic
and expressed using simple mathematical notions, which
makes it reusable in other contexts.

2. A full-scale implementation of the model is presented with con-
straint programming tools [2]. The paper presents how the
model is integrated in a live industrial setting to test the IPS.
To the best of our knowledge, this is the first time a constraint
model and its solving processes are used in a continuous inte-
gration environment to test complex control systems.

3. An empirical evaluation is conducted to analyze the model’s
deployment. During this evaluation, reinserted old, historical
faults are found by this new approach, as well as new faults.
Comparing this constraint-based approach with current IPS
testing practices reveals that the time from a source code
change to the time that a relevant test is executed is dramati-
cally reduced.

1.2. Organization

We start by providing background information and presenting
related work in Section 2. In Section 3 we introduce robotized

painting. We describe some of the design choices made when
developing ABB’s paint control system and how these affect test-
ing of the system. We present how the IPS is currently tested in
Section 4. We describe the paint control systems’ mathematical
properties in Section 5 and, based on these properties, we present
the constraints used as a basis for generating a model that can be
used for test case generation in Section 6. In Section 7, we
describe how the model is implemented and how it is integrated
with a continuous integration system. We then present the
results this new test strategy in Section 8. We present a thor-
oughly experimental evaluation of the model recommendations
of how to use the model. In Section 9, we suggest ideas for
improvement and further work.

2. Background and related work

The methodology proposed in this paper is tightly coupled with
continuous integration and model-based testing (MBT). This sec-
tion recalls the basics of continuous integration and gives a brief
overview of the most recent advances in the field by looking at
how continuous integration influences verification and validation
activities. This section also reviews usage of MBT, with a particular
focus on constraint programming in software testing.

2.1. Continuous integration

Continuous integration [3] is a software engineering practice
aimed at uncovering software errors at an early stage of software
development, to avoid problems during integration testing. Even
if there is no general consensus of what continuous integration is
exactly, a typical continuous integration infrastructure includes
source control repository tools, automated build, build servers,3

and test servers. Fitzgerald and Stol [4] describe continuous integra-
tion as ‘‘a process which is typically automatically triggered and
comprises inter-connected steps such as compiling code, running
unit and acceptance tests, validating code coverage, checking com-
pliance with coding standards, and building deployment packages.’’
There is therefore a common understanding that the time from a
continuous integration cycle being triggered to a developer receiving
feedback should be as short as possible [5,6]. Therefore, one of the
key ideas behind continuous integration is to build, integrate, and
test the software as frequently as possible. Developers working
under continuous integration are encouraged to submit small source
code changes to the source code repository instead of waiting and
occasionally submitting larger sets of changes.

If we consider test execution part of a continuous integration
cycle, various testing activities could, in principle, be included.
For example, automatic test case generation, test suite minimiza-
tion, or prioritization [7–11] could be included to reduce the time
needed to execute a test suite without reducing the quality of the
overall test process. Interestingly, Hill et al. [12] report on the
inclusion of system execution modeling tools to test distributed
real-time systems as part of continuous integration. However, to
the best our of knowledge, very few results evaluate the impact
of including more testing activities in continuous integration. Our
work, incorporating systematic automated test case generation
methodology in continuous integration, is a first step toward more
automation in the software validation of complex software control
systems.

3 A build server is a machine that fetches source code from the source control
repository and performs building, testing, integration, and so forth. All steps are
carried out completely automatically and typically triggered by a source code commit
or a timer.

170 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

2.2. MBT and constraint programming

The test strategy described in this paper relates to different val-
idation and verification approaches. The discussion work is divided
into three topics.

Correct-by-construction approaches: When a step-by-step refine-
ment process is used to derive an implementation, a correct-by-
construction system can be obtained. Systems designed by such
approaches are typically generated by a formal specification
model in which the system’s correctness is guaranteed and for-
mally proved.
MBT: This approach typically involves three major stages: (1) A
specification model (e.g., UML diagrams) is first built for testing
purposes. (2) Then, the model is used to automatically generate
test inputs and test oracles. (3) Finally, the actual system can be
run with the generated inputs and its results compared with
automatically predicted outputs.
Constraint-based testing: This approach aims to use constraint
solving technologies to derive test cases automatically from a
piece of code or a model. The main challenges for this approach
lie in the mathematical formulation of the code or model and
tuning the constraint solving process.

2.2.1. Correct-by-construction approaches
Correct-by-construction methods are frequently used in the

design of safety–critical systems in avionics or railway domains,
but other application domains are also relevant. Zhao et al. [13]
reports on the use of discrete-event systems (DES) [14,15] for the
design of an event-triggered real-time distributed system related
to the ‘‘eye vision’’ project. In this approach, called Programming
Temporally Integrated Distributed Embedded Systems (PTIDES),
multiple cameras are synchronized via IEEE 1588 [16,17] to take
synchronized images. Since each camera has its own internal tim-
ing characteristics, taking a synchronized image requires address-
ing problems that are similar to those encountered in robotized
painting. This PTIDES approach is appealing, since formalizing
the event-triggered real-time distributed system would drive engi-
neers to automatically correctly implement it.

However, even if the problems addressed in PTIDES share some
similarities with the testing of CIRs, a major drawback is that the
complete system is required, including all functional behaviors,
to model the problem. For many industrial applications, obtaining
such a model is challenging. When some parts of the system are
delivered by third-party suppliers, the problem is even worse.

Industrial robots are usually considered representative of the
larger class of Cyber-Physical Systems (CPS) [18,19], whose model-
ing is known to be challenging [20]. Broy et al. [21] formally verify
a distributed real-time system used in the automotive field, using a
de facto modeling notation for developing automotive controllers,
namely, Simulink/State. Using this formal notation enables auto-
matic model-based code generation, analysis, and verification of
the control software systems. This of course, is an advantage of
the approach, but, again, a formal model is required for each com-
ponent. Note also that pushing the system under test into error
states is not easy when developing a correct-by-construction
approach. Formal models tend to capture only correct behaviors,
refining these only until code generation.

Generally, correct-by-construction methods requires skill in
writing mathematical proofs, which is uncommon among average
software developers. In our industrial environment, this method is
clearly out of scope.

2.2.2. MBT
MBT [22] is a part of model-based design and is thus related to

the previously mentioned approaches. A UML model can be

developed to specify the architectural parts of the system, together
with manual coding of the implementation details. Then, generat-
ing test cases based on the model allows the validation engineer to
check the correctness of the developed code. However, according
to Utting and Legeard [22], a more common approach in MBT is
to create a dedicated executable testing model. This approach is
simpler because the complete behavior of the system does not
need to be reflected by the model and details unrelated to actual
testing can be ignored. However, writing a UML executable model
is more demanding than writing a constraint model focused on
particular aspects of the system, such as timing aspects. Support
tools for MBT are also limited when it comes to including actual
testing into a continuous integration environment. Another chal-
lenging aspect concerns including the test generation process into
MBT tools [23].

Specifying variable ordering when generating test inputs is usu-
ally not possible, meaning that the control of the test generation
time is limited. We later show that this is a critical factor in finding
solutions in a reasonably allocated contract of time.

2.2.3. Constraint-based testing
Use of constraint programming for automatic test case genera-

tion has been around for a long time e.g. Gotlieb et al. [24], Marre
and Blanc [25], Di Alesio et [26]. Gotlieb et al. [27] developed a con-
straint programming model for automatic test case generation for
C programs. Similarly, Marre and Blanc developed GATeL [25], a
constraint-based testing tool able to generate test cases for syn-
chronous languages. In both these approaches, Prolog with con-
straints was used, along with techniques to fine-tune the search
process. More recently, Di Alesio et al. [28] adopted a similar
approach to stress-test real-time applications. The approach pro-
posed in this paper differs in that none of these constraint models
are included with a continuous integration process and none of the
constraint solving processes are launched at testing time. Such
integration requires that the constraint solving time be carefully
controlled.

3. ABB’s process control system

This section first briefly introduces ABB’s IPS before presenting a
general introduction to robotized painting and some of the chal-
lenges involved in controlling slow physical processes. We discuss
some of the trade-offs in testing the IPS. We also look at some of
the design choices taken when developing the IPS and how we
can view the IPS in a more abstract way.

ABB’s IPS is a standalone distributed control system usually
used with a standard ABB robot controller, but it can also be used
with non-ABB robots. The IPS is a collection of different real-time
embedded controllers capable of performing one or more pro-
cess-related tasks. Examples of such tasks can be the closed-loop
control of air flow/air pressure, the closed-loop control of pump
pressure in paint flow, the closed-loop control of high voltage for
electrostatic charging, and various control systems for operation
on valves and the supervision of sensors. The IPS can be used in
many different configurations, ranging from a single controller
for small paint robots to large systems with more than 20 control-
lers interconnected over an industrial-grade network.

In the following, we illustrate the principles of robotized paint-
ing with the IPS with a small example and introduce some of the
challenges.

3.1. Example of robotized painting

In this example, the objective is to apply paint to an object,
using a robot. The robot is shown in Fig. 1 and the fill area at the

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 171

bottom left illustrates object to be painted. We assume that the
robot is programmed to move in a straight line at a constant speed
of 1000 mm/s. We also assume time starts at t ¼ 0, when the robot
motion starts.

The spray pattern to be applied starts at 500 mm and, since the
robot is moving at a speed of 1000 mm/s, the final spray pattern
should be ‘on’ 500 ms after the start, as shown in Fig. 1. Producing
the desired spray pattern involves at least four different physical
processes that must be combined to obtain the expected pattern.
For the purpose of this example, we consider four physical pro-
cesses: a motor running a paint pump, a valve connected to the
spray head through which paint flows when the valve is open,
and two different air flows that are used to shape the paint fog that
comes out of the spray head.

To account for the motion of the robot, the different physical
processes must be activated at the appropriate times. For instance,
about 200 ms before the robot arrives at the point where the paint
should be applied, the robot controller may send the following
message to the IPS: ðB ¼ 1; ta ¼ 500Þ. This message means that
the IPS should apply spray pattern number 1 at activation time
ta ¼ 500 ms. The value B ¼ 1 is simply a logical value describing
a specific spray pattern. The IPS uses the value of B as an index
in an internal lookup table that provides the physical value to be
applied to the actuator outputs to produce the desired spray pat-
tern. For this particular example, B ¼ 1 could mean that the actua-
tors controlling the pump and air flows 1 and 2 should provide
400 ml/m of paint and 250 Nl/m and 400 Nl/m of air, respectively.
These parameters are, of course, user configurable.

The IPS will then calculate when each of the actuator outputs
needs to be activated to produce the requested spray pattern at
ta. Since many of the physical processes involved in painting have
significant physical delays, their actual activation must take place
before ta. For this example, the IPS calculates that the pump must
be started 50 ms before ta, while the valve must be opened
80 ms before ta. For the two air flows, activation must take place
120 ms and 150 ms before ta, respectively.

As is apparent from this example, the IPS needs to synchronize
several actuator outputs, where each output has its own timing
characteristic and may be located on different controllers. The tim-
ing characteristics for a specific actuator output depend on many
factors, the most important of which is the magnitude of the
change in output. Consider, for example, a pump; a large change
will take longer to apply than a small change, due to the accelera-
tion of the motor.

3.2. Testing challenges

Offering a product with high levels of precision introduces sev-
eral challenges in the development phase, among them being test-
ing the system’s behavior with respect to its timing characteristics
[29]. Testing the timing behavior of a centralized control system
with a single clock can be challenging. However, the IPS is typically
configured with a number of embedded controllers distributed
across the robot system. These controllers run time synchroniza-
tion protocols to keep their clocks synchronized. Still, testing the
IPS timing behavior has proven to be a major challenge, mainly
due to its distributed nature. Moreover, the degrees of freedom
in configuring the IPS leads to further complexity in the testing
phase, since a wide range of configurations must be tested. A nat-
ural consequence of these complexities is that automated testing
has become a necessity.

The IPS is designed to be a highly flexible and configurable paint
control system. Depending on the complexity of a customer’s solu-
tion, a robot is equipped with one or more embedded controllers
running the IPS software.

The most complex configurations involve as many as 20 embed-
ded controllers interconnected through an industrial-grade com-
munication network. The main motivation for designing the IPS
as a distributed system is to enable the different embedded con-
trollers to be located physically close to the actual process that it
controls. This enables fast control loops and is essential to make
the system precise and accurate. The result of this design principle
is that some of the controllers are placed at different locations on
the robot, while others are located in a control cabinet close to
the robot brain.

This design principle provides a powerful process solution but,
complicates testing both due to the distributed nature of the IPS,
and due to the fact that some of the embedded controllers can
be located on movable and possibly hazardous robots.

3.3. Abstraction of the IPS

An abstract model of the IPS is shown in Fig. 2. As we can see,
the robot controller communicates with an embedded controller,
denoted the IPS master. This master connects to other embedded
controllers through an industrial-grade network. Note also that
all the embedded controllers are synchronized with respect to
time. Since the robot controller and the IPS are synchronized, a
function call to gettimeofday() executed on any embedded con-
troller and the robot controller at the same time will return a syn-
chronized time with microsecond precision. This accurate
synchronization is one of the most important building blocks in
the design of the IPS, since each embedded controller can schedule
activation times for an actuator output, using the global clock.

4. Legacy test practices

In this section, we review some IPS testing practices, focusing
on validating the accuracy of the time-based activation of actuator
outputs. We discuss the benefits and drawbacks of these legacy
testing practices before we outline the requirements for our auto-
mated test method.

A major challenge in testing a robot system is that it involves a
physically moving part (the robot arm) that must be accurately
synchronized with several external process systems. This quickly
turns into labor-intensive procedures to set up and execute tests.
Moreover, strict regulations with regard to safety must also be fol-
lowed due to moving machinery and the use of hazardous fluids,
such as paint [30].

Message to IPS

Air1Air2Valve

Pump

Start of spray
pattern

Fig. 1. To achieve the correct spray pattern at the starting edge of the object to be
painted, different physical processes need to be activated with individual timing
before the robot reaches the object.

172 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

4.1. Painting on paper

To simulate a realistic application of spray painting with a
robot, we can configure a paint system to spray paint on a piece
of paper. An example of this is shown in Fig. 3.4 This test includes
both realistic robot movement and a complete and realistic IPS con-
figuration. However, there are many drawbacks with this method.
For instance, it involves quite a bit of costly manual labor to set up
the test. In addition, the test can only be performed in a protected
environment to prevent human exposure to dangerous paint fluids
and gases. Finally, it is more or less impossible to automate this test,
even after some initial configuration, as discussed below.

Due to its high cost, this type of test is typically performed dur-
ing the final verification stage for a new product running the IPS
software, such as a new air controller or a new pump controller.
The test is also performed after a major refactoring of the IPS.
Based on our experience at ABB Robotics, it is both extremely rare
and difficult to find timing-related errors using this test method.

4.2. Activation testing with an oscilloscope

By reducing the IPS configuration to a single digital actuator
output, without any fluid or air units and detecting trigger points

using a proximity sensor, it is possible to run rudimentary synchro-
nization tests on the IPS. Specifically, the test involves connecting
the actuator output to an input channel on an oscilloscope and
connecting the proximity sensor to another input channel on the
oscilloscope. With this setup, the robot can be programmed to per-
form a linear movement passing over the proximity sensor, with
the paint program set to activate at exactly that point. The robot
thus generates a signal on its actuator output that should corre-
spond exactly to the signal from the proximity sensor. By compar-
ing the signal from the actuator output with the signal from the
proximity sensor, it is possible to test many of the timing behaviors
of the IPS.5

At ABB Robotics, this is one of the most executed tests aimed at
uncovering synchronization problems, but it also requires manual
labor to set up and execute the test runs. In addition, since it
involves physical movement of the robot arm, a hazard zone must
be established for the test. However, unlike the test described in
Section 4.1, it can be executed without supervision and the test
results can be inspected after test completion.

4.3. Running in a simulated environment

The IPS is designed to be portable to many microprocessor
architectures and operating systems. It is even possible to run
the IPS on a desktop system such as Windows. This advantageously
allows much of the functional testing to be performed in a simu-
lated environment, which reduces some of the need for time-con-
suming manual testing on actual hardware. However, testing
against performance requirements is impossible in a simulated
environment, due to the lack of real-time behavior in the
simulator.

4.4. Summary of existing test methods

The test methods described above have several drawbacks. Test
methods that use a real robot have the advantage of very realistic

Embedded
Controller 1

I/O

Embedded
Controller 2

I/O
I/O

I/O

Embedded
Controller j-1

I/O

Embedded
Controller j

I/O I/O
I/O

Embedded
Controller 3

I/O I/O

IPS
Master

Time Sync.

Robot
Controller

I/O[Bi,ti]

[Pt,tt]

Fig. 2. Logical overview of the IPS. The IPS is interconnected by an industrial-grade network. All the embedded boards are synchronized by use of IEEE 1588 [16]. Each
embedded controller is typically located inside the robot’s control cabinet, at different locations on the robot arm, or in an external process control cabinet.

Spray -
pattern 1

Spray -
pattern 2

Fig. 3. Painting on paper allows for the visual inspection of the timing of different
actuator outputs. However, the inspection must typically be performed by a paint
process engineer in cooperation with a software engineer.

4 The video at http://youtu.be/oq524vuO5N8 also shows painting on paper.

5 These two videos show activation testing using a proximity sensor and an
oscilloscope, respectively: http://youtu.be/I1Ce37_SUwc and http://youtu.be/
LgxXd_DN2Kg.

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 173

http://youtu.be/oq524vuO5N8
http://youtu.be/I1Ce37_SUwc
http://youtu.be/LgxXd_DN2Kg
http://youtu.be/LgxXd_DN2Kg

results, but they require slow, costly manual labor to set up the test
and interpret the results. For the method described in Section 4.3,
it is clearly possible to automate the setup and to some degree the
result analysis. However, the method cannot be used to execute
tests related to real time or synchronization between several
embedded controllers. To cope with such tests, we need a new test
method.

4.5. New test method

In the following, we outline the requirements for our new test
method. The goals of the new method are automation, the reduc-
tion of manual labor, and reduction of the time required to detect
errors introduced during development.

Automated: It should be possible to set up the test, execute the
test, and analyze the results without human intervention.
Systematic: Tests should be generated automatically by a model
rather than constructed by a test engineer.
Adaptive: Generated tests should automatically adapt to
changes in the software and/or configurations and should not
require any manual updates to the testing framework. This
implies that tests should be generated immediately prior to
their execution, using as input information obtained from the
system under test.

5. Modeling the IPS

In this section we introduce a mathematical representation of
the IPS. We first establish the mathematical relations within the
IPS and show how these can be abstracted into a general-purpose
model. We then show how the IPS can predict when to apply a
change on an actuator output based on the activation time and
the magnitude of the change. Finally, we discuss some of the inter-
esting constraints and scenarios the IPS must be able to handle and
show how they can be formulated as mathematical constraints and
integrated into the model.

5.1. IPS channels

Before we introduce the mathematical model of the IPS, we
need to introduce the concept of a channel used in the IPS.

As previously mentioned, the IPS can be configured in different
ways, depending on the complexity of the process. One way to con-
figure the IPS is by using channels. A channel is simply an abstrac-
tion that represents how a specific spray pattern is generated. Each
channel is responsible for controlling one physical process, for
example, air or paint, involved in generating a spray pattern. The
current IPS supports up to five channels plus a special internal
channel (channel 0) that is reserved for controlling the paint valve
in the spray applicator. In the abstract model of the IPS shown in
Fig. 4, each channel is shown as an output of the model.

5.2. Mathematical model

Abstractly, the IPS can be modeled as shown in Fig. 4. The input
to the IPS is represented by a sequence of spray patterns along with
their desired application times, that is, a sequence of ðBi; tiÞ-tuples,
denoting the ith spray pattern Bi and its application time ti. This
sequence corresponds to the commands sent by the robot control-
ler. The output of the model represents the physical values for each
channel j, along with their activation times, ðPj;i; tj;iÞ. In the follow-
ing, we describe the mathematical relations for the transformation
ðBi; tiÞ# ðPj;i; tj;iÞ.

To model the physical processes they represent, each channel
has its own set of configuration parameters, which are used as

input to the timing calculation for the channel: Dþj , D%j , and Kj in
Fig. 4 and explained further in Section 5.6. The IPS can also com-
pensate for timing disturbances between the different channels.
This functionality is controlled by the parameters PreTime and Post-
Time. Finally, we have a brush table B that is consulted to perform
the transformation Bi # Pj;i.

All of the parameters mentioned above are treated as constants
in a production installation. However, for the purpose of generat-
ing test sequences for the IPS model, these parameters are turned
into variables that may change. Finally, the model configuration
part of Fig. 4 contains configuration parameters describing how
to generate the IPS test model. These parameters typically include
the length of the test sequence and the type of test scenario.

5.3. Brush table

As mentioned earlier, the robot controller will send a new acti-
vation message with the value Bi, identifying a specific spray pat-
tern. Internally in the IPS, Bi is used as an index in the brush
table. The content of the brush table determines the actuator out-
put for each channel, which is used to produce the desired spray
pattern. This lookup function is expressed as follows:

Pj;i ¼ B½Bi'½j'; 8j 2 1 . . . 5 ð1Þ

where B is a brush table with five columns, one for each channel,
and jBj rows, representing the different spray patterns. For the
internal channel 0, the output is derived from the value of channel
1, according to Eq. (2).

P0;i ¼ 1 if P1;i > 0 ð2Þ
P0;i ¼ 0 if P1;i (0

This means that the valve controlled by channel 0 will open if chan-
nel 1 has a positive output. Moreover, a negative value on channel 1
corresponds to a special configuration for loading paint into a can-
ister, meaning that the valve of channel 0 should be closed. Thus, it
is important that channels 0 and 1 are tightly synchronized to pre-
vent excess pressure on the hoses that carry paint, which could
otherwise cause them to rapture.

5.4. Channel activation time

We now explain how to compute the activation times for each
channel, tj;i, from the desired spray pattern activation time, ti,
received from the robot controller. Eq. (3) shows how this calcula-
tion is performed:

Fig. 4. Abstract mathematical overview of the test model.

174 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

8j 2 0 . . . 5; 8i 2 1 . . . N
tj;i ¼ ti % taj;i % tcj;i

¼ ti % f aj
ðPj;i; Pj;i%1Þ % f cj

ðPj;i; Pj;i%1Þ ð3Þ

where N is the size of the input sequence. The air delay taj;i and
channel delay tcj;i used in this equation are computed using Eqs.
(4) and (5), respectively.

Note that the resulting time tj;i depends on the change between
the actuator output Pj;i and the previous output Pj;i%1. As we discuss
later, each channel also has its own set of parameters that are used
in this calculation.

5.5. Timing influence between channels

As mentioned earlier, some of the IPS channels will influence
the timing of other channels. For example, turning on or off the
paint channel (channel 1) will disturb the timing of the air chan-
nels (channels 2–4). To compensate for this disturbance, an air
compensation function f a is added to the air channels:

f aj
ðu;vÞ ¼

PreTime if u ¼ 0 ^ v – 0
PostTime if u – 0 ^ v ¼ 0
0 otherwise

8
><

>:
8j 2 2 . . . 4 ð4Þ

where PreTime and PostTime are considered constant configuration
parameters (see also Table A.4 in Appendix A).

5.6. Timing on isolated channels

Each channel has its own set of parameters that can used to
adjust its timing characteristics. This timing is calculated using
the channel compensation function f c , shown in Eq. (5). A channel
can be configured to have either a fixed delay or a delay that is lin-
early related to the change of Pj;i. A fixed delay is typically used for
digital outputs that control valves, while a linear delay is typically
used for outputs that control motors and air flows. For a linear
delay, the time needed to adjust the output value depends on the
magnitude of the change; a large change takes longer:

f cj
ðu;vÞ ¼

D%j) v%u
Maxj%Minj

! "Kj
if u < v

Dþj) u%v
Maxj%Minj

! "Kj
if u > v

0 otherwise

8
>>>><

>>>>:

8j 2 0 . . . 5 ð5Þ

where Kj 2 f0;1g is used to enable or disable the linear delay com-
ponent. The terms Dþj and D%j are considered constant configuration
parameters (see also Table A.4).

6. Test scenarios with constraints

With our mathematical model at hand, we now describe sce-
narios that can arise when multiple spray patterns are activated
in succession. Accordingly, we identify mathematical constraints

that can be used to generate test sequences to produce such error
scenarios.

We divide the scenarios into two main categories. The first cat-
egory expresses how the IPS behaves in a normal operational state.
The second category represents scenarios in which the IPS is
pushed into either an erroneous state or a state with reduced per-
formance. These scenarios are summarized in Fig. 5 and discussed
in detail in the following sections.

6.1. Normal scenario

During normal, non-erroneous behavior, the robot controller
sends commands to the IPS and the IPS activates outputs according
to the following constraints, respectively, both corresponding to
Fig. 5a:

8i 2 1 . . . N;
ti % ti%1 P MinBrushSep;
ti > ti%1; ti P 0;
Bi – Bi%1; Bi 2 0 . . . jBj

ð6Þ

8j 2 0 . . . 5; 8i 2 1 . . . N
tj;i % tj;i%1 P MinTrigSep;
tj;i > tj;i%1; tj;i P 0

ð7Þ

where MinBrushSep and MinTrigSep refer to two configurable
parameters that are entered into the model prior to generating a
test sequence. These constraints are especially efficient in generat-
ing test sequences with a corresponding configuration and oracle to
validate that the IPS is behaving as expected under non-erroneous
conditions. During comparison between the outputs generated by
the IPS and the oracle generated by this scenario, we specifically
look for missing output events and missing brush events.

6.1.1. Burst
An extension of the normal behavior scenario can be achieved

by constraining the time span on either a set messages in the input
sequence or a set of output activations. This makes it possible to
force a burst of messages or activations within a limited time per-
iod. The constraints for a burst on an input sequence and a burst for
an output channel are formalized, respectively, as

te % teþBurstLen 6 BurstTime ð8Þ
tc;eþBurstLen % tc;e 6 BurstTime ð9Þ

Both BurstLen and BurstTime are configurable input parameters in
the model (see Table A.4).

6.2. Overlap scenario

Overlapping events are probably one of the most interesting
scenarios that can be generated, as shown in Fig. 5b. This scenario
is best explained with a simple example. Assume that one actuator

Fig. 5. A collection of error scenarios that the model can generate. Horizontal lines represent time and a black dot represents the activation of an output. A specific spray
pattern is a collection of output activations, visualized by a line connecting the black dots.

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 175

output is configured with K ¼ 0; Dþ ¼ 10, and D% ¼ %10. Consider
two events, where the first resulted in an activation schedule
Pt1 ¼ 0 and tt1 ¼ 10 for the actuator output IO2. The second mes-
sage is Pi2 ¼ 1 and ti2 ¼ 15. Assuming that the current time
(gettimeofday()) is less than 10, it is easy to see that
tt2 ¼ ti2 % Dþ ¼ 15% 10 ¼ 5. As this example illustrates, an event
received later can result in an activation time before events already
scheduled for activation.

The IPS could generally handle such an overlap scenario in one
of two ways. One possibility is to schedule the new event before
the current event, resulting in the activation sequence
ððPt2 ¼ 1; tt2 ¼ 5Þ; ðPt1 ¼ 0; tt1 ¼ 10ÞÞ. However, this approach
has a serious safety flaw. Assume that the last event was some
form of shutdown command, for example, to open a valve due to
overpressure. Then the supervisor system would observe the actu-
ator in an unexpected state.

Another option is to retain the old tt and just replace the Pt

value in the queue with the newly calculated Pt , resulting in a sche-
dule ððPt2 ¼ 1; tt1 ¼ 10ÞÞ. We thus ensure that the actuator ends up
in a state expected by our supervisor system. This corresponds to
the approach taken by the IPS.

In real robot applications, there are many sources for this par-
ticular overlap scenario, the most common being that a customer
wishes to increase the speed of the robot and thus moves the acti-
vation time of two events closer together. The standard behavior
for the IPS is to report this in an error message to the user and
resolve the schedule as described above:

tc;e % tc;eþ1 P MinOverlapTime;
tc;eþ1 % tc;e%1 P MinTrigSep;
tc;eþ2 % tc;e P MinOverlapTime

ð10Þ

where tc;e represents the activation time for a specific channel c and
event e. Note that MinOverlapTime and MinTrigSep are considered
positive constants given as input when a test sequence is generated
(see also Table A.4).

6.3. Shutdown scenario

The shutdown scenario is important to validate that the IPS is
able to shut down safely in specific error cases. Depending on
the IPS’s configuration, forcing one of the output channels to fail
may cause the IPS to initiate a controlled shutdown. This shutdown
procedure must be performed in a special sequence, taking care to
avoid pressure buildup in hoses, which could otherwise lead to
rupturing them. This scenario is illustrated in Fig. 5c and its con-
straint is specified as

Pc;e ¼ IllegalVal ð11Þ

where IllegalVal is a configurable input parameter in the model (see
Table A.4) that causes the IPS to initiate a shutdown.

6.4. Minimizing test execution time

As stated previously, the actual test sequence sent to the IPS is a
sequence of timed events ðB1; t1; . . . ;BN; tNÞ. When the test
sequence is executed, each ðBi; tiÞ pair is sent to the IPS at time
tS, such that tS þ td 6 ti. This means that the IPS receives each pair
ðBi; tiÞ around td before the activation time. In practice, the value of
td is typically around 200 ms. Consequently, the execution time of a
complete test cycle lies in the area of the time of the last ti, that is,
tN . By minimizing the value of tN , we gain the ability of executing
more tests within a given time interval as we discuss in Section 8.4.

7. Implementation

This section explains how the model is implemented, deployed,
and used in ABB’s production-grade test facility. We also discuss
some of the design choices made during the model’s deployment.

7.1. Test setup

This section describes the steps involved in setting up a contin-
uous integration-based test facility for generating and executing
tests. Test execution is typically triggered by a build server upon
a successful build of the IPS software. These steps are illustrated
in Fig. 6 and explained below.

1. Build: The software is scheduled to be built every night. In
addition, a developer can trigger a manual build or a build
can be triggered by a check-in to the source control
repository.

2. Upgrade: All embedded controllers are upgraded with the
newly built software. This is one of the most important
tests performed, one where catastrophic, hard to find errors
are often be detected. Typically, these can cause the new
software to throw an exception or simply freeze.

3. Configure: In this step, the IPS is configured according to
configurations retrieved from the source control repository.
This configuration can be either a specific qualified setup of
one of the different configurations that a customer can buy
or a configuration specially made for testing purposes.

4. Query and solve model: A set of basic smoke tests [22] is then
executed before the constraint model is launched for test
case generation. By feeding data retrieved from the new
configuration into the constraint model, together with
properties retrieved from the IPS, we ensure that the gener-

Source
control

repository

1. Build

2.Upgrade
software

3. Configure

4. Query

5. Run test

Physical IPS setupTest Server

Python Test Scripts

Python Test
Framework

Python – Prolog
frontend

SICStus Prolog
Runtime

Fig. 6. Integration between the test server and IPS. The test server typically receives a new build from a build server, upgrades all embedded boards, performs tests, and
publishes the results for the developer. The numbers correspond to the explanation given in Section 7.1.

176 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

ated tests are kept in sync with the current software and
configuration. Further details about this just-in-time test
generation (JITTG) are discussed in Section 7.2.

5. Run test: Finally, the actual test is executed by applying the
generated test sequence and comparing the actuator out-
puts with the model generated oracle. Fig. 7 shows this last
step in more detail.

In ABB’s production test facility, each generated test sequence is
executed on 11 different configurations, including execution on
different hardware and software generations of the IPS and on both
VxWorks and Linux as the base operating system for the IPS. The
test framework is written in Python [31] and supports parallel test
execution as long as resources are not shared. This allows for a sig-
nificant reduction in the time needed to run the test sequence on
many different configurations, compared to running them one at
a time, in sequence.

7.2. JITTG

As discussed in Section 5, many parameters in the model must
be specified before the model can be solved. Some of these param-
eters come from configuration files used to configure the IPS and
some can be extracted by querying a newly built IPS. Common to
both sets of parameters is that the resulting model will differ if
the parameters change. This means that the model is tightly cou-
pled to what is fetched from the source control repository. Conse-
quently, we decide to generate and solve the model at testing time,
as opposed to solving the model once and adding the resulting

model to the source control repository, corresponding to what
Utting et al. [32] call on-line and off-line testing, respectively.
The choice of on-line versus off-line testing is a trade-off. The main
advantage of JITTG is that there is a lower probability of falsely
reporting an error due to a mismatch between the generated
model and the real system. However, an important concern then
becomes the time needed to solve the model. If the model is solved
once and used many times, a solving time of several hours is rea-
sonable. However, with JITTG the solving time becomes crucial.
The models solved so far have a solving time of less than a few
minutes.

7.3. Model implementation

To convert our mathematical model into an executable model
out of which test sequences and test oracles could be extracted,
we use Constraint Programming (CP) [2].

Constraint programming is a well-known paradigm introduced
25 years ago to solve combinatorial problems in an efficient and
flexible way [33]. Typically, a constraint programming model is
composed of a set of variables V, a set of domains D, and a set of
constraints C and constraint resolution aims to find solutions, that
is, assignments of V to values that belong to D such that all the con-
straints C are satisfied. Finding solutions is the purpose of the
underlying constraint solver, which applies several filtering tech-
niques [33] to prune the search space formed by all the possible
combinations of values in D. A nice feature of constraint program-
ming is the ability to call the constraint solver incrementally, dur-
ing program execution. Consequently, most constraint

P1,i t1,i
450 270
600 730

0 905

Test Oracle

P2,i t2,i
600 278
750 745

0 990

P3,i t3,i
60 305
65 760
0 900

P1,i t1,i
450 271
600 732

0 905

Test Result

P2,i t2,i
600 281
750 745

0 991

P3,i t3,i
60 306
65 763
0 901

Compare

Fail
Pass

Embedded
controller 1

I/O

Embedded
controller 3

I/O

I/O
Embedded
controller 2

I/O

I/O

IPS
Master

Clock
Syncronization

Robot-
controller

I/O

[B,t]

Bi ti
1 300
2 750
0 900

Test
Sequence

Constraint
 Model

PC with Constraint
Model and Test

Framework

Fig. 7. How a complete test is executed. The constraint model generates the test sequence, the configuration of the IPS, and the oracle. The configuration is applied to the IPS
and the test sequence is executed. The oracle is then compared with actual measurements before a pass/fail is determined. Currently 11 different variations of this setup are
being executed in parallel at ABB Robotics.

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 177

programming solvers are embedded into various programming
languages, including Java, C++, and Prolog, or dedicated modeling
languages, such as OPL, Comet, and Zinc [34].

In practice, constraint models developed to solve concrete and
realistic combinatorial problems usually contain complex control
conditions (e.g., conditionals, disjunctions, recursions) and inte-
grate optimized and programmable search procedures. The flexi-
bility and versatility of constraint programming are recognized as
a competitive advantage over other, more rigid approaches [2].

However, solving the mathematical model could have been pos-
sible by using other techniques, such as SAT or SMT solving [35],
search-based test data generation [36], or Mixed Integer Program-
ming (MIP) [37]. These techniques were examined and discarded
for the following reasons:

1. The selected technique had to be flexible enough to accom-
modate the many alternatives in the dynamic configuration
of the IPS. MIP techniques are very powerful for handling
conjunctions of linear constraints [37], but handling dis-
junctive constraints (i.e., non-linear constraints) is much
more problematic. Constraint programming offers a high
degree of flexibility to handle disjunctive constraint sys-
tems, including the use of backtracking, reification, or con-
structive disjunction [34].

2. Time-constrained optimization is essential to use the tech-
nique in an industrial context and to build a cost-effective
testing method. SAT and SMT solving are amazingly effi-
cient at handling Boolean and non-Boolean constraint sat-
isfiability problems [35], but they are not tuned to solve
optimization problems (e.g., minimizing a cost function in
a given contract of time). Even if extensions exist to handle
constraint optimization problems (e.g., Max-SAT), usual
SAT- or SMT-solvers do not necessarily implement these
extensions. On the contrary, constraint programming inte-
grates time-aware optimization methods on discrete com-
binatorial problems in its foundations, which makes it
more flexible to tackle optimization problems within an
industrial process [34].

3. Since the model is used to predict the expected outputs of
the IPS processing of a timed-event sequence, exact meth-
ods are mandatory. Despite the efficiency of search-based
test data generation techniques [36], the absence of a guar-
antee of the satisfiability of the constraints (e.g., no possible
detection of unsatisfiability or no guarantee of the determi-
nation of satisfiability for complex constraint sets) was
regarded by us as a sufficient reason to discard these tech-
niques. On the contrary, constraint programming offers a
theoretical guarantee on the assessment of satisfiability
[33]. We should also mention that, since industrial adop-
tion was set up as an essential goal, we felt that determin-
istic methods would be more appropriate than probabilistic
approaches of constraint solving to convince engineers.

It is worth noticing that CP solvers are usually hosted by a pro-
gramming language e.g., Prolog, Java or C++. Thus, they have to be
flexible to facilitate their integration into applications, and incre-
mental, i.e., constraints can be submitted at different stages of
the parsing process. The constraint model can be structured by
using high-level programming features such as predicate or
method invocation, recursive and virtual calls, and backtracking
or inheritance.

We implemented our mathematical model using the finite
domain constraint solving library of SICStus Prolog, called clpfd
[38]. This library is well maintained and up-to-date with respect
to the last advances in constraint programming solving, which
was a sufficient reason to select it for industrial adoption. The

clpfd solver is fully hosted and integrated within the Prolog pro-
gramming language and is called incrementally during Prolog pro-
gram execution.6 To integrate the model with ABB’s existing test
framework, we also built a front-end layer in Python. This front-
end layer can be used by test engineers with no prior knowledge
of constraint programming or Prolog and also allows us to integrate
with our existing build and test servers based on Microsoft Team
Foundation Server. A schematic overview of the architecture is
shown in Fig. 6.

8. Empirical evaluation

The constraint model introduced in Section 5 has been thor-
oughly evaluated to validate its ability to generate test sequences
for CIRs in a realistic industrial environment. Our objective was
to quantify the benefits and drawbacks of introducing a new test-
ing strategy in a continuous integration process, after having
deployed it within ABB’s testing facilities.

This section presents the main research questions (RQs) (Sec-
tion 8.1) addressed so far in our empirical evaluation. It details
the experimental results and their analysis (Section 8.2). It evalu-
ates several threats to the validity of the results and discuss their
importance (Section 8.6). Finally, this section concludes with an
analysis of several lessons learnt when deploying this approach
in an industrial environment (Section 8.8).

8.1. Research questions

The introduction of a new test strategy (i.e., a constraint-based
model) into a strong validation process always raises many
research questions regarding its adoption. Our empirical evalua-
tion addressed three main research questions, covering the
following.

RQ1 (efficiency of the search heuristics): Questioning the effi-
ciency of the constraint model to generate test sequences is of
primary importance. Among several parameters, the selection
of search heuristics turned out to be a key factor of the strat-
egy’s efficiency. Observing that different search heuristics can
lead to completely distinct results, we conducted a systematic
comparative study of several representative search heuristics
to respond to this research question.
RQ2 (model scalability): The scalability of the model to generate
realistic test sequences is also a main question. To introduce the
constraint model into a continuous integration environment,
managing the model solving time was crucial. Evaluating this
solving time for different settings appeared to be the best way
to evaluate the model’s scalability.
RQ3 (Adoption in an industrial environment): Finally, evaluating
the capabilities of the model to find previously found bugs
and also its ability to uncover new faults in an industrial, real-
istic validation process was also considered a crucial research
question. In response to this research question, we determined
that the only way was to put the constraint model to work for a
period of time and evaluate its potential through a systematic
analysis. Essentially, we saw this work as mandatory to prepare
the model for industrial adoption on a larger scale.

8.2. Experimental setup

In response to the three research questions, we developed two
different constraint models. The first model, denoted CM1, is a
highly configurable and general model that includes several

6 We used a compiled version of the model.

178 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

measurement and analysis tools. The model CM1 is mainly made
for use from within the SICStus environment. The second model,
denoted CM2, is highly tuned and optimized for the industrial pro-
duction environment. It is callable from an external Python frame-
work and contains all the functions to generate realistic test
sequences and test oracles. To answer RQ1, we configured one
experiment that systematically analyzed all possible combinations
of variable orderings for defining the search heuristics combined
with different configurations of the model. The goal of this exper-
iment was to identify a search heuristic that could be further tested
on the CM2 model. In the second experiment, we used the results
from the first experiment on the CM2 model to answer RQ2.

In the following, we give a detailed account of our observations
and findings.

8.3. RQ1, Experiment 1

Our first experiment is divided into three sub-experiments,
using three distinct configurations: {SeqLen, jBj, Channels, MinTrig-
Sep, MinBrushSep} = {7,3,3,3,1} for Exp1a. For Exp1b and Exp1c we
use respectively {10,5,5,3,1} and {20,10,5,1,1}. Since experiment
Exp1b and Exp1c are just slight variations of Exp1a, we present
only the final results for these, while for Exp1a we also present
detailed setup and execution results.

Experiment Exp1a uses a minimal configuration with three
channels, j 2 ½1;3', as illustrated in Fig. 8, yet is complex enough
to provide significant and meaningful results. Each channel has
the following characteristics: Minj ¼ 0; Maxj ¼ 3, and
Dþj ; D%j 2 ½%3;3'. The brush table has jBj ¼ 3 rows and, since there
are three channels, B becomes a 3* 3 matrix, as shown in Fig. 8. At
runtime, the model can freely choose a linear or a fixed delay for
each channel j, using Kj 2 ½0;1' (see (5)). For all three channels, this
adds up to the following sequence of variables that need to be
labeled by the constraint solver:

C ¼ Dþ1 ;D
%
1 ;K1;Dþ2 ;D

%
2 ;K2;Dþ3 ;D

%
3 ;K3

$

In the context of a constraint solver, the term labeling denotes
the process of selecting a value from the legal domain of a variable
and assigning it to the variable such that all constraints are
fulfilled.

Note that we use parentheses to denote ordered sequences and
brackets to denote unordered sets. For a constraint solver, the
order in which the variables are labeled is of crucial importance
for efficiency.

The variables in B take on the values in the range ½Minj;Maxj'.
Finally, we specified that none of the channels should slave chan-
nel 1, as explained in Section 5.5; that is, we set PreTime ¼ 0 and

PostTime ¼ 0. We also set MinTrigSep ¼ 3; MinBrushSep ¼ 1, and
MinOverlapTime ¼ 1. The expected input for Exp1a is a sequence
of index-time pairs denoted ðB1; t1; . . . ;B7; t7Þ. Each pair ðBi; tiÞ is
sent as an individual input to node M in Fig. 8. Fig. 9 shows an
example of an optimal solution found by our method for Exp1a.
In this case an optimal solution means that the constraint solver
has found the lowest possible value for t7 while still satisfying
the constraints.

In Exp1a, the expected test sequence is of length N ¼ 7 and the
goal was to elicit an overlap on C2 between events 5 and 6, as
shown in Fig. 5b and described in Section 6.2. Thus, we engineered
the experiment to elicit an overlap scenario. We chose this scenario
because it is the most difficult to obtain.

Another goal with experiment 1 was to find the shortest test
sequence able to elicit the error scenario, since minimizing the
duration of the test sequence allows test engineers to run more
tests. Consequently, our constraint model is used in combination
with a time-aware cost optimization process, where the goal is
to minimize tN , the duration of the test sequence, in a given con-
tract of time. We used a timeout value of 180 s of computation
time for all three sub-experiments.

In this context, an optimal solution is an assignment of values to
all the variables such that all constraints are satisfied and tN is min-
imized. If sufficient time is allocated, the minimization process can
provide an optimality certificate. In most cases, this certificate is
not required and the process returns an optimal or sub-optimal
solution without any certificate. For a solution without a certificate,
there is no way to evaluate the distance to the true optimal value of
the cost function. If insufficient time is allocated, the solver some-
times reports a failure, indicating that it has been unable to find a
solution. These cases are obviously the most problematic ones.

As mentioned earlier, the order in which the variables and val-
ues are selected for labeling is a critical parameter for the efficiency
of the constraint-solving process in clpfd. In this experiment, we
defined search heuristics based on distinct choices of the variable
and value selection.

8.3.1. Variable selection heuristics
Based on previous definitions, we propose various sequences

with distinct variable orderings. We first consider the four possible
orderings between Bi and ti, denoted as follows:

Biti ¼ ð. . . ;Bi; ti;Biþ1; tiþ1; . . .Þ

tiBi ¼ ð. . . ; ti;Bi; tiþ1; Biþ1; . . .Þ

Bi ¼ ðB1; . . . ;Bi; . . .Þ

ti ¼ ðt1; . . . ; ti; . . .Þ ð12Þ

Fig. 8. Logical overview of experiment Exp1a. The experiment includes the use of three actuator outputs (channels), a test sequence of length 7 (SeqLen), and a lookup table
size of size 3 ðjBjÞ.

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 179

We now define the following two sequences of variables from B
in vector form:

L ¼ vecðBÞ ¼ ðL1;1; L1;2; L1;3; L2;1; L2;2; L2;3; L3;1; L3;2; L3;3; . . .Þ
LT ¼ vecðBTÞ ¼ ðL1;1; L2;1; L3;1; L1;2; L2;2; L3;2; L1;3; L2;3; L3;3; . . .Þ

If we now combine all the sequences of variables and define all the
combinations of sets such that each set contains exactly the same
variables but the sequences that each set contains are different,
we obtain

G1 ¼ fC; L;Bitig G3 ¼ fC; L; tiBig G5 ¼ fC; L; ti;Big
G2 ¼ fC; LT ; Bitig G4 ¼ fC; LT ; tiBig G6 ¼ fC; LT ;Bi; tig

ð13Þ

where G1;G2;G3 and G4 are sets of cardinality 3, while G5 and G6 are
of cardinality 4. Considering all possible combinations of these sets
yields 4) 3!þ 2) 4! ¼ 72 distinct possibilities. Note that all the
resulting orderings are pairwise distinct. In our experiments Exp1a,
Exp1b, and Exp1c, we systematically explored the results on these
72 distinct search heuristics.

8.3.2. Value selection heuristics
To find solutions with clpfd, each variable has to take on a

value in its domain. Exhaustively exploring the domain can be real-
ized through several strategies e.g., starting from the middle of the
domain, picking a value at random from the domain. For the sake
of simplicity, we only explored the following two simple strategies.

up: If x 2 ½a; b', then explore the domain from the smallest value
to the largest (i.e., x ¼ a; x ¼ aþ 1; . . . ; x ¼ b).
down: If x 2 ½a; b', then explore the domain from the largest
value to the smallest (i.e., x ¼ b; x ¼ b% 1; . . . ; x ¼ a).

Other value selection heuristics were briefly explored without
finding significant improvements, so we concluded that these
two strategies were the most important to evaluate.

8.3.3. Result for Experiment 1
To classify the results on the 72 measurements, four different

categories were defined, from the most useful to the least
interesting:

Category 3 (sub-optimal) still represents interesting heuristics,
since a solution is found but, since optimality is not reached, this
category is less interesting than Category 2. Note that to distin-
guish between Categories 2 and 3, we have to know the optimal
value of the cost function in advance. This is possible for the simple

problems in experiment 1, but not in experiment 2 or whenever
the model is used in production.

Fig. 10 shows a detailed depiction of all executions of Exp1a,
where the four categories are represented. For Category 1, the
graph shows the time needed to find an optimal solution, while
for Categories 2–4, timeout is reached. These categories are
grouped together and classified through a qualitative difference.
These results are summarized in Table 1.

8.3.4. Analysis of Experiment 1
For Exp1a, we obtain in total 42 heuristics where no solution is

found, six heuristics where the search finds an optimal solution
without any proof certificate, and finally 24 heuristics where an
optimal solution is found and proven to be optimal. Furthermore,
from Fig. 10, among the 24 successful heuristics, the time needed
to find and prove optimality ranges from 0.7 s to 149.4 s. Generally
speaking, the two graphs in Fig. 10 show that the value selection
heuristics up is more interesting than down. This results from
the fact that when selecting first largest values for all the variables,
longer sequences are privileged.

Fig. 9. An optimal solution for Exp1a. The cost function used by the solver is minimizeðt7Þ, where the optimal solution is t7 ¼ 15. The number next to each black dot (+)
represents the value of the actuator output to apply at that time instance. The configuration of each actuator output is to the right of each actuator output’s time axis
ðDþ;D%; and KÞ.

Fig. 10. A graphical presentation of the results for Exp1a from Table 1. The colored
circles on the left axis correspond to the descriptions in Table 1. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

180 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

We found that only two variable selection search heuristics per-
form acceptably for the three sub-experiments, namely,
ðLT ;Bi;C; tiÞ and ðL;Bi;C; tiÞ, the first having a slight advantage. Even
if these two heuristics do not always give the best results in terms
of CPU time, they can both be used in combination with the up
value selection heuristic for the three sub-experiments. This result
can be explained by the fact that first giving the values for the
brush table (i.e., LT or L) drastically reduces the size of the search
space by withdrawing numerous choice points originating from
the table. The remaining sequence (Bi;C; ti) is also important, but
most probably for technical reasons involving the shape of the con-
straints. Selecting one of these two heuristics answers RQ1 by pro-
viding a solid foundation for the analysis of search heuristics in the
context of constraint-based test sequence generation. Based on
these results, we selected ðLT ;Bi;C; tiÞ for the second part of our
empirical evaluation, dedicated to answering RQ2 and RQ3.

8.4. RQ2, Experiment 2

To answer RQ2, we examine how scalable the proposed model
is with respect to the heuristics discovered in experiment 1. Scala-
bility in the context of timed test sequence generation for CIRs can
be understood as (1) determining the largest test sequences the
model is able to generate within a reasonable time, (2) determining
the impact of the brush table size on the time needed to generate a
test sequence, and (3) determining the optimal contract of time to
be allocated to the minimization process.

To answer these questions, we ran experiments with
jBj ¼ ð10;15;20Þ and SeqLen ¼ ð50;100;150;200;250;300Þ, which
yields 18 different configurations. Each configuration was system-
atically executed using all timeout values in the range ½2;30' s, in
addition to 60 s, 120 s, 180 s, and 600 s. For each timeout value,
the ability to find a solution and the value of tN that was found
were reported.

8.4.1. Analysis of Experiment 2
Fig. 11 relates the test sequence duration, tN , to the solving time,

ts, for 15 different configurations. Note that the model could not be
solved for jBj ¼ 10 in combination with large values of SeqLen
within the time contract of 600 s. For this reason, only three results
are reported for jBj ¼ 10, namely, those where SeqLen 6 150. For
jBj ¼ 15 and jBj ¼ 20, we got results for all combinations of
SeqLen. Note also that all executions, except for
jBj ¼ 10; SeqLen ¼ 150, provided a sub-optimal solution within

10 s. In fact, most of the executions generated a first solution in less
than three seconds.

This result is encouraging for our desired deployment in a contin-
uous integration environment. On the one hand, a test sequence
where tN is minimized is highly desirable but, on the other hand,
allocating a very long contract of time to reach this objective is coun-
terproductive in continuous integration, since this will result in a
reduction in the number of tests that can be executed. The trade-
off relation can be precisely computed and represented as follows,
with a test efficiency factor E that tells us how much time can be
spent in the solving phase to obtain as many changes in Bi as
possible:

E ¼ SeqLen
tN þ ts

ð14Þ

In Fig. 12, we plot the efficiency factor for all the tested config-
urations. As the plot shows, the maximum efficiency is obtained
after two seconds to 12 s of solving time. Thus, if the model is gen-
erated and solved solely for a single execution, there is no benefit
running the solver longer to obtain a better solution. As an exam-
ple, consider the case with jBj ¼ 10 and SeqLen ¼ 50. For this case,
the first value found is tN ¼ 9:99 s and, by running the model an
additional 30 s, we obtain a solution that executes in only
tN ¼ 3:05 s, that is, a 30% reduction from the first solution. Clearly,
this is wasted effort if the solution is used only once. However, if
the generated model and the solution is meant to serve multiple
consecutive test runs, it may be advantageous to run the solver
longer to further reduce tN .

In conclusion, unless a test sequence can be reused multiple
times, there is not much to gain from extending the solving
phase.

Table 1
Summary of results for experiment 1, where we classify the search heuristics into four
categories. The timeout was set to 180 s for all experiments. A more detailed
graphical presentation of Exp1a is given in Fig. 10.

Search direction

Up Down

Exp1a Exp1b Exp1c Exp1a Exp1b Exp1c

Optimal 24 6 0 20 2 0

Optimal, timeout 6 0 2 0 0 2

Sub-optimal 0 7 2 6 18 2

No solution 42 59 68 46 52 68

Total 72 72 72 72 72 72

. (Optimal): An optimal solution is found and an optimality certificate is obtained
within the contract of time, that is, optimality is proven.

. (Optimal, timeout): An optimal solution is found but no certificate is provided,
that is, optimality is not proven.

. (Sub-optimal): A sub-optimal solution is found but the search timed out. This
means that optimality is neither reached nor proven.

. (No solution): No solution is found within the contract of time.

Fig. 11. How well the model minimizes the duration of the test sequence, tN , if
more time is added to the solving process, ts .

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 181

8.5. RQ3, deployment, and industrial adoption

We now address our last research question, whether our pro-
posed model can be implemented in a real industrial setting. We
divide this question into three parts:

+ Is the model able to detect new errors?
+ Is the model able to detect old errors that were reintroduced

into the IPS?
+ Does the proposed JITTG framework behave as expected?

8.5.1. New errors detected
This section describes the errors found immediately after we

introduced the new model. These are errors that were in the IPS
for some time and were only detected by the new model. We found
a total of three previously unknown errors in the IPS. Two of the
errors were directly related to the behavior of the IPS, while the
last was related to how a PC tool presents online diagnostics for
a live system.

8.5.2. Detection of old errors
To further validate the robustness of the model, a collection of

old, previously detected errors were reintroduced into the source
code with the intention of verifying that the model was able to
detect the errors. The selected errors were chosen by searching
ABB’s bug tracking system, by interviewing ABB’s test engineers,
and through discussions with the IPS’s main architect. Most of
the errors were originally discovered at customer sites while stag-
ing a production line or after the production line was set into pro-
duction. The chosen errors are mainly related to timing errors of
painting events and several of the errors can be classified as errors
that appear when the IPS is part of a large configuration with many
components.

The chosen errors are summarized in Table 2. This table shows
historical data on how long it took to detect the error, how long it
took to fix the error, and how long it took to validate that the error
had in fact been fixed. Note that these numbers cannot be accu-
rately specified; they represent reasonable estimates. In particular,
errors related to how long a bug has been in the system are difficult
to estimate. However, by interviewing the main architect of the IPS
and the lead test engineer, we have high confidence in the numbers
presented.

8.6. Threats to validity

In this section, we discuss threats to validity for our experi-
ments and how we address these. A possible threat to conclusion
validity (i.e., when factors that can influence the conclusion drawn
from the experiments) lies in the absence of a systematic analysis
of all possible search heuristics in response to RQ1. Actually, we
adopted a systematic analysis for variable selection heuristics by
examining all 72 possible combinations of variable orderings, but
we only compared two heuristics (up/down). In response to RQ2,
we selected only a subset of possible parameter settings. Therefore
there is another threat to conclusion validity, since nothing guar-
antees that another specific setting might exhibit different results.
To reduce this threat, we adopted parameter settings that are real-
istic for the application of the constraint model in question and we
responded to RQ2 by using CM2, which is the production model.
Note also that our empirical evaluation, in response to RQ3, is real-
ized in a production environment, which considerably reduces any
concern about conclusion validity.

An external validity threat of our empirical evaluation concerns
the generalization of the results. Indeed, the models we developed
for the experiments (i.e., CM1 and CM2) are specific to ABB’s IPS
timed sequence generation problem and cannot be easily general-
ized to other test generation problems. Such a threat is common in
any software engineering empirical study and cannot really be
reduced without applying the technology to other case studies.
However, general-purpose constraint modeling languages and
tools, such as SICStus Prolog and its clpfd library [38], address this
threat and permit us to draw some generalizable perspectives from
this work.

8.7. Comparison of test methods

As previously mentioned, our new MBT strategy cannot entirely
replace current testing methods, but it represents an excellent sup-
plement for identifying bugs at a much earlier stage in the devel-
opment process. Nonetheless, we can still compare the different
methods quantitatively. Table 3 shows the results of our compari-
son. As we can see from this table, our new test strategy provides a
huge improvement in the number of activations that can be tested
within a reasonable time frame, which is not possible with existing
testing methods. If we also include automation in all aspects of
testing, our strategy performs much better than our current test
methods. However, it is important to note that our new method
does not involve a mechanical robot and this must be regarded
as a weakness.

8.8. Lessons learnt

Based on experience from about one year of live production in
ABB Robotics software development environment, we report the
following lessons learned, based on experience gathered through

Fig. 12. Efficiency factor E for the executions in Fig. 11. When the model is run in a
continuous integration environment, there is little to gain from running the model
more than around 10 s.

Table 2
Historical data on old bugs that were reintroduced to test the model.

Bug#a Time in systemb Time to solvec Time to validated

44432 5–10 years 1–2 h 1 day
44835 5–10 years 2–4 days 1 day
27675 6–12 months 1–2 months 1–2 weeks
28859 6–12 months 2–3 months 2–3 weeks
28638 4–6 months 1–2 weeks 2–3 weeks

a The bug number in ABB’s bug tracking system.
b How long the bug was present in the IPS before it was discovered. Numbers are

based on estimates.
c How long it took from the time the bug was discovered until it was fixed.
d How long it took to validate that the bug had actually been fixed. For many

bugs, this involved testing time spent at customer facilities.

182 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

development and deployment of the test framework and discus-
sions with test engineers:

Higher confidence when changing critical parts: Based on devel-
oper feedback, there is now less worry about applying changes
to critical parts of the code. Previously, such changes involved
significant planning efforts and had to be coordinated with the
test engineers responsible for executing tests. With the new
testing framework in place, it is easy to apply a change, deploy
a new build with the corresponding execution of tests, and
inspect the results. If the change causes unwanted side effects,
the change is rolled back to keep the build ‘‘green.’’
Simple front-end, complex back-end: By using Python [31] as the
front-end interface to the constraint solver and keeping the
interface that a test engineer is exposed to as simple as possible,
we can utilize personnel with a minimal computer science back-
ground. Both Francis et al. [39] and de la Banda et al. [40] recog-
nize that constraint programming has a steep learning curve.
Even with training limited to introduction to the famous classi-
cal problems such as SEND + MORE = MONEY and the N-Queens
problem [2], the test engineers have received enough training to
use the constraint solver from Python without major problems.
Less focus on legacy and manual tests: A positive side effect of
introducing MBT is that the focus in the organization has shifted
from a great deal of manual testing toward more automatic
testing. Even for products beyond the scope of this paper, the
introduction of fully automatic test suites has inspired other
departments to focus more on automatic testing.
Putting everything in the source control repository: In our work,
we never perform any installation on any build server.3 After
a build server is installed with its continuous integration soft-
ware, absolutely everything is extracted from the source control
repository, as recommended in [3]. By strictly adhering to this
philosophy, it is possible to utilize large farms of build servers.
For example, ABB Robotics has access to large farms of build
servers located in Norway, Sweden, India, and China and it is
possible to schedule builds on these servers without any prior
installation of special build tools. This is also the case for the
new constraint programming-based tool presented in this
paper. We consider the effort to develop, deploy and fully inte-
grate our constraint-based testing tools quite demanding, but
very efficient in the long run.
Keeping tests in sync with the source code and hardware: The
combination of adding everything to the source control reposi-
tory and JITTG is that we experience fewer problems with tests
generating false errors due to a mismatch. We still have other
test suites that do not have this tight integration and these tests
can therefore occasionally produce false errors. The main
advantage of this synchronization is experienced if a roll-back
to an older version is required. In this case both the production
source code and the test code is reverted to the older version.

9. Conclusions

In this paper, we present a new testing strategy for validating the
timing aspects of distributed control systems for CIRs. A constraint-
based mathematical model is given to automatically generate test
cases through constraint solving and continuous integration tech-
niques. The model is fully implemented and deployed within an
industrial continuous integration environment. Interestingly, the
constraint-based model is solved online as part of the continuous
integration process. We call the online solving process JITTG.

Using JITTG guarantees that software, configuration, and hard-
ware are kept in sync with the generated test cases. To our knowl-
edge, this is the first time a constraint-based model using JITTG has
been deployed in a continuous integration environment. The paper
also answers three research questions, using the results of a thor-
ough empirical evaluation obtained from testing a CIR system.
Using a generic model that omits some technicalities, we find an
ideal parameterization for constraint solving concerning variable
and value ordering heuristics.

This ideal parameterization is then used on a production-grade
model that is deployed at ABB’s testing facilities and empirically
evaluated during the validation of CIRs. This evaluation reveals that
our testing strategy could not only find reinjected old faults found
in previous test campaigns, but could also discover new faults. By
observing that the time taken to generate a single test case in the
continuous integration process typically ranges from two seconds
to 13 s, we demonstrate that our strategy is faster and more effec-
tive than current test methodologies used at ABB. However, it is
worth noting that our empirical evaluation does not include mov-
ing robots as part of the evaluation, which would be necessary to
fully convince stakeholders of the takeaway value of our approach.

A weakness of our approach is related to the absence of guaran-
tees with respect to model coverage. In other words, the generated
test sequences does not necessarily cover every possible transition
between different spray patterns. Even if this is not an industrial
requirement, we believe that improving our strategy to achieve a
certain test coverage is clearly an interesting research perspective.

In addition, investigating the use of our constraint-based model
for other applications, such as robotized gluing, sealing, or welding,
is also part of further work.

Acknowledgments

This work is funded by the Norwegian Research Council under
the Industrial PhD Program (222010), the Certus SFI grant
(http://www.certus-sfi.no), and ABB Robotics.

Appendix A. Notation

In Table A.4 we summarize the notation used in the mathemat-
ical model for the IPS.

Table 3
Comparison of constraint-based testing versus current test methods.

Activation w/oscilloscope Paint on paper Constraint-based test

Setup timea 1–2 he 3–4 he 1–2 minf

Activations per testb 1 5–10 >100
Repetition timec 5 s 10 min <1 s
Interpretation timed <1 mine 2–4 mine <1 sf

Synchronized with mechanical robot Yes Yes No
Can run standalone after initial setup Yes No Yes

a Setup time is defined as the time it takes to configure a test. This time includes upgrading the software, configuring the IPS, and loading the test.
b The number of physical outputs that are verified with respect to time in one test.
c Time needed to repeat two identical tests.
d Time needed to inspect and interpret the result.
e Manual task performed by a test engineer.
f Automated task performed by a computer.

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 183

http://www.certus-sfi.no

References

[1] M. Mossige, A. Gotlieb, H. Meling, Test generation for robotized paint systems
using constraint programming in a continuous integration environment, in:
IEEE Int. Conf. on Soft. Testing, Verif. and Valid (ICST’13), Poster Presentation,
2013, pp. 489–490, http://dx.doi.org/10.1109/ICST.2013.71.

[2] K. Marriott, P.J. Stuckey, Programming with Constraints: An Introduction, MIT
Press, 1998.

[3] M. Fowler, M. Foemmel, Continuous Integration, 2006. <http://
martinfowler.com/articles/continuousIntegration.html> (accessed 13.08.13).

[4] B. Fitzgerald, K.-J. Stol, Continuous software engineering and beyond: trends
and challenges, in: First Workshop on Rapid Continuous Software Engineering
(RCoSE) Co-located with ICSE, vol. 14, 2014.

[5] S. Dösinger, R. Mordinyi, S. Biffl, Communicating continuous integration
servers for increasing effectiveness of automated testing, in: Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering,
ACM, 2012, pp. 374–377.

[6] A. Orso, G. Rothermel, Software testing: a research travelogue (2000–2014), in:
Proceedings of the IEEE International Conference on Software Engineering
(ICSE), Future of Software Engineering, 2014.

[7] H. Do, G. Rothermel, A. Kinneer, Empirical studies of test case prioritization in a
JUnit testing environment, in: Software Reliability Engineering, 2004. ISSRE
2004. 15th International Symposium on, IEEE, 2004, pp. 113–124.

[8] T.Y. Chen, M.F. Lau, A new heuristic for test suite reduction, Inform. Softw.
Technol. 40 (1998) 347–354.

[9] D. Marijan, A. Gotlieb, S. Sen, Test case prioritization for continuous regression
testing: an industrial case study, in: Software Maintenance (ICSM), 2013 29th
IEEE International Conference on, IEEE, 2013, pp. 540–543.

[10] J.S. Bell, G.E. Kaiser, Unit test virtualization with vmvm, in: Companion
Proceedings of the 36th International Conference on Software Engineering
(ICSE), ACM, 2014.

[11] D. Hao, L. Zhang, X. Wu, H. Mei, G. Rothermel, On-demand test suite reduction,
in: Proceedings of the 2012 International Conference on Software Engineering,
IEEE Press, 2012, pp. 738–748.

[12] J.H. Hill, D.C. Schmidt, A.A. Porter, J.M. Slaby, CiCUTS: combining system
execution modeling tools with continuous integration environments, in:
Engineering of Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE
International Conference and Workshop on the, IEEE, 2008, pp. 66–75.

[13] Y. Zhao, J. Liu, E.A. Lee, A programming model for time-synchronized
distributed real-time systems, in: 13th IEEE Real Time and Embedded
Technology and Applications Symposium, 2007. RTAS ’07, 2007, pp. 259–
268. <http://chess.eecs.berkeley.edu/pubs/325.html>.

[14] P. Ramadge, W. Wonham, The control of discrete event systems, Proc. IEEE 77
(1989) 81–98.

[15] C.G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, Springer,
2008.

[16] K. Lee, J. Eidson, Ieee-1588 standard for a precision clock synchronization
protocol for networked measurement and control systems, in: In 34th Annual
Precise Time and Time Interval (PTTI) Meeting, 2002, pp. 98–105.

[17] S. Johannessen, Time synchronization in a local area network, IEEE Control
Syst. 24 (2004) 61–69.

[18] R.R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next
computing revolution, in: Proceedings of the 47th Design Automation
Conference, ACM, 2010, pp. 731–736.

[19] L. Sha, S. Gopalakrishnan, X. Liu, Q. Wang, Cyber-physical systems: a new
frontier, in: Machine Learning in Cyber Trust, Springer, 2009, pp. 3–13.

[20] E.A. Lee, Cyber physical systems: design challenges, in: Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International
Symposium on, IEEE, 2008, pp. 363–369.

[21] M. Broy, S. Chakraborty, S. Ramesh, M. Satpathy, S. Resmerita, W. Pree, Cross-
layer analysis, testing and verification of automotive control software, in:
Embedded Software (EMSOFT), 2011 Proceedings of the International
Conference on, IEEE, 2011, pp. 263–272.

[22] M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[23] M. Barnett, M. Fähndrich, K.R.M. Leino, P. Müller, W. Schulte, H. Venter,
Specification and verification: the spec# experience, Commun. ACM 54 (2011)
81–91.

[24] A. Gotlieb, B. Botella, M. Rueher, Automatic test data generation using
constraint solving techniques, in: Proc. of Int. Symp. on Soft. Testing and
Analysis (ISSTA’98), 1998, pp. 53–62.

[25] B. Marre, B. Blanc, Test selection strategies for lustre descriptions in gatel,
Electron. Notes Theor. Comput. Sci. 111 (2005) 93–111.

[26] S. Di Alesio, S. Nejati, L. Briand, A. Gotlieb, Stress testing of task deadlines: a
constraint programming approach, in: Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on, IEEE, 2013, pp. 158–167.

[27] A. Gotlieb, T. Denmat, B. Botella, Goal-oriented test data generation for pointer
programs, Inform. Softw. Technol. 49 (2007) 1030–1044.

[28] S. Di Alesio, S. Nejati, L. Briand, A. Gotlieb, Stress testing of task deadlines: a
constraint programming approach, in: Int. Symposium on Soft. Reliability and
Engineering (ISSRE’13), Research Track, Pasadena, CA, USA, 2013.

[29] A.W. Ulrich, P. Zimmerer, G. Chrobok-Diening, Test architectures for testing
distributed systems, in: Proceedings of the 12th International Software Quality
Week, 1999.

[30] European Parliament and Council of the European Union, Directive 2006/42/EC
on machinery, 2006.

[31] G. Rossum, Python Reference Manual, Technical Report, Amsterdam, The
Netherlands, 1995.

Table A.4
Notation for the parameters in the production model.

Parameter Test control parameters

N The size of the input sequence
i The ith sequence, i 2 ½1;N'
j Channel number j 2 ½1;5'
jBj The number of different spray patterns in the model, or entries in the lookup table B
e A subscript e specifies at which sequence i a scenario should start
c A subscript c specifies on which channel j a scenario should appear
MinBrushSep The minimum time between two spray pattern changes, ti % ti%1 P MinBrushSep
MinTrigSep The minimum time between two actuator output changes for some channel j
MinOverlapTime The minimum time an overlap should be in the overlap scenario
BurstTime The minimum time a burst of changes should last in the burst scenario
BurstLen The number of changes to use in the burst scenario
IllegalVal Value to use for the shutdown scenario

Parameters from the robot controller

Bi The value ith spray pattern in the test sequence
ti The time of the ith spray pattern in the test sequence

Global parameters in the IPS

PreTime Disturbance time between channel 1 and channels 2–4 for P ¼ 0! P > 0
PostTime Disturbance time between channel 1 and channels 2–4 for P > 0! P ¼ 0
B Brush table with jBj rows; each row has five tuples

Parameters for each channel

Maxj The maximum value channel j can have
Minj The minimum value channel j can have
Dþj Parameter used to calculate timing for increasing value of the output on channel j

D%j Parameter used to calculate timing for decreasing value of the output on channel j
Kj Boolean value deciding whether or not a channel should user linear delay calculations
Pj;i The activation value for the ith output on channel j
tj;i The activation time for the ith output on channel j

184 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185

http://dx.doi.org/10.1109/ICST.2013.71
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0010
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0010
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0010
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0025
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0035
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0035
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0035
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0035
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0040
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0040
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0045
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0050
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0055
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0060
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0060
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0060
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0060
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0060
http://chess.eecs.berkeley.edu/pubs/325.html
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0070
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0075
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0075
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0075
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0085
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0085
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0090
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0090
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0090
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0090
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0095
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0095
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0095
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0100
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0100
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0100
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0100
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0105
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0110
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0110
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0110
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0115
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0125
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0130
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0135
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0135
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0140
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0140
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0140
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0140

[32] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing
approaches, Softw. Test. Verif. Reliab. 22 (2012) 297–312.

[33] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press,
1989.

[34] F. Rossi, P.v. Beek, T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence), Elsevier Science Inc., New York, USA,
2006.

[35] L. De Moura, N. Bjørner, Z3: an efficient SMT solver, in: TACAS’08/ETAPS’08:
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer-Verlag, 2008, pp. 337–340.

[36] P. McMinn, Search-based software test data generation: a survey, Softw.
Testing, Verif. Reliab. 14 (2004) 105–156.

[37] I. IBM, ILOG Labs, IBM CPLEX: High-Performance Software for Mathematical
Programming and Optimization, 2006. <http://www.ilog.com/products/cplex/>.

[38] M. Carlsson, G. Ottosson, B. Carlson, An open-ended finite domain constraint
solver, in: Proceedings of the9th International Symposium on Programming
Languages: Implementations, Logics, and Programs: Including a Special Track
on Declarative Programming Languages in Education, PLILP ’97, Springer-
Verlag, London, UK, 1997, pp. 191–206. <http://dl.acm.org/citation.cfm?id=
646452.692956>.

[39] K. Francis, S. Brand, P.J. Stuckey, Optimisation modelling for software
developers, in: Principles and Practice of Constraint Programming, Springer,
2012, pp. 274–289.

[40] M.G. de la Banda, P.J. Stuckey, P. Van Hentenryck, M. Wallace, The future of
optimization technology, Constraints (2013) 1–13.

M. Mossige et al. / Information and Software Technology 57 (2015) 169–185 185

http://refhub.elsevier.com/S0950-5849(14)00208-0/h0160
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0160
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0165
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0170
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0170
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0170
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0170
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0175
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0180
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0180
http://www.ilog.com/products/cplex/
http://dl.acm.org/citation.cfm?id=646452.692956
http://dl.acm.org/citation.cfm?id=646452.692956
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0195
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0195
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0195
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0195
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0200
http://refhub.elsevier.com/S0950-5849(14)00208-0/h0200

	Testing robot controllers using constraint programming and continuous integration
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Background and related work
	2.1 Continuous integration
	2.2 MBT and constraint programming
	2.2.1 Correct-by-construction approaches
	2.2.2 MBT
	2.2.3 Constraint-based testing

	3 ABB’s process control system
	3.1 Example of robotized painting
	3.2 Testing challenges
	3.3 Abstraction of the IPS

	4 Legacy test practices
	4.1 Painting on paper
	4.2 Activation testing with an oscilloscope
	4.3 Running in a simulated environment
	4.4 Summary of existing test methods
	4.5 New test method

	5 Modeling the IPS
	5.1 IPS channels
	5.2 Mathematical model
	5.3 Brush table
	5.4 Channel activation time
	5.5 Timing influence between channels
	5.6 Timing on isolated channels

	6 Test scenarios with constraints
	6.1 Normal scenario
	6.1.1 Burst

	6.2 Overlap scenario
	6.3 Shutdown scenario
	6.4 Minimizing test execution time

	7 Implementation
	7.1 Test setup
	7.2 JITTG
	7.3 Model implementation

	8 Empirical evaluation
	8.1 Research questions
	8.2 Experimental setup
	8.3 RQ1, Experiment 1
	8.3.1 Variable selection heuristics
	8.3.2 Value selection heuristics
	8.3.3 Result for Experiment 1
	8.3.4 Analysis of Experiment 1

	8.4 RQ2, Experiment 2
	8.4.1 Analysis of Experiment 2

	8.5 RQ3, deployment, and industrial adoption
	8.5.1 New errors detected
	8.5.2 Detection of old errors

	8.6 Threats to validity
	8.7 Comparison of test methods
	8.8 Lessons learnt

	9 Conclusions
	Acknowledgments
	Appendix A Notation
	References

