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Abstract. Designing industrial robot systems for welding, painting, and
assembly, is challenging because they are required to perform with high
precision, speed, and endurance. ABB Robotics has specialized in build-
ing highly reliable and safe robotized paint systems based on an inte-
grated process control system. However, current validation practices are
primarily limited to manually designed test scenarios. A tricky part of
this validation concerns testing the timing aspects of the control system,
which is particularly challenging for paint robots that need to coordinate
paint activation with the robot motion control.

To overcome these challenges, we have developed and deployed a cost-
effective, automated test generation technique based on Constraint Pro-
gramming, aimed at validating the timing behavior of the process control
system. We designed a constraint optimization model in SICStus Prolog,
using arithmetic and logic constraints including use of global constraints.
This model has been integrated into a fully automated continuous inte-
gration environment, allowing the model to be solved on demand prior
to test execution, which allows us to obtain the most optimal and diverse
set of test scenarios for the present system configuration.

After three months of daily operational use of the constraint model in
our testing process, we have collected data on its performance and bug
finding capabilities. We report on these aspects, along with our experi-
ences and the improvements gained by the new testing process.

1 Introduction

Developing reliable software for Complex Industrial Robots (CIRs) is a complex
task, because typical robots are comprised of numerous components, including
computers, field-programmable gate arrays (FPGAs), and sensor devices. These
components typically interact through a range of different interconnection tech-
nologies, e.g. Ethernet and dual port RAM, depending on delay and latency
requirements on their communication. As the complexity of robot control sys-
tems continues to grow, developing and validating software for CIRs is becom-
ing increasingly difficult. For robots performing process-intensive tasks such as
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painting, gluing, or sealing, the problem is even worse as their dedicated process
control systems is loosely coupled with the robot motion control system. A key
feature of robotized painting is the ability to perform precise activation of the
process equipment along a robot’s programmed path. At ABB Robotics, Norway,
they develop and validate Integrated Painting control Systems (IPS) for CIRs
and are constantly improving the processes to deliver more reliable products to
their customers.

Current practices for validating the IPS software involve designing and exe-
cuting manual test scenarios. In order to reduce the testing costs and to improve
quality assurance, there is a growing trend to automate the generation of test
scenarios and multiplying them in the context of continuous testing.

In this paper, we report on our work to use Constraint Programming (CP)
over finite domains to generate automatically timed-event sequences (i.e., test
scenarios) for the IPS and execute them within a Continuous Integration (CI)
process [1]. Building on initial ideas sketched in a poster [2] one year ago, we
have developed a constrained optimization model in SICStus Prolog clpfd [3]
to help test the IPS under operational conditions. Due to online configurability
of the IPS, test scenarios must be reproduced every day, meaning that indis-
pensable trade-offs between optimality and efficiency must be found, to increase
the capabilities of the CI process to reveal software defects as early as possible.
Using CP to generate model-based test scenario is not a completely new idea
[4,5], but, according to our knowledge, this is the first time that a CP model and
its solving process been integrated into a CI environment for testing complex
distributed systems.

Organization. The rest of the paper is organized as follows: Section 2 presents
some background on robotized painting, with an example serving as a basis
for describing the mathematical relations involved ; Section 3 describes ABB
Robotic’s current testing practices of the IPS and the rationale behind our val-
idation choices ; Section 4 presents the CP model with its decision variables,
test objectives and optimization principle ; Section 5 explains how the model
and its solving process are implemented and included in the CI process ; Finally,
Section 6 discusses some lessons learnt and summarizes the impact of using CP
in ABB Robotics’s industrial context.

Notation. Throughout the paper a constant in the CP model is prefixed with a
∗, as in ∗SeqLen. This is typically a value set by a validation engineer or queried
from the system under test prior to launching the model.

2 Robotized Painting

This section briefly introduces robotized painting, and highlights some of the
challenges faced when testing such systems. A robot system dedicated to painting
typically consists of two main parts: the robot controller, responsible for moving
the mechanical arm, and the IPS, responsible for controlling the paint process.
That is, to control the activation and deactivation of several physical processes
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such as paint pumps, air flows, air pressures, and to synchronize these with the
motion of the robot arm. A spray pattern is defined as the combination of the
different physical processes. Typically, the physical processes involved in a spray
pattern will have different response times. For instance, a pump may have a
response time in the range 40-50 ms, while the airflow response time is in the
range 100-150 ms. The IPS can adjust for these differences using sophisticated
algorithms that have been analyzed and tuned over the years to serve different
needs. In this paper, we focus on validating the timing aspects of the IPS.

2.1 Example of Robotized Painting

We now give a concrete example of how a robot controller communicates with
the IPS in order to generate a spray pattern along the robot’s path. A schematic
overview of the example is shown in Figure 1, where the node marked robot
controller is the CPU interpreting a user program and controlling the servo
motors of the robot in order to move it. The example is realistic, but simplified,
in order to keep the explanations as simple as possible.

Robot
Controller

IPS master
PreT ime
PostT ime

C2
D+

2 ,D−
2 ,K2

C1
D+

1 ,D−
1 ,K1

C3
D+

3 ,D−
3 ,K3

MoveL p1;

SetBrush 1 \x := 200;

SetBrush 2 \x := 300;

PaintL p2, v800;

User program

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

L =

(Bi, ti)

(LB,1
, ti,1

)

(LB,2, ti,2)

(L
B,3 , ti,3)

Lookup(Bi) (LB,1, LB,2, LB,3)
LB,1@to,1

LB,2@to,2

LB,3@to,3

Fig. 1. Logical overview of a robot controller and the IPS

The program listing of Figure 1 shows an example user program. The first
instruction MoveL p1 moves the robot to the Cartesian point p1. The next two
SetBrush instructions tells the robot to apply spray pattern number 1 when the
robot reaches x = 200 on the x-plane, and to apply spray pattern number 2
when it reaches x = 300. Both SetBrush instructions tell the IPS to apply a
specific behavior when the physical robot arm is at a given position. The last
instruction (PaintL) starts the movement of the robot from the current position
p1 to p2 and activates the painting process. The v800 argument of PaintL gives
the speed of the movement (i.e., 800 mm/s).
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Assuming the path from p1 to p2 results in a movement from x = 0 to x = 500.
The robot controller interprets the user program ahead of the actual physical
movement of the robot, and can therefore estimate when the robot will be at a
specific position. Assuming that the movement starts at time t = 0, the robot can
compute that the two SetBrush activations should be triggered at t1 = 250 ms
and t2 = 375 ms.

The robot controller now sends the following messages (a.k.a. events) to the
IPS master: (B1 = 1, t1 = 250), (B2 = 2, t2 = 375), which means apply spray
pattern 1 at 250 ms, and spray pattern 2 at 375 ms. The messages are sent around
200 ms before the actual activation time, or at ≈ 50 ms for spray pattern 1, and
at ≈ 175 ms for spray pattern 2. These messages simply convert position into
an absolute global activation time. Note also that the IPS receives the second
message before the first spray pattern is bound for execution, which means that
the IPS must handle a queue of scheduled spray patterns.

IPS Master: When the IPS receives a message from the robot controller, it
first determines the physical outputs associated with the logical spray pattern
number. Many different spray patterns can be generated based on factors like
paint type or equipment in use. In the IPS each spray pattern is translated into
3 to 6 different physical actuator outputs that must be activated at appropriate
times, possibly different from each other.

Figure 1 shows three different actuator outputs (C1, C2, C3). The value of
each actuator output for a given spray pattern is resolved by using a brush table
(L). In this example, L(B1 = 1) returns (L1,1, L1,2, L1,3), while L(B2 = 2) results
in (L2,1, L2,2, L2,3). The IPS master now passes these values to each actuator
output along with its activation time, which may be different from the original
time received from the robot controller. Possible modifications can be formalized
as follows:

t′i =

{
ti − PreT ime if L1,Bi−1 = 0 ∧ L1,Bi �= 0

ti − PostT ime if L1,Bi−1 �= 0 ∧ L1,Bi = 0
(1)

What equation (1) shows is that the activation time of each actuator output may
be adjusted by a constant factor (PreT ime, PostT ime), depending on changes
from other actuator outputs. This is done because small adjustments may be
necessary when there is a direct link between the timing of different actuator
outputs. In our example, the timing on C2 is influenced by changes on C1.

Activation of Actuator Outputs: Referring to Figure 1, we now present how
messages are processedwhen sent from the IPSmaster to a single actuator output.
Let us assume that message (L, ti) is sent, and the current actuator output is L′.
Since painting involves many slow physical processes, the actuator output com-
pensates for this by computing an adjusted activation time to, that accounts for
the time it takes the physical process to apply the change.

The IPS can adopt two different strategies to compute this time compensation.
The first one is to adjust the time with a constant factor: D+ for positive change,
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and D− for negative change. The second one is using a linear timing function
to adjust the change of the physical value.

Equation (2) combines these strategies into a single compensation function,
where ∗Min (resp. ∗Max) is the physical minimum (resp. maximum) value
possibly handled1 by some actuator output.

to = ti −

⎧⎪⎨
⎪⎩
D− · ( L−L′

∗Max−∗Min )
K if L′ < L

D+ · ( L′−L
∗Max−∗Min )

K if L′ > L

0 otherwise

(2)

Physical Layout of the IPS: Figure 1 only shows the logical connections in a
possible IPS configuration. In real applications, each component (IPS master,
C1, C2, C3) may be located on different embedded controllers, interconnected
through an industrial-grade network. As such, the different components may be
located at different physical locations on the robot, depending on which physical
process it is responsible of.

3 Testing the IPS

Having a distributed control system such as the IPS mounted on a physical
robot makes its validation unnecessarily complex, and current testing practices
involve a considerable amount of manual work, including setup and collecting
observations. If while developing a new version of the IPS software, test scenarios
are only run when approaching the release date, then development costs can grow
substantially, as correcting software defects late in the development process may
require developers to dig into the early stages of development. Even worse, if
a software failure is observed during operation (i.e., by the customer), costs
become even higher since corrections may need to take place at the customer
site.

3.1 Continuous Integration

CI is a software engineering practice aimed at uncovering software defects at the
earliest stage of development, by regularly building the system and executing
tests automatically [1].

A good engineering practice requires developers to submit only small source
code changes frequently, instead of large sets of changes occasionally. Together
with this practice, CI has been shown to be a very efficient way of uncovering
defects when developers are geographically distributed or large teams are in-
volved. Typically a CI infrastructure includes tools for source control repository,
automated build servers, and testing engines.

1 These values are determined by the physical equipment involved in the paint process
(pumps, valves, air, etc.).
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3.2 Testing in a CI Environment

We have developed an automated testing framework for the IPS as an integrated
part of ABB’s CI environment, where we have used CP to generate both the
configuration for the IPS, the test sequence, the brush table and the output of
each actuator output and finally execute the test as part of a CI cycle.

Compared to traditional software testing, running a test scenario in a CI envi-
ronment has additional requirements. In particular, as pointed out by Fowler [1],
mastering the total round-trip time is crucial for a successful CI deployment.
Here, round-trip time refers to the time it takes for a developer to submit a
change to the source control repository and get feedback from the build and test
processes. Thus in order to keep the round-trip time as small as possible, we
have identified a few areas where special care must be taken:

– Test complexity: In CI, a less accurate but faster test will always be pre-
ferred over a slow but accurate test. In practice, a test must satisfy the
so-called good enough criterion, frequently used in industry [6].

– Solving time:Constraint-based optimization is most often a time-consuming
task, especially if a global optimum solution is sought [7]. Thus, when used
in CI, it becomes imperative that a time-contracted optimization procedure
be used. In other words, it is important to have precise control over the time
needed to compute the optima, by sacrificing the solution quality.

– Execution time: We observe that test execution time is dependent on the
length of the test sequence, i.e., the number of test scenarios. This must be
accounted for, together with the time needed to generate the test sequence.

In essence, balancing between the length of a test sequence (its execution time)
and the time needed to generate the test sequence (its solving time) is a way to
find the appropriate trade-off to fully integrate CP into a CI process.

4 CP Model of the IPS

We now present our CP model for the IPS. We emphasize that test models, as
proposed in model-based testing [8], are usually limited in their scope. They are
not intended to reflect the full behavior of the system they represent. In our
case, we confine ourselves to modeling the timing aspects of the IPS in order to
build an efficient CP model for generating test scenarios.

4.1 Decision Variables and Domains

While still referring to Figure 1, we now assume that the number of actuator
outputs is a constant input parameter C, instead of 3. The decision variables for
our problem can be divided into three distinct groups: the variables of the input
sequence I, the configuration variables C, and the variables of the brush table L.
In principle, a solution of the CP model is formed by an instantiation of these
variables, in addition to the so-called test oracle O, which is the expected output
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computed by the system formed by each actuator output and its corresponding
time.

Formally, the test input sequence I corresponds to ((B1, t1), . . . , (BN , tN )),
whereN = ∗SeqLen and eachBi ∈ [0, ∗BTabSize] and each ti ∈ [0, ∗MaxT ime].
The configuration C contains parameter variables for each actuator output and
for the IPS master:

C = [PreT ime, PostT ime,D+
1 , D

−
1 ,K1, . . . , D

+
∗C , D

−
∗C ,K∗C ]

The domain of the variables in C is given by configurable constants to the
CP model. In the brush table L, the number of columns corresponds to the
number of actuator outputs, i.e., ∗C, and the number of rows is a constant
∗BTabSize. The domain of each variable in L is extracted from ∗Min and
∗Max for the corresponding actuator output. The test oracle O corresponds
to the physical output of each actuator output with its corresponding time.
Each actuator output has output and time corresponding to a single input:
(Bi, ti) �→

(
(L1,i, t1,i), . . . , (LC,i, tC,i)

)
for i ∈ [1, N ].

4.2 Test Scenarios

We have identified several distinct test scenarios, and we present three of them
here, as shown in Figure 2. Scenarios overlap and kill brush represent failure
conditions, where the IPS is forced into an error state. When generating such
scenarios it is our interest to check whether the IPS can respond correctly (i.e.,
shutdown, error messages, etc.). On the contrary, the scenario normal represents
acceptable behavior and they are targeted to check whether the IPS behaves
as expected. Whenever the CP model is solved, a scenario is given as a test
objective to the solver, and the solving process intends to find an assignment of
variables that can drive the execution of the IPS in the corresponding scenario
status. The overlap scenario is used throughout the paper, as it is the hardest to
find and therefore, it corresponds to the most difficult objective to solve for the
CP model. Let us explain it in more details. As explained in Section 2.1, the IPS
can queue up a sequence of actuator output changes. However, a sequence spray
pattern number sent to the IPS can cause one or several of the actuator outputs
to come out of order with respect to time. This can be due to changes over time
between spray patterns, or due to usage of PreT ime/PostT ime configuration or
else due to different configuration of the actuator output. In principle, the IPS
must handle these issues by sending an appropriate error message to the control
system.

4.3 Avoiding Trivial and Enforcing Diversity

An additional objective in test sequence generation for the IPS is to introduce
diversity in the test input sequence

(
(B1, t1), . . . , (Bi, ti)

)
, in the values of the

brush table (L) and in the configuration parameters for each actuator outputs
(D+, D−,K). By diversity, we mean variations in the test scenarios so that the
chances to discover an error-prone scenario are greater.
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(a) Normal
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R

C1
STOP
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Fig. 2. Test scenarios considered as test objectives. Horizontal axis represent time and
black dots correspond to output activation. A specific spray pattern is a collection of
output activations, and is visualized by a line connecting the black dots.

As solving the CP model is a deterministic process, introducing diversity is
a way to cope with the possible generation of useless scenarios. Let us consider

the setup in Figure 1 where configuration L =
0 0 0
0 0 0
0 0 0

, D+
j = 0, D−

j = 0 and

Kj = 0, j ∈ 1..3 is given, we see that no matter what the input sequence
(. . . , (Bi, ti), . . . , ) is, the actuator output output is always (0, ti). This is of
course a solution, but it has no practical interest, as it does not correspond
to a possible behavior of the IPS. Using randomization in the CP model, in
order to introduce diversity, has clearly been discarded. In fact, one of our initial
requirements is to maintain a reproducible process. When testing the IPS, it
is important to document failure cases and to help debug the system with the
generated test scenarios.

4.3.1 Variation in I Values
Let I = ((B1, t1), . . . , (BN , tN)) be an input sequence to the IPS. Significant vari-
ation on values for ti is not interesting, as the only requirement is that time must
increase monotonically with a minimum step (∗MinBrushSep). More interesting
is the variation in Bi. Obviously, enforcing a change in two successive brush ele-
ment selections is important, i.e., ∀i, Bi �= Bi+1, but this is not sufficient to guar-
antee that all indexes in the L are tested. Diversity on sequence B = B1, . . . , BN

could be implemented by using global constraint nvalue( LenLookupTab, B ),
enforcing that every index is present at least once. But, it will not be sufficient
for our testing purposes.

Let us define the notion of diversity entropy (DE): given a sequence of
integers, DE is the product of the number of occurrences of each value in
the sequence. For example DE([0, 1, 0, 1, 0, 1, 0, 1, 2, 3]) = 4 · 4 · 1 · 1 = 16, while
DE([0, 1, 2, 1, 2, 3, 1, 3, 2, 3]) = 1 · 3 · 3 · 3 = 27. With this example, we see that
the first solution, respecting both previously mentioned constraints, has a diver-
sity entropy lower than the second solution. We therefore come up with another
solution in which we use the global_cardinality constraint. By specifying the
minimum number of times an index of L must appear in the input sequence,
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we increase the diversity entropy of the solution. For example, given ∗SeqLen =
10, ∗BTabSize = 4, variation in the input sequence is enforced by using

global_cardinality( [B1,...,B10], [1-N1,2-N2, 3-N3, 4-N4] )

N1 #>= Ob, N2 #>= Ob, N3 #>= Ob N4 #>= Ob

where Ob is a given constant input parameter of the CP model. This implemen-
tation is flexible enough to consider solutions with a satisfactory DE.

4.3.2 Variation in L Values
Variation in L is equally important. When the validation engineers create these
tables manually, they try to enforce that each actuator outputs ∗Min and ∗Max
is part of the L, and that the whole operating area of the actuator output is
used. If each entry in L is regarded as coordinates in an Euclidian space, RC ,
an approach could be to maximize the distance between each point, i.e., each
entry in L. However, we observed that this approach is too costly to compute
in practice, and we prefer a more light-weight approach. For each row in L,
(R1, . . . , R∗BTabSize), we exploit the global constraints minimum(∗Minj, Rj)
and maximum(∗Maxj , Rj) to enforce usage of extremal values. In addition, the
all_min_dist [9] constraint is used to make sure the values are spread out.

To introduce variation between the entries in L, additional constraints are
used to enforce at least one transition where all except one value is changed. For
example, from Figure 1, if two entries is [L1,i, L2,i, L3,i] and [L1,j , L2,j, L3,j] then
there should exist i and j such that L1,i < L1,j∧L2,i ≥ L2,j∧L3,i ≥ L3,j, and so
on other entries. This is clearly far away from maximizing the Euclidian distance
between each entry, but this approach turns out to perform fairly well together
with the scenarios presented earlier. Of course, there is room for improvement
here in further work.

4.3.3 Variation in C Values
The generated configuration for a specific test scenario includes both the values
for each actuator output (D+, D−,K) and the value for IPS master (PreT ime,
PostT ime). In many setups, validation engineers select these values manually
without questioning the error-proneness of a given configuration with respect
to another. By adding simple constraints for each actuator output, such that
D+ �= D− ∧ D− �= 0 ∧ D+ �= 0, we offer an opportunity for the CP model
to introduce diversity in the configuration values as well. By using global con-
straint all_different (D+

1 , . . . , D
+
C),etc, we also enforce diversity between actu-

ator output values. For the PreT ime and PostT ime values, a similar strategy
is employed: PreT ime �= PostT ime ∧ PreT ime �= 0 ∧ PostT ime �= 0.

It is worth noticing that these variation strategies have served well the good
enough principle, as introducing diversity is important but not at the cost of
losing efficiency.

4.4 Search and Optimization

We now briefly present the optimization function and the search heuristics used
in our model. In our framework, finding optimal solutions that respect the set
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of above-mentioned constraints is the most interesting. Optimal solution here
means a sequence of timed events I = ((B1, t1), . . . , (BN , tN )) of the smallest
execution time, i.e., where tN is minimized. By doing this, we increase the cap-
abilities of the CI process to execute more tests during a limited period. Of
course, reaching exactly the global minimum over tN is interesting from an in-
tellectual perspective, but not really necessary in our industrial setting.

As mentioned in Section 3.2, managing the time needed to generate and exe-
cute test sequences when running tests in a CI environment is of crucial impor-
tance. Considering a test sequence I = ((B1, t1), . . . , (BN , tN )), and the fact that
each spray pattern is sent approximately 200 ms before execution, as explained
in Section 2.1, we see that the execution time of the test can be roughly esti-
mated to be tN . This means that the total time used is roughly ts + tN , where
ts correspond to the solving time of the model.

Knowing that the constrained optimization model tends to minimize tN , the
goal is therefore to control the time needed to find an optimal solution. CP
offers means to control the time taken to optimize by using a branch-and- bound
procedure. That is, we can give a contract of time to this procedure, and it
returns the current feasible solution after the contract of time has passed. We
found this option very useful to compromise between the time spent on search
and solving, and the time spent on execution of the test.

4.5 Search Heuristics

When searching for solutions, many heuristics can be employed or programmed
in CP. Observing the absence of evident structure in our CP model, we have con-
sidered variable orderings as the first element to examine systematically. In order
to extract useful information, we considered 72 distinct static variable orderings
depending on rearrangements of the decision variables (I,L,C). In addition to
this systematic exploration, we took as a reference two well-known dynamic
variable orderings, namely first-fail and first-fail constraint [3]. We also tested
up and down which dictates the direction the domain is searched (ascending or
descending). This analysis and the experiments revealed two points:

1. Even if first-fail and its variation are efficient for timed sequences containing
few events, they quickly become unusable for larger sequences. This can
be easily explained by the necessary computation of comparison between
domain sizes during the search, which becomes intractable as soon as the
number of variables grows.

2. Looking at search heuristics with static variable orderings, we can group the
result into three groups: H1, H2 and H3.
H1 = (C,L, I′), (L,C, I′) (C,LT, I′),(LT,C, I′),H2 = (C,B,L,T), (B,C,L,T),
(B,L,C,T), (C,B,LT,T), (B,C,LT,T), (B,LT,C,T), H3 = The other 62
tested combinations, where I

′ = (t1, B1, t2, B2, . . .), B = (B1, B2, . . .), T =
(t1, t2, . . .) and L

T = transp(L). H1 is the only heuristics able to produce a
solution within an acceptable timeframe for small values of ∗BTabSize com-
bined with large values of ∗SeqLen, e.g. ∗BTabSize = 10, ∗SeqLen = 200.
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For configurations of large values of ∗SeqLen combined with large values of
∗BTabSize, e.g. ∗BTabSize = 40, ∗SeqLen = 600, H2 is the only heuris-
tic able to generate a solution within reasonable time. The result for H3 is
either no solution at all, or only solution for small ∗BTabSize and small
∗SeqLen. Understanding precisely why H1 and H2 performs so well is part
of our planned further work.

5 Implementation and Exploitation

This section details our implementation of the CP model [10] with SICStus
Prolog and its clpfd library [3], and its exploitation in the CI process at ABB
Robotics. It also gives some insights on the rationale behind the selection of CP
instead of other possible techniques.

5.1 Selection of CP and the CP Solver

The mathematical model of the IPS could have been implemented with other
techniques than CP, including SAT- or SMT-solving [11], local search techniques
for test data generation [12], or Mixed Integer Programming (MIP) [13]. We
briefly review the reasons why these other techniques have been discarded2:

1. The selected technique had to be flexible enough to accommodate the many
alternatives in the dynamic configuration of the IPS. CP offers a higher
degree of flexibility to handle disjunctive constraint systems, by authorizing
the usage of backtracking, reification, or constructive disjunction [14] ;

2. Time-constrained optimization was essential in our industrial context in or-
der to accommodate with the CI process. SAT- and SMT-solving are very
efficient to handle boolean and theory-based satisfiability problems [11], but
they are not tuned to solve optimization problems (i.e., to minimize a cost
function in a given contract of time). Even if extensions exist to handle opti-
mization problems, classical off-the-shelf SMT-solvers do not provide imple-
mentations of these extensions. On the contrary, CP integrates time-aware
optimization methods on discrete combinatorial problems ;

3. As the model is used to predict the expected outputs of the IPS, using exact
methods was mandatory. Despite the efficiency of local search techniques for
test data generation [12], the absence of guarantee on the satisfiability of the
constraints (e.g., no possible detection of unsatisfiability or no guarantee on
the determination of satisfiability for complex constraint sets) was sufficient
to discard these techniques ;

4. Input formats of the constraint solver had to be easily tunable to accommo-
date the high-level tuning of IPS parametrization. SAT- and SMT-solvers
takes specific formats as inputs (e.g., SMTLIB formats) while CP-solvers
are usually hosted by a programming language (e.g., Prolog, Java or C++)
which includes high-level programming features such as predicate/method
invocation, recursivity, inheritance, and so on ;

2 Note that no general claim is made, just specific claims to illuminate our choice of
CP in the case of validating the IPS.
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5. The availability of global constraints to implement diversity in test sequences
was a strong advantage, even if, to be honest, we discovered it after our choice
was made.

We found that SICStus 4.2.3 in combination with clpfd responded well to our
industrial requirements and decided to use it as back-end, and Python 2.7 as
front-end.

5.2 Overall Implementation

The complete system contains around 2k lines of Prolog code, 300 lines of C code
(an interface DLL between Python and SICStus), and finally around 3k lines of
Python code. A schematic overview of the implementation and how it is executed
can be found in Figure 3.

Source
control

repository
1. Build

2.Upgrade
software

3. Configure

4. Query

5. Run test

Test Server
Python Test Scripts

Python Test
Framework

Python – Prolog DLL

SICStus Prolog

Physical IPS setup

Fig. 3. Integration between the test server and IPS

The modeling part of the project has started early in 2013 ; at the beginning, just
by using the user interface of SICStus. In April 2013, a first running model was
available on a desktop for testing IPS, running over a single embedded board.
In May, the model was integrated into the source control repository and the
first automatic test running in a full CI environment was executed. From May
to October 2013, the system was further extended to also cover testing over
complete distributed systems (i.e., several embedded boards) of the IPS. Today,
the model is used in the CI process and solved daily. It generates test sequences
for 11 different physical embedded IPS boards. For testing on the full-distributed
setting, we currently run the model on one single physical setup, but we run 10
different configurations on this setup. To summarize, the number of measurable
activations of physical actuator outputs shows that around 20.000 distinct test
scenarios are executed during each individual CI cycle. It means that these test
scenarios are executed at least once every 24 hours.
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5.3 Execution of the Model

Test execution is typically triggered by a build server upon a successful build of
the IPS software. These steps are illustrated in Figure 3 and explained below.

1. Build: Building the software is scheduled to run every night, or a developer
can trigger a build manually.

2. Upgrade: Upgrade all connected embedded controllers with the newly built
software. A failure in this step aborts the complete cycle.

3. Configure: Configuration fetched from the source control repository is
loaded onto the IPS. The configuration describes the interconnections of
embedded boards and the properties of this specific paint-setup.

4. Query and Solve Model: Data retrieved from the IPS is fed into the CP
model. This enables us to keep the generated test in sync with changes in
the newly built software or changes in the configuration.

5. Run Test: Finally, the actual test is executed by applying the generated
test sequence, and comparing the actuator outputs with the model generated
oracle, O.

5.4 Using the Flexibility of CP

As described in the previous sections, we have designed the model to be flexible
enough and to be able to generate realistic test sequences. In particular, intro-
ducing diversity by applying global constraints between variables has been a key
factor for satisfying our industrial requirements. However, the CP model can also
handle specific parameter values, directly given by the validation engineers not
having a strong knowledge of CP. This is simply implemented by guarding the
posting of each constraint with some groundness conditions. For example, using
(var(X), var(Y)) -> X \#= Y ; true to guard the posting of X \#= Y. Thanks
to the Prolog commodity, our Python front-end can give value to any variable
in the model and avoid posting spurious constraints that would slow down the
solving process, or prevent a solution.

5.5 Performance of Model

Recalling that H1 and H2 represent two different groups of variable orderings
with similar performance, Figure 4a compares the total time for a test execution
(ts + tN ) for H1 and H2 with two different sizes of ∗BTabSize.

When used only to find a solution to the constraints (i.e., without optimiza-
tion), H1 gives better results for ∗BTabSize = 10, while H2 performs better
for ∗BTabSize = 40. This experiment revealed 1) that H1 usually produces a
relative small value for tN , by using more time than H2 and 2) that H2 usually
produces a larger value for tN but faster than H1.

We also compared H1 and H2 when minimizing the overall time of a test
sequence, i.e. minimize(tN). Figure 4b shows that H2 provides the first solution
faster than H1, and that the quality of solution is better when more time is
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allocated to the search for optimality. For H1, Figure 4b shows that there is no
gain in minimizing tN .

For the setup ∗SeqLen = 100, ∗BTabSize = 10 we see that the solver must
run for ≈ 60 s beforeH2 gives a smaller tN than forH1. For the setup

∗SeqLen =
200, ∗BTabSize = 40 the solver must run for ≈ 600 s before a break-even occurs.

From the results on Figure 4a and Figure 4b, no strong conclusion can be
drawn when it comes to select between H1 and H2. If a test sequence is gener-
ated for multiple uses, i.e. reusing the same test sequence multiple times, then
using H2 is beneficial at the price of allocating more time to the optimization
procedure. On the contrary, if a single usage is targeted, as is in the CI process,
then using H1 should be preferred by considering than the total time ts + tN is
the actual target of our test generation and execution procedure. Consequently,
at ABB Robotics, we decided to keep the choice between these two heuristics
as an option in our CP model. From a practical point of view, it permits the
validation engineers to tune the test generation process according to their needs.

6 Lessons Learned and Conclusions

This section concludes the paper by presenting some lessons learned at ABB
Robotics from our experience with introducing CP in our CI process.

6.1 CP for Validation Engineers

As previously stated, validation of robotized painting involves a fair amount
manual, labour-intensive work. Therefore, replacing parts of this validation pro-
cess with automation is necessary, and is perceived by validation engineers as a
means to strengthen the process. However, it also comes with some drawbacks.
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Two factors must be distinguished: (1)The automation through the CI pro-
cess including automatic building of software, software upgrade, test execution
and results reporting, and (2) Test generation through use of CP, which
permits validation engineers to focus on validating other parts of the CIRs.

Point (1) does not have any drawbacks except the effort required to set up
the CI process. From an industrial perspective, point (2) is the most critical,
especially because (a) validation engineers are not yet sufficiently trained in CP,
to change the model without help ; (b) validation engineers are usually reluctant
to trust any tool that produces results, that are very difficult to compute by hand
or with an easily understandable process. It is also recognized [15,16] as a concern
that many optimization problems require expert knowledge. In order to reduce
the risks, we decided to build a Python front-end to our CP model, so that some
details can be hidden from the validation engineers. We also organized basic
training in CP with simple and understandable examples in order to facilitate
the adoption. Of course, we do not claim that these actions form a recipe for
adopting CP in general, but we observe that it worked well in the context of
ABB Robotics IPS validation.

6.2 Actual Defects Found with the CP Model

After the model was put into production at ABB Robotics, it immediately de-
tected two new unknown defects related to timing aspects of IPS. These defects
were however classified as non-critical, as they correspond to very unlikely sce-
narios. Digging into the causes of these defects, we saw that they had been
present in the IPS for several years without any significant consequences and
that they had been spotted by the CP model through enforcing diversity in the
selection of test sequences. These defects were corrected and the test sequences
used for spotting them were introduced into our non-regression test suite.

For validating the CP model, we also reintroduced five old, historical, defects
into the source control repository. These defects were known by the validation en-
gineers to be extremely hard to find. After a round of experiments, the CP model
produced test sequences that spotted all the five defects. This was considered as
a strong justification for the continued use of the CP model in production.

6.3 Return on Investment with the Use of CP

Computing the ROI for the use of CP for ABB Robotics’ IPS validation is not
easy. Possibly, one can measure the number of defects found with and without
the CP model during the validation of a new IPS release. It is also possible to
compare the human effort required in both cases. However, another important
factor is the increased confidence of the engineers to the validation process,
which is a factor that is very difficult to measure. After the introduction of
the CP model in production, we observed a much higher confidence among the
engineers to the testing framework and their appetite to perform necessary code
re-factoring is now higher. They are more willing to make critical, but needed,
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changes in the software and they rely on the test framework to detect undesired
side-effects. If a side-effect is discovered, they can simply roll back the change.

In the long term, we expect to see the benefits of using CP being recognized
as a way to increase the general quality of the testing process, since necessary
re-factoring will be performed before the technical depth grows beyond control.

6.4 Further Work

In the previous section, we mentioned at least two main points to dig into, in
order to get a better understanding of the benefits of the CP model in ABB
Robotics’ IPS validation. Firstly, as introducing diversity in the selection of test
sequences is crucial in our application, more dedicated global constraints could be
built to capture the needs of validation engineers. In particular, constraining the
variables of the brush table to take balanced values is highly desirable. Secondly,
a deep understanding of the reasons why our heuristics H1 and H2 perform
significantly better than other variable ordering choices would help us improving
the constraint model by refining constraint posting.
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