
Towards Byzantine Fault Tolerant Publish/Subscribe:

A State Machine Approach

Leander Jehl and Hein Meling
Department of Electrical Engineering and Computer Science

University of Stavanger, Norway
leander.jehl@uis.no

ABSTRACT
More than a decade of research has gone into techniques
aimed at tolerating arbitrary failures in client/server inter-
action, using consensus based replication. These works made
Byzantine fault tolerance possible [5], competitive [18], ro-
bust [7], and feasible to apply [6]. In this paper we estab-
lish a connection between the pub/sub interaction model
and consensus based replication protocols, that makes the
above results applicable to the design of large scale event-
based middleware. We propose a Byzantine fault tolerant
pub/sub system, on a tree-based overlay, tolerating a con-
figurable number of failures in any part of the system, with
minimal divergence from traditional pub/sub specifications
and forwarding schemes.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Fault Tolerance; C.2.4 [Computer-Communication
Networks]: Distributed Systems

General Terms
Reliability

Keywords
Publish subscribe, Byzantine fault tolerance, State machine
replication

1. INTRODUCTION
There is a growing trend towards event-based interaction

between system components [1, 4]. A primary reason for
this trend is that more and more workflows are naturally
event-driven, e.g. a user tweeting to his followers or bidding
in an auction. Event-based interaction allows a subscriber
to indicate its interests by sending a subscription to the ser-
vice. Then, upon receiving a publication from a publisher,
the service can match and forward the publication to inter-
ested subscribers. This is referred to as the pub/sub model.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

HotDep November 03 - 06 2013, Farmington, PA, USA

Copyright 2013 ACM 978-1-4503-2457-1/13/11 ...$15.00.

We consider distributed content-based pub/sub, where sub-
scribers connect to an overlay network of brokers represent-
ing the service, and matching is based on one or more at-
tributes of a publication. We refer to publishers, subscribers,
and brokers as agents. The salient features of the pub/sub
model are that publishers and subscribers are decoupled [11],
interacting only through the service, and that subscription
based filtering is used to drop unwanted publications.
In this paper we propose a Byzantine Fault Tolerant (BFT)

pub/sub architecture built on a tree-based overlay network.
Designing such a system is motivated by future application
needs, as we envision that BFT pub/sub can play a role in
preventing cheaters in multiplayer online games [2] or fraud
in online trading/auctions, or to increase resilience to at-
tacks for an intrusion detection system [12].
By implementing BFT, a pub/sub system can enforce

that all publications originate from authenticated publish-
ers, that can be held accountable for their publications, and
that publications are fairly distributed to all subscribers,
preventing faulty publishers from sending exclusive infor-
mation to certain subscribers.
Previous works [14, 16] on pub/sub have applied ad hoc

techniques for handling failures in a relaxed failure model,
such as assuming that publishers are non-Byzantine [16]. We
argue that this assumption is unreasonable, since publishers
might behave Byzantine for the same reasons as other agents
in pub/sub.
Contributions: (1) Formalizing BFT pub/sub in a state

machine model akin to the Paxos agents: proposers, ac-
ceptors, and learners [17], making it easier to reason about
its properties. (2) Our solution is safe against Byzantine
publishers. (3) It can update subscriptions concurrently
with publication forwarding, which is not covered by [16].
(4) Our approach uses symmetric encryption which outper-
forms classical signatures used in [16] by several orders or
magnitude.
Prerequisite: Our objective is to derive a BFT pub/sub

system, starting from non-fault-tolerant pub/sub. To toler-
ate failures of the pub/sub agents, they are replicated using
established protocols for state machine replication (SMR),
that lend themselves to formal reasoning. We assume an ini-
tial pub/sub system in which the agents are organized into a
tree overlay [4]. This is a common and practical assumption
for many systems; we leave it for future work to consider
more general overlays. Moreover, there exist several exten-
sions [24, 23, 9] for pub/sub on a tree overlay. With this
overlay as a basis, we hope that these extensions can also be
adapted to our system.

In our solution, we wish to retain the original tree over-
lay as much as possible, adding nodes and links only when
necessary. In particular, the normal operation forwarding
paths should be similar to the original overlay.

2. SPECIFICATIONS AND DESIGN PRIN-
CIPLES

We first give a pub/sub specification, and introduce fault
tolerance. We then reduce the problem to a single publisher,
and make the connection to consensus.

What distinguishes pub/sub forwarding from multicast is
its ability to filter publications based on subscriptions. That
is, we can selectively forward only those publications that
have matching subscribers. In content-based pub/sub, this
matching may operate on multiple attributes of a publica-
tion. We can formalize the safety and liveness conditions of
a pub/sub system with the following properties [20]:

Relevance If a subscriber S receives a publication p, then
S issued a subscription s, matching p.

Authentication If a subscriber S receives a publication p,
then p was published by some publisher P .

Uniqueness A subscriber S receives no publication twice.

Liveness If a subscriber S issues a subscription s and never
changes it, then S receives all publications matching
s, except a finite number1.

2.1 Fault Tolerant Specification
For a fault tolerant pub/sub system, the above specifica-

tion is insu�cient. Specifically, we must make certain as-
sumptions about the publishers and subscribers. That is,
we can think of them as clients of a fault tolerant service.
Therefore, if subscribers are (crash) faulty, the system can-
not guarantee that they deliver a publication. Further, a
Byzantine subscriber cannot even be prevented from deliv-
ering incorrect publications. Thus, we require the above
safety properties to hold for correct subscribers, if no more
than f failures occur. We say that a publisher (subscriber)
is correct if it never fails during an execution. We require
Liveness to hold for correct subscribers and correct publica-
tions. A publication is correct, if it was issued by a correct
publisher, or delivered by at least one correct subscriber.

To ensure Uniqueness, we assume that all publications are
di↵erent. In the presence of Byzantine publishers, this means
that two publications with the same content, but di↵erent
authenticators are considered di↵erent. Finally, we note that
Liveness is not restricted to correct publishers. Thus our
Liveness property guarantees fairness:

Fairness: If two correct subscribers issue the same sub-
scription s and never change it, the stream of publica-
tions they receive from a faulty publisher only di↵ers
by a finite number of publications.

2.2 Problem Reduction: Single Publisher
We note that the safety and liveness conditions hold, i↵

they hold separately for every publisher. Thus, for simplic-
ity we restrict the above specification to a single publisher;

1In [20], Liveness allows missed publications during a finite
time interval, rather than a finite number of publications.
However, without explicit timing constrains, this formula-
tions is equivalent.

we call this single source pub/sub (SPS). Given a system
that implements SPS, reproducing this system for each pub-
lisher yields a correct pub/sub system. Clearly, an imple-
mentation can merge several SPS instances, sharing common
structures.
We also require that an implementation of SPS delivers

publications in FIFO order and that every node issues an
initial subscription s0, which is known to all correct nodes.
This allows us to reuse publication dissemination to imple-
ment subscription updates, as we explain in Section 3.4.
Since sequence numbers are already needed in SPS to fil-
ter duplicates and detect gaps, implementing FIFO poses
little additional cost. Also providing initial subscriptions is
clearly a feasible requirement.

2.3 Pub/Sub as a Consensus Problem
We now relate the pub/sub specification to a classical con-

sensus problem, by showing that SPS can be implemented
by a series of consensus instances using a single proposer.
Given a single proposer and a set of acceptors and learners,

the following properties specify a weak form of consensus.
They must hold despite f faulty acceptors.

SC1 No two correct learners learn di↵erent values.
SC2 If a correct learner learns a value, it was proposed by

the proposer.
SC3 A correct learner learns at most once.
LC1 If the proposer is correct and proposes p, all correct

learners eventually learn p.
An additional liveness property is necessary to obtain full
consensus [18]:
LC2 If one correct learner learns p, all correct learners even-

tually learn p.

We note that even with a single proposer, 3f + 1 acceptors
are needed to solve consensus in presence of arbitrary fail-
ures [21]. If the proposer is always correct, while acceptors
can be Byzantine, only 2f + 1 acceptors are needed. Note
that by LC1, progress is not required when the proposer
fails. Therefore we do not need the view change protocol
of classical consensus algorithms, since it mainly serves to
change the proposer.
SPS can be easily implemented using full consensus. For

every publication, the publisher is used as proposer in a new
consensus instance, with all subscribers as learners. After
learning, a subscriber delivers only publications matching
its subscription. The weak form of consensus can be used
for finitely many publications and SPS will still be fulfilled.
However, using weak consensus for all publications does not
fulfill the pub/sub specification, since fairness might be vi-
olated. This scheme can be highly ine�cient, since publi-
cations are broadcasted, even if there is no interested sub-
scriber. We will however leverage it in our design.
Note that consensus with a single proposer is equivalent

to reliable broadcast [3]. We chose to use consensus above,
since the roles of proposers, acceptors, and learners in con-
sensus closely match that of publishers, brokers, and sub-
scribers in pub/sub.

2.4 Decoupling in a Fault Tolerant Overlay
The principle of decoupling between di↵erent agents is

essential to facilitate scalability in modern pub/sub sys-
tems [11]. Thus publishers and subscribers only commu-
nicate with the system through a single connection. In the

L

Acc4

Acc3

Acc2

Acc1

Pub
hPubi

learn on 2f + 1

hFwdi

(a) Authentication.

L

Acc4

Acc3

Acc2

Acc1

Pub
hPubi

on 2f + 1

hPreparei

learn on 2f + 1

hCommiti

(b) Reliable Broadcast.

L

Acc4

Acc3

Acc2

Acc1

Pub
hPubi hFwdi

learn with 2f + 1 MACs

(c) Chain.

Figure 1: BFT-Publisher.

classical tree overlay, this decoupling also extends to brokers,
requiring that brokers only know their neighbors. Clearly we
cannot adopt this condition, since the failure of one broker
in the tree would cause the overlay to partition. Instead
we restrict the set of brokers that one agent knows of to
its neighborhood brokers [14] within a bounded number of
hops. Also, to implement this decoupling in our system,
publishers and subscribers cannot share cryptographic keys.

3. DESIGN
In this section we describe the design of our state ma-

chine based, Byzantine fault tolerant, single source pub/sub
system. We do this in several steps. First we use the re-
lationship between pub/sub and consensus, established in
Section 2.3, to design a small scale pub/sub system, called
the BFT-publisher. We then design an extension, the BFT-
broker, that can be used to match publications from the
BFT-publisher, against subscriptions and forward them to
the appropriate subscribers. This allows the system to scale
up to a larger number of subscribers by taking advantage
of diverse subscriptions and only forward matching publi-
cations. We then elaborate on how to combine a BFT-
publisher and several BFT-brokers in a tree overlay. We
first consider a system where subscribers only hold an ini-
tial subscription s0 before startup. We then show how this
can be used to implement the full specification.

3.1 The BFT-publisher
We first identify an existing solution for both the weak

and full, single proposer consensus. We then combine them
to a small scale SPS system, with minor adjustments to the
protocol.

An existing solution, implementing weak consensus is the
authentication stage of the UpRight library [6, 8], depicted
in Figure 1(a). In this protocol, using 3f + 1 acceptors, the
proposer send a publication to all acceptors, each of which
forwards it to the learners. Learners accept the publication
after receiving it from 2f + 1 acceptors, with correct mes-
sage authentication codes (MACs). To see that this protocol
does not implement LC2, consider the following example:
A faulty publisher can send to only f + 1 correct acceptors.
The faulty acceptors can selectively forward to only some
learners. Thus one learner might receive 2f + 1 forwarded
publications, while others only receive f + 1.

Full consensus with a single proposer can be solved by
Bracha’s Reliable Broadcast (RelBC) algorithm [3], depicted
in Figure 1(b). In this protocol, acceptors send a prepare
message to all other acceptors on receiving the publication
from the publisher. After receiving 2f +1 prepare messages
or f + 1 commit messages, acceptors send a commit mes-

sage to all other acceptors and the learners. Learners learn
on 2f + 1 commit messages. RelBC allows an acceptor to
send a commit message, even if it received a di↵erent or no
publication from the publisher. Therefore if some correct
learner learns, all 2f + 1 correct acceptors will send a com-
mit message. Thus LC2 holds. However this solution is
costly, since every acceptor has to send at least 4f messages
to authenticate a single publication. We therefore propose a
hybrid version, using weak consensus in the critical path of
publications, and using the full RelBC message pattern only
once every n publications. This guarantees that two cor-
rect learners cannot diverge by more than 2n publications.
Thus the publisher can use the authentication stage for every
publication, but after n publications, the publisher sends a
special publication containing the history of the last n weak
instances through the RelBC protocol. Acceptors accept the
special publication only if the history matches the preceding
publications. Furthermore, acceptors only participate in a
weak consensus instance, if it is no more than 2n instances
ahead of the last RelBC instance.
While the broadcast message pattern used above works,

it di↵ers significantly from the usual forwarding in a tree
overlay, and therefore conflicts with our goals. This is par-
ticularly relevant for the weak consensus protocol, which is
run often and in the critical path. Taking ideas from [13]
we modify the weak consensus protocol, to forward publi-
cations along a chain, as shown in Figure 1(c). Thus the
publisher chooses 2f + 1 acceptors ordered in a chain, and
sends the publication (with MACs) to the first. Each ac-
ceptor forwards the publication to the next acceptor in the
chain. The last acceptor forwards to the learners, which
need to validate MACs from the last f + 1 acceptors.
If the publisher chooses only correct acceptors, all learn-

ers are guaranteed to learn. As shown in [13] this technique
reduces the number of cryptographic operations, since only
MACs from the last f+1 acceptors have to be verified. How-
ever it increases latency, especially when f is large, since
2f + 1 communication steps are needed for learning a pub-
lication. Note that when more then f nodes are suspected
to be Byzantine, the publisher can choose to run several
di↵erent chains simultaneously with the same publication.
BChain [10] develops tactics for choosing 2f+1 correct nodes
out of 3f + 1.
Full BFT protocols, such as Shuttle [22] or BChain [10]

can be used to also implement full consensus with a chain
based protocol. However, other than RelBC, these proto-
cols rely on view change and an eventually correct leader
to guarantee LC2, even with a single proposer. Adjusting
these protocols to guarantee LC2 without view change has
high priority for our future work.

L

Acc3

Acc2

Acc1

Pub
hPubi

learn on f + 1

hFwdi

(a) Broker.

L

Acc3

Acc2

Acc1

Pub
hPubi

learn with f + 1 MACs

(b) Optional Paths.

Figure 2: BFT-Broker.

3.2 The BFT-broker
Clearly it is not feasible to connect an arbitrarily large

number of learners directly to the BFT-publisher, especially
since it does not filter any publications, simply broadcast-
ing to all learners. We therefore introduce another repli-
cated agent, called the BFT-broker, used to implement a
fault tolerant broker. A BFT-broker forwards publications
to interested subscribers and other brokers in presence of
up to f Byzantine faults. We assume that the BFT-broker
receives publications from a single, correct publisher. It is
therefore su�cient to use 2f +1 acceptors. We later explain
how this publisher is implemented by another BFT-broker
or the BFT-publisher.

The correct publisher sends its publications to all accep-
tors in correct order. The acceptors match publications
against subscriptions and forward the publication to all in-
terested learners (i.e. subscribers and brokers). Acceptors
also keep a counter for every learner, to add a learner-specific
sequence number to the publication. This is necessary since
the publisher’s sequence numbers cannot be used to dis-
tinguish between filtered and lost publications. A correct
learner delivers a publication only if it was received from
f + 1 acceptors carrying the next sequence number. This is
depicted in Figure 2(a).

As before, having all acceptors broadcast to all learners
does not comply with our goal of keeping the tree structure.
We therefore change this pattern, assuming again that ac-
ceptors are ordered in a chain. Thus every acceptor sends to
the next f + 1 acceptors, or if they are fewer than f + 1, to
the remaining acceptors in the chain. The acceptors include
MACs for the following acceptors and the learners. After
collecting f + 1 MACs, including its own, an acceptor can
forward these to the interested learners. This is depicted in
Figure 2(b). Note that if the involved acceptors are correct,
it is su�cient to send only the blue, green, or red messages.
This allows us to use only one of these paths during nor-
mal operation, and only use the other paths for every nth
publication carrying the recent history, or if an acceptor is
suspected.

Further, if some learner is placed on the same node as an
acceptor, this learner can learn directly from its local ac-
ceptor, and need not receive messages from other acceptors.
This is because we can assume that this acceptor and learner
only fail together.

3.3 Building the Tree
We now explain how a BFT-publisher and BFT-brokers

are combined to form a tree-based pub/sub system, and how
to place acceptors on nodes. We assume a tree T of brokers,
denoted Bi, as in Figure 3(a), with publisher P . We re-
place broker Bi in the tree with a BFT-broker Bi and the

PB1

B2

B4

B6

B5

B3

(a) Broker Overlay T .

1 PAp

2 ApA1

3 ApA1A2A3

4 ApA1A2A3A4A5

5 A2A4A5A6

6 A4A6

7 A6

8 A5

9 A3

(b) BFT Overlay.

Figure 3: Building the tree.

P A1

B1

A1

A1

A2

B2

A2

A2

(a) Connected Brokers.

P A1

A1A2

A1A2

A2

(b) Combined Brokers.

Figure 4: Combining Brokers.

publisher with a BFT-publisher, P. An acceptor Aj in Bj

receives a publication from the fault-free publisher by learn-
ing it from Bi, where Bj is a child of Bi in T . Acceptors
in B1 learn from the BFT-publisher. Figure 4(a) shows the
connections between two BFT-brokers, including the mes-
sages from Figure 2(b).
We map the acceptors Ai in Bi to the initial tree by plac-

ing them on the node associated with Bi and its parents, as
shown in Figure 3(b). We also introduce 3f new nodes above
B1, which are used to place the acceptors Ap in P. This
placement lets us omit several messages from Figure 4(a),
as shown in Figure 4(b). Thus all nodes except those in P,
need links only to successors at most f + 1 hops away, and
shared symmetric keys with nodes 2f +1 hops away. Nodes
in P need keys and links to nodes at most 3f hops away.
Thus we achieve decoupling of the di↵erent agents, since an
agent’s view does not depend on the total size of the system.
The additional agents necessary for the BFT-publisher

can also be located on the same nodes as other agents. How-
ever, in the example from Figure 3(b), agent 3 should not
be placed with agent 5 or 9, since they share acceptors from
the same broker.
Finally, in case of no failures, we can circumvent some

agents in the original forwarding path. This is easy to see
from Figure 4(b) where it su�ces to send messages of one
color, if no failures occur. This technique can positively
e↵ect both throughput and latencies of our system, as eval-
uated in [15].

3.4 Managing Subscriptions
In most pub/sub systems [19], subscriptions are simply

propagated to the brokers, and each broker can update its
subscription table as soon as it receives the subscription.
However with replicated brokers, inconsistencies can occur

if two acceptors of the same broker insert a new subscrip-
tion at di↵erent points in the publication stream. That is,
they may disagree on which publications to match against
the new subscription. Thus the learner-specific publication
counter for this subscriber is no longer consistent among the
correct replicas. To avoid this scenario, a new subscription
si from subscriber S is first routed to the publisher. This can
be done by simply sending upwards on the existing paths.
The publisher then issues a special publication, that matches
the last subscription si�1 from S, and contains si. Brokers
only apply si to publications issued after this special pub-
lication. FIFO ordering ensures that all correct acceptors
filter the same set of publications against the new subscrip-
tion. Since we consider every publisher separately, we can
ignore, if di↵erent publishers or subtrees receive diverging
subscriptions from a faulty subscriber. We therefore don’t
need to filter a subscription through a BFT-publisher, before
it is forwarded in the tree.

To ensure that subscriptions, issued by a correct sub-
scriber are eventually inserted, we must force a faulty pub-
lisher to insert the special publication. To do this we also
send the subscription to the acceptors in the BFT-publisher.
These stop forwarding, if the special publication is not in-
serted within 2n publications. Note that to use this scheme,
without blocking a correct publisher, we must ensure that
eventually, no correct acceptor in the BFT-publisher lacks
more than 2n recent publications.

4. CONCLUSIONS AND FUTURE WORK
We have presented a design for a BFT pub/sub system,

based on state machine replication. Our design is derived
from the initial structure of a tree overlay, deviates only
where necessary, and uses only a single forwarding path
where no failures are detected. Our design incorporates the
decoupling principle, since an agent’s view only depends on
the trees fanout and the desired level of fault tolerance f ,
but not on the total size of the system.

Note that, since our broker maintains a counter for ev-
ery connected subscriber, it is a stateful service. Therefore
our design can also be applied to more sophisticated stream
processing applications, than simple subscription matching.

Several problems remain unsolved, such as how a learner
should request retransmission when it detects a lost publi-
cation, and how long a publication must be stored to en-
able retransmission. Note that retransmission is only guar-
anteed to succeed, after a full consensus instance. Also,
if Byzantine learners can request retransmission, they can
cause additional load. Therefore, the retransmission and
garbage collection frequencies need to be matched to avail-
able resources. In addition we aim to identify simplifications
and unifications for combining multiple instances of SPS. We
plan to address these problems in our implementation.

Although the reduction to SPS cannot be extended to
more restrictive specifications, e.g. to achieve total order
of publications, we believe that our state machine based
approach, and the division into BFT-publishers and BFT-
brokers, can be used to achieve these guarantees.

5. ACKNOWLEDGEMENT
We want to thank Allen Clement for fruitful discussions

on early stages of this work.

6. REFERENCES
[1] Adya, A., Cooper, G., Myers, D., and Piatek,

M. Thialfi: a client notification service for
internet-scale applications. In SOSP (2011).

[2] Bharambe, A. R., Rao, S., and Seshan, S.
Mercury: a scalable publish-subscribe system for
internet games. In NetGames (2002).

[3] Bracha, G. Asynchronous byzantine agreement
protocols. Inf. Comput. 75, 2 (Nov. 1987).

[4] Carzaniga, A., Rosenblum, D. S., and Wolf,
A. L. Design and evaluation of a wide-area event
notification service. ACM TOCS 19, 3 (Aug. 2001).

[5] Castro, M., and Liskov, B. Practical byzantine
fault tolerance and proactive recovery. ACM TOCS
20, 4 (Nov. 2002).

[6] Clement, A., Kapritsos, M., Lee, S., Wang, Y.,
Alvisi, L., Dahlin, M., and Riche, T. Upright
cluster services. In SOSP (2009).

[7] Clement, A., Wong, E., Alvisi, L., Dahlin, M.,
and Marchetti, M. Making byzantine fault tolerant
systems tolerate byzantine faults. In NSDI (2009).

[8] Clement, A. G. UpRight Fault Tolerance. PhD
thesis, University of Texas at Austin, 2010.

[9] Di Nitto, E., Dubois, D. J., and Margara, A.
Reconfiguration Primitives for Self-adapting Overlays
in Distributed Publish-Subscribe Systems. In SASO
(2012).

[10] Duan, S., Meling, H., Peisert, S., and Zhang, H.
Bchain: Byzantine replication with high throughput
and embedded reconfiguration. Unpublished (2013).

[11] Eugster, P. T., Felber, P. A., Guerraoui, R.,
and Kermarrec, A.-M. The many faces of
publish/subscribe. ACM CSUR 35, 2 (June 2003).

[12] Garćıa, J., Autrel, F., Borrell, J., Castillo,
S., Cuppens, F., and Navarro, G. Decentralized
publish-subscribe system to prevent coordinated
attacks via alert correlation. In ICICS (2004).

[13] Guerraoui, R., Knežević, N., Quéma, V., and
Vukolić, M. The next 700 bft protocols. In EuroSys
(2010).

[14] Kazemzadeh, R. S., and Jacobsen, H.-A. Reliable
and highly available distributed publish/subscribe
service. In SRDS (2009).

[15] Kazemzadeh, R. S., and Jacobsen, H.-A.
Opportunistic multipath forwarding in content-based
publish/subscribe overlays. In Middleware (2012).

[16] Kazemzadeh, R. S., and Jacobsen, H.-A.
Publiyprime: Exploiting overlay neighborhoods to
defeat byzantine publish/subscribe brokers.

[17] Lamport, L. Paxos made simple. ACM SIGACT
News 32, 4 (December 2001).

[18] Martin, J.-P., and Alvisi, L. Fast byzantine
consensus. IEEE TDSC 3, 3 (July 2006).

[19] Mühl, G., Fiege, L., and Pietzuch, P. Distributed
Event-Based Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[20] Mühl, G., Jaeger, M. A., Herrmann, K., Weis,
T., Ulbrich, A., and Fiege, L. Self-stabilizing
publish/subscribe systems: algorithms and evaluation.
In Euro-Par (2005).

[21] Pease, M., Shostak, R., and Lamport, L.
Reaching agreement in the presence of faults. J. ACM
27, 2 (Apr. 1980).

[22] van Renesse, R., Ho, C., and Schiper, N.
Byzantine chain replication. In OPODIS (2012).

[23] Zhang, K., Muthusamy, V., and Jacobsen, H.-A.
Total order in content-based publish/subscribe
systems. In ICDCS (2012).

[24] Zhang, K., Sadoghi, M., Muthusamy, V., and
Jacobsen, H.-A. Distributed ranked data
dissemination in social networks. In ICDCS (2013).

