
A Paradigm Comparison for Collecting TV Channel
Statistics from High-volume Channel Zap Events

Pål Evensen
∗

Hein Meling
paal.evensen@altibox.no hein.meling@uis.no

Department of Electrical Engineering and Computer Science
University of Stavanger, Norway

ABSTRACT
The current approach used to obtain official television chan-
nel statistics is based on polls combined with specialized re-
porting hardware. These are deployed only on a small scale
and batch processed every 24 hours. With the enhanced
capabilities of present-day IPTV set-top-boxes, network op-
erators can track channel popularity and usage patterns with
a degree of precision and sophistication not possible with ex-
isting methods. One such network operator, Altibox, is the
largest provider of IPTV in Norway with a deployment of
over 320,000 set-top-boxes. By tapping into the high-volume
stream of channel zap events sent from these set-top-boxes,
very accurate viewership can be obtained and presented in
near real-time.

In this paper, we examine two programming paradigms
for implementing applications to compute viewership based
on channel zap events. One based on a general-purpose pro-
gramming language (Java) and the other based on a highly
specialized event stream processing language (EPL). An im-
portant characteristic of this application is stateful event
processing. We are interested in exploring the trade-offs be-
tween these two implementations, to determine their suit-
ability for such applications. Specifically, we are interested
in the performance trade-off and the program complexity of
each implementation.

Our results show that a pure Java implementation has
a significant edge over EPL in terms of performance. Al-
though, our numbers cannot be used to draw a general con-
clusion, it seems indicative that an event stream processing
engine would suffer more than a general-purpose language
as query complexity grows. We conjecture that this is be-
cause it is easier to construct custom data structures for the
specific problem in a general-purpose language like Java. In
terms of program complexity, EPL has a slight edge in all
metrics, and a significant edge when event streams can be
reused to perform more complex processing, indicating that
less effort is necessary to extend functionality.

∗P̊al Evensen is also with Altibox.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’11, July 11–15, 2011, New York, New York, USA.
Copyright 2011 ACM 978-1-4503-0423-8/11/07 ...$10.00.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—distributed systems; D.2.8 [Soft-
ware Engineering]: Metrics—complexity measures, per-
formance measures

General Terms
Experimentation, Measurement, Performance

Keywords
TV viewership statistics, Stream processing

1. INTRODUCTION
Viewer statistics is the most important metric used by

television broadcasters to plan their programming, and for
many broadcasters, to rate their advertisement time slots.
Gaining an improved understanding of viewer behavior and
responses to the current programming is essential to a suc-
cessful TV channel. The state-of-the-art approach to obtain
the viewership of a program is to sample a very small se-
lected, but hopefully representative portion of the population.
In Norway, the sample size is 1,000 out of 2,000,000 televi-
sion households (0.05 %) [11], while in the US, only 25,000
out of 114,500,000 households are sampled (0.02183 %) [18].
Such a small sample size is often criticized as being statis-
tically insignificant [18], and may lead to incorrect conclu-
sions about actual viewer interests in a specific program, and
viewer exposure to advertisements.

With the enhanced capabilities of present-day IPTV set-
top-boxes (STBs), network operators can track channel/pro-
gram popularity and usage patterns with a degree of preci-
sion and sophistication not possible with existing methods.
This can be done by recording or aggregating channel change
events (also called zap events) from customer STBs. Hence,
assuming that the network operator’s customers represents
a statistically significant portion of the population, collect-
ing statistics based on zap events is likely to provide a much
more accurate statistic compared to state-of-the-art.

There are generally two approaches to compute accurate
viewership. One is to store every zap event for later bulk
processing, e.g. using transactional databases or techniques
based on Map-Reduce [8, 15], or aggregate statistics can be
computed on-the-fly, based on in-memory state. We take the
latter approach, as we are mainly interested in aggregate in-
formation from these events and want to avoid storing huge
volumes of data. Only aggregate numbers are stored on disk
or forwarded to interested parties.

In this paper, we describe the architecture in which STBs
are deployed, and how channel zap events are propagated
to an aggregation cluster for online incremental event pro-
cessing. Based on this architecture, our goal is to analyze
the capabilities and trade-offs between two programming
paradigms for building our application to obtain viewership
statistics. Hence, we have implemented two applications
that compute two different statistics based on received zap
events: (i) the number of viewers for all channels, and (ii)
detecting 15 % rise/drop in the viewership for a channel.
The first is used to generate a top-ten list of the most popu-
lar channels/programs in near real-time. The second appli-
cation reveals useful information about which programs are
luring people away from other channels. An important char-
acteristic of both these applications is that they are stateful
and demand significant computational resources to ensure
timely processing. Although the applications that we cover
here are fairly simple, we have already implemented several
other interesting incremental statistical measures that net-
work operators and broadcasters might find interesting, and
we expect to publish those results in follow-up work.

The two applications have been implemented in two very
different programming paradigms. One based on the general-
purpose object-oriented programming language Java, and
the other based on the Event Processing Language (EPL) [9,
17]. EPL is highly specialized declarative event stream pro-
cessing language derived from SQL. We are interested in
exploring the trade-offs between these two paradigms, to
determine their suitability for our applications. Specifically,
we are interested in the performance trade-off and the pro-
gram complexity of each implementation.

Java is expected to have higher program complexity than
EPL, since EPL is specifically designed for processing events.
We compare our implementations using on several metrics
for analyzing code complexity, including lines of code and
Halstead’s complexity measure [13, 6, 12], in addition to a
more subjective discussion based on our experience develop-
ing these applications. The results indicate that EPL might
yield easier reuse compared to Java.

Previous, but simple, benchmarks using EPL [19, 10],
and running the EPL benchmark kit, have indicated that it
would offer competitive performance. However, at the outset
of this work it was not clear if EPL would offer competitive
performance for our somewhat involved applications. Our
performance evaluation involves data obtained from more
than 250,000 STBs. We conduct both memory profiling and
throughput analysis, and find that our implementations of
these applications have very different performance charac-
teristics in the two programming paradigms.

Paper organization: Section 2 introduce the problem of
obtaining viewership statistics and surveys the state-of-the-
art techniques used. In Section 3 we describe the architec-
ture of our current deployment, and outline plans for im-
proving the accuracy of statistics, and provide new services
to customers. Focusing on the event processing logic, Sec-
tion 4 describe the details of our applications, and their im-
plementation in the two programming paradigms. In Sec-
tion 5 we give a brief analysis of the viewer statistics ob-
tained from our current deployment. Additionally, we evalu-
ate our implementations in terms of throughput and memory
usage, and program complexity. Section 6 surveys related
work. Finally, Section 7 concludes the paper with an overall
discussion of the merits of the two paradigms.

2. BACKGROUND
We begin by describing the current state-of-the-art in mea-

suring viewership and program rating, focusing on the Nor-
wegian television market. This is followed by an archi-
tectural overview of the network infrastructure used by an
IPTV network operator in Norway.

TNS Gallup [23] is a Norwegian company that specializes
in polls and ratings, and is the main provider of viewership
to the official television networks in Norway. To measure
the viewership, a device dubbed the mediameter is used to
record and log inaudible sonic signatures emitted from the
audio part of television and radio programs that the de-
vice is exposed to. The participants in this continuous poll
are required to carry the device with them, and to keep the
sound audible in order for the mediameter to record appro-
priately. The device must then be placed in a docking station
overnight, to transmit the recorded data to TNS Gallup. In
addition to mediameter , TNS Gallup also collect data from
1,000 selected households whom have a specialized logging
device attached to their television, but still requires operat-
ing a special remote to record changes. The device records
viewer data and transmits these every night. Viewership
is computed from the collected data, where each household
supposedly represents 2,000 households from the same dis-
trict. This type of continuous polling represents the state-of-
the-art in obtaining viewership, and similar systems are de-
ployed in many other countries, including the US [18]. Anec-
dotally, non-technological approaches like viewer diaries are
apparently also still being used [18].

Altibox [4] is the largest distributor of television over
a pure IP-based network in Norway, with a deployment
of over 320,000 STBs, distributed amongst approximately
300,000 households. Customers are connected to two main
distribution centers by fiber-to-the-home, giving customers
a unique bandwidth capacity to support a variety of services,
including Internet, Voice over IP telephony, IPTV, Video-
on-Demand (VoD), and Personal Video Recording (PVR).
The STB is the host device for IPTV, VoD, and PVR ser-
vices, and to simplify interacting with these services, an
Electronic Program Guide (EPG) is also available to users.
Technically, the EPG is essentially a database accessible
through a web service interface that associate channel name
to information about the programming of that channel. Cur-
rently, Altibox offers a total of 253 TV channels, accessible
through the STB by way of IP multicast (through their fiber-
based broadband network). The software on STB devices
are regularly updated with new service offerings, bug fixes,
and QoE monitoring and diagnostics applications [14, 1].
Moreover, since STBs also have two-way communication ca-
pabilities, network operators can update their functionality
to track program popularity and usage patterns by recording
zap events. This can take place without any changes to cur-
rent user behavior, such as using a special remote or carrying
a mediameter . Thus, data collection is transparent to the
user, and the reported data is expected to be more accurate,
since users cannot forget to record the change. Moreover,
we also avoid the embarrassment factor sometimes present
in surveys, where users report an idealized version of their
habits due to embarrassment over their factual habits. It is
not unthinkable that this factor can play a role when view-
ers decide whether to use the special remote when viewing
programming that is perceived as of lesser quality. Finally,
it also allows for a much more accurate understanding of

viewer behavior than existing methods, as the sample size
is more than 300 times larger, representing approximately
16 % of the Norwegian television population.

2.1 Event Processing Language
Here we briefly survey the capabilities of the EPL lan-

guage and its runtime environment, referred to as the Esper
processing engine. Esper [10] provides an open-source imple-
mentation of the EPL processing engine, and the necessary
Java libraries for interacting with it. Our choice of Esper
and EPL is primarily motivated by its focus on stream pro-
cessing, and secondary its open-source licensing model.

EPL is a declarative query language derived from SQL; it
shares much of its syntax and functionality with SQL, such
as select, insert, update, and aggregation functions for sum-
mation, averaging, and join operators. However, instead
of operating on relational database tables, EPL operates
on streams of data. Using these operators, one can con-
struct a wide variety online queries that can be used process
data from event streams, such as the stream of channel zaps
from customer STBs. An EPL query will process one or
more event streams, looking for event patterns that match
the query, and produce an output event. Moreover, since
streams are continuous, i.e. not temporally restricted, EPL
introduces a sliding window concept to be able to construct
queries that operate over limited, but sliding, time intervals.
This is used in our implementation of rise/drop detection.

Esper can handle events represented in a variety of ways,
e.g., as Java or C# objects that provide getter and setter
methods to access its attributes, and is the approach used
in this paper.

Deploying an Esper server typically involves the follow-
ing steps: (i) start the Esper processing engine, (ii) install
EPL queries, (iii) establish subscriptions by registering lis-
tener objects with the Esper processing engine, and (iv) re-
ceive and parse events from the data stream, and construct
Java objects to be passed to the processing engine to be
processed by the installed queries. The subscriptions are
connected with the installed queries, acting as handlers for
output events generated by the queries.

3. ARCHITECTURE
In this section, we present the architecture of our current

deployment, and discuss some changes that we are planning
to implement in the near future. These changes will signifi-
cantly improve the accuracy of our measurements, at the ex-
pense of more demanding processing and network overhead.
We also outline a few applications that become possible with
more accurate measurements.

3.1 Current Deployment
The STB devices deployed in customer residences for sup-

porting IPTV, VoD, and PVR, are fully capable of two-way
communication, and have been augmented with a software
agent to keep track of and report zap events to a centralized
server. We call these the ZapReporter client and Zap-
Collector server, respectively. A simplified architecture
is illustrated in Figure 1.

The ZapReporter monitors channel changes performed
by the user of the STB, and generates zap events containing
the following information:

〈Date, Time, STB-IP, ToChannel, FromChannel〉

Broadband Network

Data
Center

Data
Center

STB STBSTB STB
....

Zap
Reporter

Zap
Collector

Figure 1: Network architecture illustrating STBs.

The event is encoded as text, and one event is typically
less than 60 bytes, hence approximately 25 events can be
sent in one 1500 byte message. The clocks on the STBs are
synchronized using NTP, and thus provide more accuracy
than what is needed for our purposes.

Events are generated according to Algorithm 1, and de-
scribed informally as follows. When a user change channel,
the ZapReporter record this change event locally on the
STB and starts a timer. If the user stay on the same channel
longer than 60 seconds, the event is saved away in unsent. If
the user change channel again before the 60 second timer ex-
pires, the event is overwritten (i.e. not recorded in unsent).
Periodically, the events stored in unsent is sent off to the
ZapCollector and emptied.

Algorithm 1 ZapReporter pseudo code

1: Initialization:

2: T ← 60 {Timeout period (seconds)}
3: S ← 1 {Period of between sends (hours)}
4: event← ⊥ {Most recent event, not yet recorded in unsent}
5: unsent← ∅ {Set of unsent zap events}
6: startPeriodicTimer(〈SendTimeout〉, S)

7: on 〈ChannelChange, toCh, fromCh〉
8: event← preparEvent(toCh, fromCh) {Update event}
9: restartTimer(〈RecordTimeout〉, T)

10: on 〈RecordTimeout〉
11: unsent← unsent ∪ event {Record event}

12: on 〈SendTimeout〉
13: ∀e ∈ unsent : send 〈ZapEvent, e〉 to ZapCollector
14: unsent← ∅

This strategy ensure that the total number of messages
sent are kept to approximately one message per hour per
STB, and at most 60 events needs to be kept in STB mem-
ory. We expect that we would rarely see more than 25 events
generated by the same STB in one hour, requiring more than
one 1500 byte message to be sent. Hence, in the worst case,
when all 320,000 STBs are active, we might see a total of
320,000 messages per hour, or just over 1 Mbps (on aver-
age). Moreover, if all messages contain 25 zap events, the
processing rate would have to be about 2.2k events/second.

On the server side, the ZapCollector collect events

from all the STBs and store them in log files that are rotated
daily. The events are stored in the order they are received
from the STBs. However, since each message contains about
one hour worth of zap events, the log files are not initially
sorted by the timestamp. Therefore, the event logs must
be sorted before they can be used to produce incremental
statistics. Currently, there are no service offerings at Alti-
box that take advantage of these log files, but next we ex-
plain our plans for extending this to provide more accurate
statistics and near real-time updates of these statistics.

3.2 Planned Deployment
There are several reasons why we are interested in in-

creasing the accuracy of these statistics. First of all, we
want to be able to provide a ranking (top-10 list) of pro-
grams in near real-time to both viewers and broadcasters.
Also, we are interested in detecting flash crowds, i.e. when a
large number of viewers change to or from the same channel
within a short period of time. This might be expected ei-
ther when a new (popular) program is beginning, or during
commercial breaks. The former we have seen evidence of
from our current datasets. However, to understand better
the user behavior in commercial breaks, we need more accu-
rate information from the ZapReporter. Also to provide
a real-time ranking, we must to revise the ZapReporter.

Thus, in the planned deployment we are aiming to report
channel changes (lasting 3 seconds or more) within a 10 sec-
ond interval. Thus, in Algorithm 1, we set S = 10 seconds,
and T = 3 seconds. Obviously, no message will be sent if
there are no channel changes. To determine the worst case
network resources necessary with this sampling frequency,
assume all 320,000 STBs generate 3 events every 10 sec-
onds. Assuming every event takes 60 bytes, the packet size
should be roughly 180+70 bytes (including headers). Under
these assumptions, the worst case network load would be
64 Mbps overall, and 96,000 events/second would have to
be processed. These numbers are obviously above what is
expected in the normal case, but we would like to be able
handle flash crowds that might reach towards such numbers.

Note that, the ZapReporter functionality implemented
in STBs is beyond the direct control of the authors of this
work. However, we can influence and request implementa-
tion changes to the STBs. The reasons for this is corporate
policies relating to accountability for changes that can po-
tentially cause problems for customers. Moreover, the STB
can only be updated two times a year, during a relatively
short time window. Hence, this poses some challenges for us
in implementing the desired functionality.

On the ZapCollector end, we instead introduce a Zap-
Processor to process events incrementally to compute stat-
istics for program ranking in near real-time, and for detect-
ing flash crowds and other similar statistics. We have imple-
mented these services and in Section 5 we evaluate our Zap-
Processor implementations in both Java and EPL, based
on real data obtained from our log files.

4. EVENT PROCESSING
In this section we present our two applications for obtain-

ing viewership statistics and detecting sudden changes of
viewership on a channel. We describe their implementation
in both Java and EPL, specifically focusing on the event
processing aspect.

4.1 Viewer Statistics in Java
Algorithm 2 gives an overview of the ZapProcessor im-

plementation to obtain viewer statistics. Lines 10-13 of Al-
gorithm 2 checks to see if the STB have been active in the
past, and if so replaces the fromCh field of the message
with the last recorded previous channel. This is necessary
because not all channel changes are propagated to the Zap-
Processor, due to the 1 minute rule or even the 3 second
rule imposed by the ZapReporter. Otherwise, our count-
ing in the last part would not be correct. In order to obtain
statistics for the different channels, we simply count the oc-
currences of zap events changing to the different channels.
We implement this using a multiset, where each entry (the
channel) is associated with a count value representing the
number viewers on that channel. Moreover, we also have to
reduce the count for the channel the STB is moving away
from (or the previously recorded channel of that STB). We
do not reduce the count of any channel if the event originate
at an STB from which we have no recorded events.

Algorithm 2 ZapProcessor pseudo code

1: Initialization:

2: R {Subscribers of output events}
3: EPG {Electronic Program Guide database}
4: S ← 10 {Period of between output events (seconds)}
5: STBs← ∅ {Set of known STB-IP addresses}
6: viewers← ∅ {Multiset: viewer count for each channel}
7: prevCh← ∅ {Map from STB-IP to previous channel}
8: startPeriodicTimer(〈OutputTimeout〉, S)

9: on 〈ZapEvent, date, time, ip, toCh, fromCh〉
10: prev ← prevCh.get(ip) {Get previous channel of ip}
11: if prev 6= null then
12: fromCh← prev
13: prevCh.put(ip, toCh) {Update previous channel of ip}
14: viewers.add(toCh) {Increase count of toCh}
15: if ip ∈ STBs then {Have we seen STB before?}
16: viewers.remove(fromCh) {Reduce count of ch.}
17: else
18: STBs.add(ip) {New STB, record ip}

19: on 〈OutputTimeout〉
20: topCh← viewers.mostFrequent(10) {Top-10 ch.}
21: for ch ∈ topCh
22: prog ← EPG.getProgram(ch) {Query EPG}
23: topProgList.add(prog) {Create top-10 program list}
24: send 〈Top10List, topProgList〉 to R

Periodically, output events are generated by first deter-
mining which channels have the most viewers, and for each
channel query the EPG to determine which program is cur-
rently being broadcast on that channel. To avoid frequent
database queries, we cache program information in mem-
ory. From this we construct the top-10 list of programs to
be sent to interested subscribers, providing near real-time
viewership information. One such subscriber that we have
implemented is the EPG itself. In this case, we integrate
the top-10 list within the program guide interface on the
STB device, enabling users to viewer statistics and choose
program from the list.

An important improvement that these real-time viewer
statistics provide over batched statistics is that broadcasters
could potentially adjust their advertisement programming

ChannelZap

Set fromChannel to
previous toChannel

Lookup previous
event from STB

Lookup toChannel

Set viewers + 1

No

Add STB to
known hosts

Set viewers - 1

No

Yes

Yes

Lookup fromChannel

Figure 2: Viewer Statistics Activity Diagram

based on actual viewer numbers, as opposed to predicted
number of viewers.

4.2 Viewer Statistics in EPL
Both implementations share a common overall logic in

how events are handled (see Figure 2 and Algorithm 2).
However, the EPL implementation requires a slightly dif-
ferent understanding of how events are related, and hence
the following gives a more succinct description from the EPL
perspective, while the algorithmic descriptions closely match
the Java implementation.

As shown in Figure 2, incoming events are matched against
the previous event received from the same STB, comparing
its fromChannel field with the toChannel field of the STB’s
previous event. Different values might be observed at this
stage, either due to packet loss, or more likely due to the way
that ZapReporter generate events (not all events are actu-
ally sent). To compensate for this, we set the fromChannel
of the incoming event to the toChannel of the previous
event. If no previous event exist, no action is taken.

The next step is updating the number of viewers by adding
one to the channel matching the toChannel field and sub-
tracting one from the channel matching fromChannel. If
the event received is from a previously unknown STB, the
fromChannel is not subtracted, as it is the first event re-
ceived from this particular STB. Finally, the STB is added
to the list of known devices.

The EPL queries contains all of the logic depicted in Fig-
ure 2, while the EPL implementation also requires some
Java code to handle parsing and object creation for incom-

ing events. Also, listener objects must implement a callback
interface in Java to receive output events generated by the
Esper engine. We have not included the Java code.

Listing 1 EPL Viewer Statistics

create schema ChannelTotViewers
as (channelName string, viewers int

create window ChannelWin.std:unique(channelName)
as ChannelTotViewers

create window StbWin.std:firstunique(ip)
as tv.ChannelZap

create window ZapWin.std:unique(ip)
as tv.ChannelZap

insert into ZapWin
select * from tv.ChannelZap

update istream tv.ChannelZap as zap
set fromChannel =
(select toChannel from ZapWin where ip = zap.ip)

where fromChannel !=
(select toChannel from ZapWin where ip = zap.ip)

on tv.ChannelZap zap merge ChannelWin cw
where zap.toChannel = cw.channelName
when matched
then update set viewers = viewers + 1

when not matched
then insert
select toChannel as channelName,
1 as viewers

on tv.ChannelZap zap merge ChannelWin cw
where zap.fromChannel = cw.channelName and
exists (select * from StbWin where ip = zap.ip)

when matched
then update set viewers = viewers - 1

insert into StbWin select * from tv.ChannelZap

insert into ZapSnap
select *, percent(viewers, sum(viewers)) as activity
from ChannelWin
output snapshot every 15 sec
order by viewers desc

Listing 1 shows the complete EPL code for generating
viewer statistics. The tv.ChannelZap variable refers to the
Java object created when parsing incoming events. The up-

date istream query is necessary to compensate for any dis-
crepancy in from/to channel values, as described above, and
operates on the tv.ChannelZap event before it enters any
stream. In addition, the code updates a ChannelWin, con-
taining viewer numbers, as well as adding the STB to the
StbWin, containing known STBs. The reason for using the
whole tv.ChannelZap object most of the time, instead of
extracting only the necessary values is that according to
the Esper documentation [9], selecting individual proper-
ties from an underlying event object comes with a perfor-
mance penalty, as the engine must then generate a new out-
put event containing exactly the selected properties. Ad-
ditionally, it simplifies the syntax. The final statement in
Listing 1 outputs an ordered snapshot of the channel win-
dow every 15 seconds, decorating it with a percentage value,
calculated by a custom method implemented in Java.

We ran both the Java and EPL implementations over the
same datasets, and after a few rounds of debugging, we ob-
served identical output for both implementations.

4.3 Annoyance Detection in Java
Next, we discuss our last application which is aimed at de-

tecting if a particular ad is causing viewers to change chan-
nel. Broadcasters would most likely want to know about
this, in order to remove or charge more for ads that annoy or
upset viewers. To support such ad annoyance detection, we
must detect changes in the viewership beyond some thresh-
old, e.g. measured as a fraction, P , of the total number of
viewers on that channel. Algorithm 3 shows the additional
code necessary for such detection. To implement this, we
again rely on a multiset to keep a count of the number of
zap events seen in the current interval. The interval used in
this case is 60 seconds, but this can easily be adjusted for
more fine grained intervals. Note that ival is an integer, and
the + symbol represents concatenation. Hence, the element
of the multiset is the concatenation of channel name and
an integer representing an interval. To ensure that mem-
ory usage is kept low, we immediately expunge data from a
previous interval, and if an output event is generated within
one interval, we reset the counting for that interval. This
allows multiple output events to be generated for the same
interval, if the fraction of viewers changing channel in that
interval is ≥ 2P .

Algorithm 3 Annoyance detection pseudo code

1: Initialization:

2: F {Multiset: count viewers moving from ch. in intervals}
3: M ← 2000 {Minimal # of viewers to consider for detection}
4: P ← 0.15 {Fraction of viewers moving from ch. in interval}
5: prevIval← ⊥ {The previous interval}

6: on 〈ZapEvent, date, time, ip, toCh, fromCh〉
7: ival← time/60 {Get interval of this event (sec)}
8: if ival 6= prevIval then
9: F.clear() {New interval begun; expunge old entries}

10: prevIval← ival
11: F.add(fromCh+ival)

{Inc. count changing from ch. in ival}
12: F.remove(toCh+ival)

{Reduce count for ch. moved to in ival}
13: v ← viewers.count(fromCh) {#Viewers on fromCh}
14: if v > M ∧ F.count(fromCh+ival)≤ P · v then
15: Generate output
16: F.setCount(fromCh+ival, 0) {Reset count for ival}

4.4 Annoyance Detection in EPL
The annoyance detector in Listing 2 looks at the average

viewer number over the last minute, constantly comparing
the most recent number with the average. If the viewer
number drops with 15 % compared with the last minute
average, an output event is triggered.

Here, the power of sliding time windows are illustrated:
It selects some properties from a sliding time window, op-
erating on the ZapSnap stream of viewer statistics. ZapSnap

refers to an event stream from the viewer statistics code
in Listing 1, where a snapshot of each channel’s viewers is
published every 15 seconds. As in the Java implementation,
channels having less than 2000 viewers are filtered out be-
fore they enter the window in order to prevent channels with
only a few or no viewers from triggering drop events. The
average is calculated from the events kept in the 1 minute
window, while events older than this leave the window.

Listing 2 EPL Annoyance Detector

select channelName, viewers, avg(viewers)
from ZapSnap(viewers > 2000).win:time(1 min)
group by channelName
having viewers < avg(viewers) * 0.85

5. EVALUATION
The main goal of this paper is to evaluate two paradigms

for developing event-based systems, and specifically if it can
be applied to our enhanced high-volume use case. Moreover,
in this section we first give a brief analysis of the data ob-
tained from the initial deployment of ZapReporter. This
will be followed by a performance benchmark and software
complexity evaluation.

5.1 Brief Data Analysis
To be able to predict the kind of traffic one might expect,

when scaling up the number of events that will be generated,
we examine the current trend of channel zapping. Hence, we
selected a 15-day period (January 31 — February 14) from
our logged datasets obtained using our current infrastruc-
ture, as described in Section 3.1. This period constitutes
approximately 1.7G bytes of data, or 118M bytes per day.
The sampled dataset contains events from 253,985 unique
STBs, and 183 different channels were visited at least once
during the period.

The number of events generated each day is shown in
Figure 3, and the same data is also shown in Figure 4(a)
sampled at hour intervals. An interesting observation from
Figure 3 is that Wednesdays (5,12) and Thursdays (6,13)
represent a significant deviation from average zapping ac-
tivity. We speculate that this might be due to poor pro-
gramming on these days across the board among broadcast-
ers. In Figure 4(b), we show the distribution of zap events
over a 24-hour period based on data from January 31. The
plot confirms what is expected from habitual patterns, with
a peak in zapping activity around 20:00. We leave it for
future work, to provide an in-depth analysis of these data,
when we have better accuracy.

31 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

2.2

2.4

2.6

·106

Avg=2212097

Figure 3: Number of zap events/day over a 15-day
period.

Friday Jan. 31, 20:00

0 50 100 150 200 250 300 350
0

1

2

3

·105

Time (hrs)

Hour interval

(a) Number of zap events/hour over a 15-day period.

0 5 10 15 20
0

0.5

1

1.5

·105

Time (hrs)

30 Minutes

15 Minutes

5 Minutes

(b) Number of zap events over a 24-hour period.

Figure 4: Zap events observed using different sampling intervals.

5.2 Performance Evaluation
Here we provide a brief performance evaluation of both

our implementations for the viewer statistics application.
The annoyance detector application was difficult to test with
Esper due to lack of real data. We are working on ways to
simulate this also for this application.

5.2.1 Environment and Experiment Setup
To benchmark our applications, we used a server with

RedHat Enterprise Linux 6, 64-bit, 14GB RAM, and a single
Intel Xeon E5530 (8MB cache) Quad Core 2.4GHz CPU.

Since the current ZapReporter is not generating events
at the desired rate, we wanted to verify if our implementa-
tions could sustain the expected traffic volume. Therefore,
we built a test framework, in which we process a log file
containing zap data from one day (January 31), carrying a
total of 2,117,897 zap events. We measure the throughput
obtained and memory usage while processing this file. The
throughput is measured in four ways: (i) by reading the en-
tire file into memory before processing it from memory, (ii)
by reading the file line-by-line from disk, (iii) by receiving
the events over UDP and (iv) by receiving the events via
the HornetQ message bus. The reason for running both ex-
periment (i) and (ii) was to reveal whether the performance
bottleneck is I/O or CPU bound.

Each experiment was repeated 11 times, allowing one it-
eration for the Java hotspot compiler to optimize the code.
The experiment results are presented as the average over ten
iterations of each test, as shown in Figure 5. The results were
validated by comparing the final state of both implementa-
tions, as they should end up with the exact same number of
viewers per channel, and number of STBs observed after a
completed run.

VisualVM v1.3.2 with a tracer plugin for collecting heap
memory usage, was used to measure memory consumption.
The sample rate was only 1 Hz, so the precision is limited,
but nonetheless gives an overall impression of the memory
consumption of the two implementations.

5.2.2 Results
As seen in Figure 5(a), the native Java implementation

outperforms the EPL implementation by a very large mar-
gin, with an average throughput surpassing 700,000 events
per second compared to an average of only 64,275 events for
the EPL version with the in-memory tests. Similar results
are observed for the from-disk tests. We believe this can
be accredited to the flexibility offered by a general-purpose
language like Java to express and optimize data structures
for the specific problem at hand. Relying only on pure EPL
code to express complicated queries seems to hurt perfor-
mance in a significant way.

Another interesting observation is the negligible perfor-
mance hit on both implementations introduced by reading
the events from disk instead of memory, indicating that the
performance bottleneck is CPU-bound. By looking at Fig-
ure 5(a), it is also clear that receiving events over UDP intro-
duces a significant performance penalty, reducing through-
put by approximately 90 % for the Java implementation,
from an average of 641,112 events per second (from-disk) to
63,515 events per second (UDP). Using the HornetQ mes-
sage bus for event passing, a further performance hit is ob-
served, to 22,546 events per second, or only 3.5 % of the
throughput compared to reading the events from disk. For
the EPL version, the throughput drops from 62,846 to 34,146
events per second (46 % reduction) over UDP, and to 12,623
events per second when using HornetQ.

Although the performance hit on the Java application
seems significant for the UDP and HornetQ cases, it still
offers roughly 45 % higher throughput compared to the cor-
responding EPL versions. Moreover, the CPU load with the
Java version is significantly lower.

The error bars in Figure 5(a) represent the standard de-
viation for each experiment. In the UDP experiments, the
average packet drop for the Java version was 0.16 %, and
0.3 % for Esper. No packets were dropped by HornetQ.

Figure 5(b) once again shows the superior performance of
the Java implementation. Average heap memory consump-

Memory Disk UDP HornetQ

0

2

4

6

8
·105

E
v
en

ts
/
se

c

Esper Java

(a) Average throughput.

From memory From disk

600

800

1,000

1,200

1,400

1,600 1,570

1,401

590 577

M
em

o
ry

u
se

d
(M

B
)

Esper Java

(b) Average heap memory consumption over 10 runs.

Figure 5: Throughput and memory performance.

tion of the Esper implementation is almost three times more
than its Java counterpart, while it seems to confirm the neg-
ligible difference in performance between reading the events
from disk versus loading them into RAM before processing.

5.3 Complexity
Software complexity is in general an equally important

evaluation criteria to performance, when comparing the dif-
ferent approaches. Simpler code amounts to more robust
and maintainable software [13], while the performance of
hardware increases steadily. Therefore, we also evaluate our
rather simple code examples using Halstead’s software com-
plexity metric along with a subjective discussion.

Complexity is measured using Halstead’s formula [13, 21,
24, 2], that, when applied to the number of operators and
operands in a program, is said to predict the following at-
tributes:

• Length, volume, difficulty, and level of abstraction

• Effort and time required for development

• Number of faults

Predicting something that has already occurred is ob-
viously self-contradictory, as the program must be devel-
oped before the number of operands and operators can be
counted. The first two bullets are therefore in practice only
used to validate the theory, and to give a metric of the com-
plexity of a program, which is how it will be used in this
evaluation.

There has been some dispute [12] regarding the usefulness
and predictive powers of the Halstead metrics, and it could
also be argued that the validity of these metrics are limited
when applied to modern day object-oriented programming
languages like Java, as they were conceptualized in an era
of procedural languages. Nevertheless, we will include the
non-predictive metrics, since these, together with total lines
of source code, hopefully can give us some objective insight
regarding the scope and complexity level of the implemen-
tations.

Originally, we used a software tool to automatically com-
pute the Halstead metrics of the Java implementation. How-
ever, since we were unable find a tool that can compute the
metrics for both Java and EPL, and because there are no
universal consensus on the exact way of counting operators
and operands in a given block of code [3], it was decided to
calculate them manually instead, in order to ensure that the
counting strategy is consistent between the two implemen-
tations.

Li et al [7] addresses some of the challenges involved in ap-
plying Halstead to object-oriented languages, and the essence
of their findings is implemented in our own strategy for
counting operators and operands. This includes ignoring
import statements and package declarations, but counting
everything that is necessary to express the program. Op-
erators that are syntactical identical, but semantically dif-
ferent through context, are counted as different operators.
Examples include the parenthesis ’()’ operator, which is
counted as an operator in the case of grouping expressions,
e.g. (2+2)*4 and type casting, but not when used in meth-
ods. Furthermore, the dot operator ’.’ were ignored in pack-
age names when referring to objects, such as tv.ChannelZap,
and included when delimiting an operator from an operand,
as in ZapWindow.std:unique(). The colon operator ’:’ is
also ignored in cases like this, when used to reference meth-
ods from package names, but included in statements like:
fields.hasNext() ? fields.next() : "OFF";

Because Halstead’s metric is designed to measure algo-
rithms as opposed to complete programs [21], the metrics
were calculated on class level in the Java implementation
and subsequently summed together.

Figure 6 gives a break down per function for both EPL
(upper bar) and Java (lower bar) implementations. It should
be read as follows: The metric for the viewer statistics is
shown to the left, followed by the metric for the annoy-
ance detector application. In the case of Java, these are
the only metrics necessary to represent both applications;
event parsing is included in the code for the viewer statistics
application. For the EPL implementation, we also include
metrics for the additional Java code necessary for parsing,

0 100 200 300 400

Vocabulary (n1+n2)

Program length (N1+N2)

Total operators (N1)

Total operands (N2)

Unique operators (n1)

Unique operands (n2)

Lines of code

(Java)
(EPL)

Viewer Statistics

Annoyance Detector

Parsing and Query Setup

Utility Function

Figure 6: Complexity metrics break down per function for EPL (upper bar) and Java (lower bar).

Esper setup, and a custom utility function for calculating
percentage. These are in addition to the query language
itself. For both Java and EPL, the annoyance detector ap-
plication builds upon the viewer statistics application, thus
the numbers for the former includes the code from the latter.

On reading these metrics, it should be noted that the EPL
implementation was done by a novice EPL programmer, and
more efficient implementations might be possible.

The EPL implementation scores slightly better in all of the
complexity metrics for the viewer statistics application, and
significantly better for the annoyance detector. We do not
find the difference in score between the two viewer statis-
tics implementations wide enough to draw the conclusion
that one is easier to develop than the other. However, upon
expanding the basic viewer statistics application with an-
noyance detection capabilities, the additional programming
effort required for expanding the Esper implementation (four
lines of EPL) is significantly smaller than for the Java ver-
sion (19 additional lines of code). The observed program
length numbers points in the same direction, with an added
program length of 116 versus only 24 for the EPL version.

One aspect of complexity, not covered by the software
metrics, is the challenge of learning and understanding a
new query language such as EPL. Although prior knowl-
edge of SQL, possessed by many programmers, will be of
great aid to this task. One concern in terms of using EPL
for our applications is that we still had to write Java code to
interface with other application code. Although, this inter-
face code was minor in our case, it is easy to imagine having
to write substantial amounts of wrapper/interface code out-
side of EPL for a variety reasons. Hence, it is obviously a
disadvantage having to know and use two languages in or-
der to develop an application. And another disadvantage
with any declarative language is that we lose type-safety, an
important software engineering principle for building robust
applications.

Based on these observations, it is tempting to draw the
conclusion that a general-purpose language is the most ef-
ficient tool for doing event stream processing. However, al-
though it is the most effective implementation for the pre-
sented application in this case, there is reason to believe that
dedicated event processing languages becomes more efficient

relative to general-purpose languages upon expansion of the
processing tasks, as indicated by the lesser effort required to
add annoyance detection capabilities. This however, assume
that streams can be reused across applications.

6. RELATED WORK
In their 2008 study, Cha et al [5] captured the channel

changes of 250,000 households over a period of six months.
By thoroughly analyzing this massive data set, the authors
were able to create more accurate statistics of user behavior
than with traditional sampling methods like the ones utilized
by Nielsen Media Research [18]. This work is closely related
to ours, in that it analyzes channel changes from a large
IPTV network, but is strictly a statistical analysis, and does
not consider any real-time applications that use the data.

Sripanidkulchai et al [22] performed an analysis of the live
workload of a large content delivery network by analyzing
data collected over a three month period, containing over
70 million requests. Like in our paper, they also identified
flash crowds and usage patterns, but on audio and video
streams delivered over the Internet, and not in a residential
IPTV setting. Like Cha et al , this work does not deal with
real-time pattern detection either.

Commercial vendors like JDS Uniphase [20], Mariner [16]
and Agama [1] delivers agent-based solutions for monitoring
Quality of Service (QoS) that also provides channel usage
statistics. However, the interaction model of these solutions
are all pull-based, either trough a SOAP API, graphical view
from within the application, or through export functions
that allows users to export historical data to a file. For
the purpose of computing channel statistics and presenting
them in near real-time, none of the commercially available
solutions today have interaction models that is suitable for
incorporating their functionality into a larger event-driven
architecture. Moreover, they cannot be used to develop
specialized applications like annoyance detection. The rea-
sons for this can probably be attributed to business protec-
tionism, attempting to lock IPTV operators to their solu-
tions as much as possible, coupled with limited knowledge
of the push-based interaction model that is vital in develop-
ing event-driven architectures and real-time functionality.

What separates this work from previous work is that none
of the aforementioned solutions leverage event stream pro-
cessing ideas to compute online channel usage statistics, lim-
iting their use to identifying historical usage patterns and
trends. By performing the computations online in near real-
time, we are able to provide the users and operators with
the added value of having instant access to emerging trends
and usage statistics.

The other contribution of this work is the direct compari-
son between different paradigms for performing this type of
event stream processing, which, to the authors’ knowledge
is the first of its kind.

7. CONCLUSIONS
In this paper, we have demonstrated that we are able to

get much more accurate viewer statistics than with tradi-
tional methods by capitalizing on the two-way communica-
tion capabilities of IP-enabled STBs. By operating on the
stream of zap events from STBs, we have been able to gen-
erate viewer statistics in two very different programming
paradigms. Furthermore, our results show that the general
programming paradigm outperforms the query language ap-
proach by a surprisingly wide margin for this fairly simple
application scenario, while at the same time being fairly sim-
ilar to its counterpart in terms of total lines of code (taking
the additional required lines of Java code into account).

The debate of which paradigm to choose for a specific
implementation should be about choosing the right tool for
the job. If the application complexity is modest and perfor-
mance requirements are high, it is probably more efficient to
use a general-purpose language in most cases. If however the
processing task at hand is very complex, and performance
requirements are met with a more specialized language, go-
ing the query language route opens up possibilities for more
effortless maintenance and expansion of the application at
a later stage. It is probably wise to keep a generous per-
formance margin in such cases, as our tests indicated that
added complexity hurts performance of the more special-
ized tool more than its Java counterpart in applications like
this, because of the limited flexibility in selecting appropri-
ate data structures.

8. ACKNOWLEDGEMENTS
The authors would like to thank Ronny Lorentzen, Dagfinn

Wåge and the IPTV team at Altibox for their valuable ideas,
encouragement and helpfulness, and Bjarne Helvik for his
assistance concerning Halstead’s metrics.

9. REFERENCES
[1] Agama web site. Web, 2011. http://www.agama.se.

[2] B. Agarwal, S. Tayal, and M. Gupta. Software
Engineering & Testing: an Introduction. Jones &
Bartlett Learning, 2010.

[3] R. Al Qutaish and A. Abran. An Analysis of the
Design and Definitions of Halstead’s Metrics. In 15th
Int. Workshop on Software Measurement
(IWSM’2005). Shaker-Verlag, pages 337–352, 2005.

[4] Altibox web site. Web, 2011. http://www.altibox.no.

[5] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and
X. Amatriain. Watching Television over an IP
Network. In IMC, 2008.

[6] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst,
and T. Love. Measuring the Psychological Complexity
of Software Maintenance Tasks with the Halstead and
McCabe Metrics. IEEE Trans. Softw. Eng., 5:96–104,
March 1979.

[7] V. Da Yu Li and O. Ormandjieva. Halstead’s Software
Science in Today’s Object Oriented World. Metrics
News, pages 33–41, 2004.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM,
51:107–113, January 2008.

[9] Esper Documentation. Web, 2011.
http://esper.codehaus.org/esper/documentation/

documentation.html.

[10] Esper, Performance-Related Information. Web, 2011.
http://esper.codehaus.org/esper/performance/

performance.html.

[11] Hva er TNS Gallup TV-panel? (What is TNS Gallup
TV-panel?). Web, 2011.
http://www.tns-gallup.no/?aid=9072596.

[12] P. G. Hamer and G. D. Frewin. M.H. Halstead’s
Software Science - a critical examination. In ICSE,
1982.

[13] B. E. Helvik. Dependable Computing Systems and
Communication Networks - Design and Evaluation.
Tapir academic publisher, January 2009.

[14] Latens web site. Web, 2011. http://www.latens.tv.

[15] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful Bulk Processing for Incremental
Analytics. In SoCC, 2010.

[16] Mariner Partners - IPTV Monitoring Software. Web,
2011. http://www.marinerpartners.com.

[17] A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. Advanced Event Processing and
Notifications in Service Runtime Environments. In
DEBS, 2008.

[18] Nielsen Ratings. Web, 2011.
http://en.wikipedia.org/wiki/Nielsen_ratings.

[19] D. Nyvik. CEP: Integrator and facilitator for pub/sub
messaging. Technical report, December 2009.

[20] J. Schmitt. NetComplete Home Performance
Management (PM). White paper, November 2009.
http://www.jdsu.com/ProductLiterature/

netcompletehomepm_WP_sas_TM_AE.pdf.

[21] V. Shen, S. Conte, and H. Dunsmore. Software Science
Revisited: A Critical Analysis of the Theory and Its
Empirical Support. IEEE Trans. Softw. Eng.,
9:155–165, 1983.

[22] K. Sripanidkulchai, B. Maggs, and H. Zhang. An
Analysis of Live Streaming Workloads on the Internet.
In IMC, 2004.

[23] TNS Gallup. Web, 2011. http://www.tns-gallup.no.

[24] H. Zuse. A Framework of Software Measurement.
Walter de Gruyter & Co., Hawthorne, NJ, USA, 1997.

