
New Generation Computing, 29(2011)185-222
Ohmsha, Ltd. and Springer

A Bio-inspired Method for Distributed Deployment of
Services
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Abstract We look at the well-known problem of allocating software
components to compute resources (nodes) in a network, given resource con-
straints on the infrastructure and the quality of service requirements of the
components to be allocated to nodes. This problem has many twists and
angles, and has been studied extensively in the literature. Solving it is par-
ticularly problematic when there is extensive dynamism and scale involved.
Typically, heuristics are needed.

In this paper, we present a new breed of heuristics for solving this prob-
lem. The distinguishing feature of our approach is a decentralized optimiza-
tion framework aimed at finding near optimal mappings within reasonable
time and for large scale. Three different incarnations of the problem are ex-
plored through simulations. For one problem instance, we also provide exact
solutions, and show that our technique is able to find near optimal solutions
with low variance. In the largest example, a public-private cloud computing
scenario is used, where different clouds are associated with financial costs,
and we show that our approach is capable of balancing the load as expected
for such a scenario.
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§1 Introduction
Many popular web applications and services are currently being deployed

in large-scale data center environments due to the inherent scaling needs of such
applications. Moreover, data center environments may consist of hundreds of
thousands of nodes, and at this scale, there is bound to be a constant flux of
topology changes due to scheduled maintenance and failures, and dynamism
due to varying usage patterns and characteristics of the different applications
deployed within the hosting data centers. Accounting for all the parameters
involved in such a system is a challenging undertaking, and flexible methods are
necessary to maintain the desired Quality of Service (QoS) levels at acceptable
costs. A fundamental problem in this scenario is the mapping of components∗1

to nodes within the hosting data center(s), while accounting for the necessary
tradeoffs that characterize the environment and the services to be deployed. This
is what we refer to as the deployment problem.

The main contribution of this work is a bio-inspired, decentralized op-
timization technique for solving the deployment problem. The method is a
search-based heuristic aimed at finding near optimal mappings even under harsh
network conditions. We explore several incarnations of this problem through
simulations; each at a different level of granularity and targeting different QoS
requirements, as a mean to demonstrate the flexibility of our approach. For
comparison, one instance of the problem is also solved with a traditional cen-
tralized optimization technique that finds the exact optimum. We show that
for three problem sizes, the simulations of our decentralized approach can still
achieve close to the optimal value, with low variance. Note however, techniques
that find the exact optimum fall short as the problem size grows, whereas our
heuristic is shown to scale conveniently to large problem sizes. Moreover, due
to the inherent dynamism that exists in the systems we are targeting, a solution
would quickly become suboptimal. However, our approach is able to rapidly
adapt to changes in the environment, e.g. a network partition/merge event, by
recalculating the deployment configurations, constrained by a threshold reflect-
ing the migration costs. This ability of our approach is invaluable for deploying
services in large-scale data center networks.

Our decentralized optimization framework is built around the Cross En-
tropy Ant System (CEAS),15,18) which is derived from Ant Colony Optimiza-
tion (ACO).11) CEAS uses ant-like agents, denoted ants, that can move around in
the network, identifying potential locations where components might be placed,
and leave pheromone trails as a means to facilitate indirect communication about
suitable locations for placement. The CEAS framework requires the definition

∗1 A component is assumed to be any software component that can be placed on a physical
compute node, e.g. a building block of a service or application, or a virtual machine.
Herein these concepts are used somewhat interchangeably.



A Bio-inspired Method for Distributed Deployment of Services 187

of a cost function for the specific optimization problem at hand. The purpose of
the cost function is to evaluate the utility of a given deployment configuration
during the optimization process, eventually leading to the preferred deployment
configuration. The proper selection of these functions is crucial for guiding the
search for a deployment mapping that satisfies the QoS requirements of the ser-
vice, which can then be deployed using some execution framework. Essential are
also the constraints of the problem; be it load balancing or a certain availability
level.

The remainder of the paper is organized as follows. In the following, we
further elaborate on the deployment problem and place it in the context of a
software development and deployment cycle. Then in Sec. 1.2, we discuss the
complexity and scalability issues that are facing us in solving large scale de-
ployment problems, followed by a discussion on how to capture and consider
costs and requirements of the services that are deployed. In Sec. 1.4, we present
candidate target environments for our deployment framework. Cost function
design is discussed in Sec. 2, while Sec. 3 gives a general introduction to the
CEAS framework that we build upon and presents a general definition of our
algorithm. In Sec. 4, three example scenarios are shown: (i) deployment of col-
laborating components with communication costs (Sec. 4.1), (ii) deployment of
replicas constrained by dependability requirements (Sec. 4.3), followed by (iii)
our approach to mapping virtual machines in a public-private cloud computing
environment (Sec. 4.4). In Sec. 4.5, we present a centralized approach for finding
optimal mappings under certain sets of requirements and validate our results ob-
tained by the decentralized algorithm. Finally, we review some related research
and conclude.

1.1 The Deployment Problem
As described initially, we target the problem of mapping subsets of ser-

vices to physical resources, i.e. nodes capable of hosting such services, in an
efficient manner such that the QoS requirements of the services are satisfied.
This problem can be viewed in the context of the software development and
deployment cycle as partially illustrated in Fig. 1, where each layer captures a
part of the multifaceted deployment problem. The execution nodes are shown in
the bottom part, whereas the services to be deployed are modeled at the second
layer up. The goal then is to obtain the mapping M : C → N between the
building blocks of the service (the set C) and the available nodes (N).

The non-functional requirements of services are captured in the QoS di-
mensions layer; these can be issues such as dependability, security, performance,
or energy-saving, all of which contribute to increasing the problem size and com-
plexity. Finally, on the top layer we have the possible varieties of usage scenarios
that can be captured by enriching the service models with additional usage re-
lated information, e.g. arrival rates for a component that handles user requests.
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Fig. 1 The Multiple Dimensions of the Deployment Problem

1.2 Problem Complexity and Scalability Issues
The deployment mapping problem can be formulated as a multi-dimensio-

nal bin packing problem,22) where each physical node is a bin and each constraint
spans a dimension. The components with their associated resource requirements
are the objects that are to be packed in the bins (nodes) available in the system.
Thus, since bin packing is NP-hard,22) the deployment mapping problem is also
NP-hard. Even determining the existence of a valid packing is itself a NP-hard
problem.38) Moreover, the general module allocation problem has been shown to
be NP-complete,14) except for some communication configurations.

Given the complexity of solving the deployment mapping problem, it is to
be expected that it cannot be solved even for moderately large scenarios. And
especially not in realistic scenarios, such as finding efficient mappings in large-
scale data center infrastructures, as the problem size grows exponentially with
the number of hosting nodes and the number of components to be deployed. And
also because a multitude of services are deployed simultaneously, while ensuring
proper balance between load characteristics and service availability at every data
center site.

Moreover, mappings found by an algorithm can be affected by a plethora
of parameters during execution, e.g. due to the influence of concurrent services.
Also, introducing dependability requirements for the services results in addi-
tional complexity, e.g. due to the use of replication protocols and their need
to ensure consistency. Thus, given the problem complexity and for the relevant
problem sizes, our only option is to look for efficient heuristic algorithms instead
of seeking to find the exact optimum.

Furthermore, the heuristic algorithm should also be resilient to dynamics,
or specifically, it should exhibit some degree of autonomy and adapt to changes
in the environment. Such changes might include mobility of users, node churn,
network disconnection (split/merge), incremental scaling of services, among oth-
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ers. Thus, our approach to develop an autonomic process for tracking the best
solutions in a dynamic environment is to build on the inherent self-organization
properties of the CEAS framework. This framework facilitates decentralized
optimization, avoiding the need for any centralized information storage and de-
cision making. To cope with large scale problems however, an efficient data
representation (storage) is necessary at each node participating in the decentral-
ized algorithm. We discuss and evaluate three different data representations in
Sec. 3.3.

1.3 Costs and Constraints
Given a specific deployment problem, our optimization technique, or de-

ployment logic, must account for a range of parameters representing the QoS
requirements and constraints of the services being deployed. In this section, we
describe how these requirements and constraints are captured and give a few
examples.

The QoS requirements are captured at design time and specified in a
collaboration-oriented design model. The requirements may represent qualities
such as security, performance, availability, portability, etc. In fact, our deploy-
ment logic can capture any kind of system property, as long as a suitable cost
function can be defined for it. Figure 2 shows a sample collaboration diagram,
enriched with two cost function attributes (QoS requirements), namely execution
and communication cost. The execution cost captures the CPU requirement of a
component to be deployed, whereas the communication cost reflects its network
usage requirement.

Fig. 2 A Collaboration Diagram with Non-functional Requirements

A service may constrain the placement of its components to specific nodes by
means of a binding, e.g. a database server may have to be assigned to a specific
node. Such a binding generally reduces the search space. However, bound com-
ponents are still accounted for in the cost of a computed deployment mapping.

Our approach is designed as a continuous optimization process in order to
facilitate rapid response to dynamism; hence reconfiguration of initial component
placements are expected. However, to avoid migrating components for marginal
cost savings, the cost of migration must be accounted for; herein we use a simple
threshold scheme.

The three example scenarios presented in Sec. 4 use different requirements.
The main overall aim is to load-balance execution cost across the available nodes,
while accounting for all services running in the environment, remote communica-
tion costs, and dependability of the service being deployed. The second scenario
introduces replica management rules to enforce cluster- and node disjointness.
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In the last example, we extend the set of requirements to include financial costs
of using different clusters for placement in a public-private cloud computing set-
ting. Without loss of generality, all cost functions are formalized as minimization
problems, i.e. the less the cost the better the solution.

1.4 System Model and Target Systems
This section describes the system model and gives some notation, followed

by a brief description of potential target systems for which our deployment logic
will be of relevance.

We consider the elementary building blocks (components) of a service as
the unit to be deployed. Each component has well-defined interfaces and commu-
nicates by means of message exchange. A service is defined as the collaboration
among its constituent components, which may be distributed across a network of
nodes. This network of nodes offers an execution environment for the services,
and can be organized into different network topologies, e.g. multiple clusters
and/or clouds, depending on the usage scenario. Our optimization technique
does not facilitate any means to find the optimal topology, but instead will find
near optimal placements of components within a given topology. It will however,
leverage knowledge about the topology in terms of constraints and requirements,
e.g. specifying peak load scenarios and dependability requirements. Changing
the execution context might dictate addition or removal of service instances.

Fig. 3 Example Target Network

We model the system as a collection, ni ∈ N, of interconnected nodes. N is
partitioned into a set D of clusters, as illustrated by d1 and d2 in Fig. 3. Clus-
ters are usually formed according to geographical location or otherwise distinct
administrative region. Let S denote the set of services to be deployed. The
objective from Sec. 1.1 is thus to deploy a set of components C providing service
Sl ∈ S, and likewise for all services.

As shown in Fig. 3, every node has an execution runtime used to support
installation, optimization and execution. Furthermore, for every service at least
one instance of the CEAS, referred to as species, is run. CEAS’s autonomous
agents searching for a deployment of a given service are shown in different colors
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in Fig. 3. For each of the species at least one designated node has to be present,
serving as a home location for the agents, called the nest. A node also maintains
information about the goodness of mappings in an information table (called the
pheromone table, for details see Sec. 3.3), and capacity for installing one or more
components of arbitrary services.

There exists a range of software execution frameworks and middleware
that are potential candidates for integration with our deployment logic. For ex-
ample, in case of collaborating software components one such candidate is the
MUSIC middleware platform31) that supports some self-* properties and compo-
nent based software. When dependability aspects are of relevance, fault tolerant
and self-repairing systems such as the DARM platform28) can take advantage of
our deployment logic. Finally, we mention a cloud computing scenario, where
the deployment logic is used to optimize placement of VM instances. Candi-
date platforms include, e.g. Amazon EC22) and VMware. Nevertheless, the
aim of the deployment logic is to be agnostic to the execution environment,
i.e. optimization of the mappings can be done based on service models, regard-
less of the underlying platform. Example scenarios relevant to these execution
environments will be presented in Sec. 4, followed by an evaluation based on
simulations. Having introduced our targeted architectures, we now shift our at-
tention to the construction of cost functions and how they are used throughout
the optimization process. But first, we summarize our nomenclature in Table 1.

Table 1 Nomenclature

Shorthand Usage Size Description
S Sl ∈ S |S| Set of services to deploy
C ci ∈ C |C| Set of components in Sl

K kj ∈ K |K| Set of collaborations in Sl

N n ∈ N |N| Set of all existing nodes
D d ∈ D |D| Set of all existing clusters
M mn,r ∈ Mr |M |=|C| Mapping C → N in iteration r
D d ∈ Dr |D| ≤ |D| List of clusters used in M
H n ∈ Hr |H| ≤ |N| Hop-list of nodes visited
L ln,r ∈ Lr |L| = |H| Load samples taken in iteration r

§2 The Cost Function
We now discuss the construction of cost functions for our optimization

technique. A cost function, denoted F (), aims to evaluate the utility of a certain
deployment configuration, and is used in each iteration of CEAS. Cost func-
tion design constitutes an important part of our work, and it is crucial to our
technique to capture all aspects of the optimization problem. It has significant
influence on the quality of the solutions and on the convergence rate. Recent
work on autonomic computing also uses utility functions,23) however, our decen-
tralized approach demands more sophisticated functions due to lack of global
knowledge at the decision logic. Within the application scenarios considered
the cost values that describe a given deployment are to be minimized, i.e. the
objective becomes min F ().
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The cost function used by our technique is configured as a combination
of several functions, typically one for each requirement/constraint dimension.
Thus, the difficulty of efficient design is multifaceted. One is to find the ap-
propriate granularity for each requirement/constraint dimension of a service.
Furthermore, ensuring fast convergence dictates keeping the functions as simple
as possible, yet the output of the functions must be fine grained enough to distin-
guish between two significantly different mappings. In some cases, an abundance
of possible mappings exists with different but very similar qualities, which may
lead to a non-linear cost function. Non-linearities can render their evaluation
computationally expensive, causing a significant slow down in execution of the
logic. Particular care has to be taken to weld components of the cost function
together yielding a single function that is computationally effective and, at the
same time, represents all the QoS requirements weighted by their importance.
To achieve this, the most common combinations are multiplicative or additive
combination of cost function components. We begin with a simple function that
uses some global knowledge and considers deployment of a single service and
then extend the function gradually.

2.1 Load-balancing and Communication Costs
In the first cost function, we consider only execution and communication

costs, and we use this to build more complex functions. Assume the deployment
logic has access to a service model specifying execution costs, ei for each com-
ponent ci ∈ C, and communication costs, fj for each collaboration kj ∈ K. The

total offered execution load for a given service is then
|C|∑
i=1

ei. Hence, the average

load T in a network N becomes

T =
⌊∑|C|

i=1 ei

|N|
⌋

(1)

To quantify remote communication costs, we first introduce the indicator func-
tion I(j), where I(j) = 1 if collaboration kj is remote and I(j) = 0 if kj is
internal to a node. That is, we assume the cost of node internal communication
is negligible (I(j) = 0), and thus, only consider the execution cost needed by
these components, whereas for remote communication both costs are accounted
for. To determine which collaboration kj is remote the set of mappings, M is
used. Given I(j), the remote communication cost, Ω(M), covering all collabo-
rations of the service is simply the sum

Ω(M) =
|K|∑
j=1

I(j) · fj (2)

Thus, the combined cost function becomes

F1(M) =
|N|∑
n=1

|l̂n − T | + Ω(M) (3)
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where l̂n, n = 1 . . . |N| represent CPU load samples, and M is the mappings
to evaluate. That is, load samples describe the execution load impact of the
components mapped to a given node n, i.e.

∑
i

ei, for ∀i where ci → n.

2.2 Multiple Services and Eliminating Global Knowledge
So far, we covered QoS requirements captured in the modeling phase of a

single service. Next, we extend the function to multiple services and eliminate
the need for global knowledge.

Finding T in (3) requires global knowledge of all the services deployed
simultaneously. To eliminate the need for this global knowledge, we simply re-
place T with a set of load samples ln ∈ L. To capture this notion of load
sampling, we introduce a reservation mechanism in the optimization process.
When components of a service are mapped to a node ni, resources equivalent to
the weights of the corresponding components will be reserved; the reservations
are maintained in the actual nodes. CEAS can use this mechanism to estimate
the resource usage on nodes, and to facilitate interaction between the different
species. Agents in CEAS can then sample the current reservations on a node,
and use this to evaluate the cost of a mapping involving that node. Samples that
would exceed the capacity of a node are quickly outranked by better solutions
as a high penalty is assigned to infeasible mappings. To keep the resource reser-
vations current, we also add a timestamp-based eviction mechanism to prevent
stale reservations.

To further improve scalability, only a portion of the network is considered,
represented by the hop-list H, such that |H| ≤ |N|; the hop-list correspond to
the set of nodes visited to obtain load samples. Thus, the upper bound of the
first summation in (3) is reduced to |H|. In practice, this means that we are
able to achieve near-optimal results without having to sample all |N| nodes
in the network. This sampling scheme is applied to our example scenarios in
Sec. 4.2-4.4.

To enable simultaneous deployment of multiple services, one species is
run for each service. These species interoperate to obtain a more holistic view of
their environment. To facilitate this cooperation, each species stores information
at participating nodes. The objective of each species is to find a satisfactory
mapping for the components of its service, while accounting for services being
deployed concurrently.

Formulating a cost function partly depends on the parameters used; we
use the deployment mappings in M and the load samples L. We reformulate
the cost function as a multiplicative function instead of the additive version,
presented in (3), as follows in (4). For more on experiments with additive and
multiplicative functions we refer to 10).

F2(M, H, L) =
[ ∑
∀n∈H

C0[n]
]
· (1 + ω · Ω(M)) (4)

where ω is a scaling parameter for Ω(M). F2(M, H, L) has a component, Ω(M)
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identical to (2), incorporating the communication costs individually for each
service. Function C0[n], defined in (5), quantifies the node local costs for node
n. Samples are obtained over a subset H ⊆ N. This function targets load
balancing among nodes.

C0[n] =
( L[n]∑

i=0

1
Θ0 + 1 − i

)2

(5)

where Θ0 is the sum of load samples Θ0 =
∑

∀n∈H

L[n]. The first term in (4) coun-

teracts the term for communication costs, Ω(M). The effects of these two coun-
teracting terms can be balanced using the scaling parameter ω. The quadratic
nature of C0 allows shifting focus from minimizing the communication costs to
load balancing.

2.3 Dependability Rules
We now turn our attention to dependability requirements; each compo-

nent of a service may be replicated for fault tolerance and/or load-balancing. We
also refine our view of the network by introducing clusters of nodes, D. Each
cluster may represent separate geographic sites. In this context, the aim of the
deployment logic is to satisfy the dependability requirements specified in the
service model and obtain an efficient mapping in the network, for an example
see Sec. 4.3.

To support this scenario, the cost function must also accommodate the
additional requirements. These requirements are specified as a set of depend-
ability rules, denoted Φ, that constrain the minimization problem as min F ()
subject to Φ. We define Φ with the aid of two mapping functions (that apply to
a given service k).

Definition 1 Let fi,d : ci → d be the mapping of replica ci to cluster d ∈ D.

Definition 2 Let gi : ci → n be the mapping of replica ci to node n ∈ N.

The first rule, φ1 requires replicas to be dispersed over as many clusters as
possible, aimed at improving service availability despite potential network par-
titions. We assume that network partitions are more likely to occur between
cluster boundaries. More specifically, replicas of a component should be placed
in different clusters. If the replication degree exceeds the number of available
clusters, at least one replica should be placed in each cluster. The second rule,
φ2, simply prohibits collocation of two replicas on the same node. Formally,

Rule 1 φ1 : ∀d ∈ D,∀ci ∈ C : fi,d �= fu,d ⇔ (i �= u) ∧ |C| < |D|
Rule 2 φ2 : ∀ci ∈ C : gi �= gu ⇔ (i �= u)

Let Φ = φ1 ∧ φ2 be the set of dependability rules considered. Note that, pro-
hibiting collocations by φ2 is contradictory to minimizing remote communica-
tion. Thus, when considering dependability, we omit communication costs, e.g.
in Sec. 4.3 and 4.4. To cater for these new rules, the number of utilized clusters,
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referred to as |D|, is added as a parameter to the cost function. Several com-
binations of reciprocal and linear functions were evaluated in 10). The function
that gave the best results is a combination of a reciprocal term targeting φ1 –
using |D|, and the load-balancing function in (5), applied in two different ways.
First, we redefine (5) applicable for each node n – previously used solely for
load-balancing – to cater for φ2 as well. The redefined function, (6) is applied in
two different ways depending on the parameter x ∈ {0, 1}. Cx is a list of values,
containing one element for each node covered in an iteration of CEAS (listed in
H).

Cx[n] =
( ϑx[n]∑

i=0

1
Θx + 1 − i

)2

(6)

For x = 1, load samples L are used, accounting for all concurrently executing
services on the nodes sampled in L. x = 0 in turn represents solely the mappings,
M , taking into account the load imposed by the components that are part of a
given service. The two usages differ in the upper-bound of the summation and
the constant in the denominator, ϑx and Θx respectively, defined in (7) and (8).

ϑx[n] = |mn| · w + x · L[n] for x ∈ {0, 1} (7)

Θx =
∑

∀n∈H

ϑx[n] for x ∈ {0, 1} (8)

Θx represents the overall execution load of one service (x = 0) or all services (x =
1). Above, we assume that all replicas have the same weight, denoted w, hence
their load can be assessed by multiplying with the number of replicas mapped to
a given node, |mn|. Accordingly, it is ϑx where parameter M of the cost function
is used in this setting. This definition can easily be changed to support individual
replica weights. In summary, Θ0 is the total processing resource demand of one
service, whereas Θ1 accounts for the added load of replicas of other concurrent
components. In L, we account only for those instances that are mapped to
the nodes covered in a given iteration (given in H), and as such have reserved
processing power for themselves. This way, the list Cx[n] provides a quadratic
approximation of the share of load associated with each node as experienced by
CEAS, an approximation only as CEAS does not have an exact global overview
over the total offered load. Thus, the overall cost function used for dependability
becomes

F3(D, M, H,L) =
1
|D| ·

∑
∀n∈H

C0[n] ·
∑

∀n∈H

C1[n] (9)

On the one hand, C0 applies solely to replicas of one service, this way penalizing
the violation of φ2, or in other words, favoring mappings where replicas are not
collocated. On the other hand, C1, is used for general load-balancing and, as
such, it takes into account load imposed on nodes by the other services in the
network. Using these separate terms we are able to smoothen the output of the
cost function used in each iteration, purposefully easing convergence by making
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the solution space more fine grained, i.e. simplifying differentiation between very
similar deployment mappings with nearly the same cost. Scenarios involving
dependability are presented in Sec. 4.3.

2.4 Cluster Costs
In the next scenario, we assume there are different financial costs as-

sociated with using different clusters, see for example Sec. 4.4. Hence, we now
wish to find deployment configurations that can also minimize the financial cost,
while maintaining load balancing and the dependability requirements. To facil-
itate this, we extend the function in (9) with another term. First, let Λ be the
financial cost of using the nodes mapped in M , defined as Λ =

∑
∀ni∈M

|ni|, where

|ni| is the financial cost of using node ni ∈ M . Thus, our new function becomes

F4(D, M, H,L, z) = F3(D, M, H,L) · (1 + g(z)), (10)

where g(z) comes in two variants using a scaling parameter z and Λ

g(z) =
{

z · Λ linear weighting
1 − e−(z·Λ)2 exponential weighting

(11)

Setting z = 0 eliminates the financial costs, returning to the original function in
(9). The choice of z depends on the cost of using the different clusters. The two
alternatives in (11) represent a linear and an exponential increment in financial
costs, when z > 0. When applying the more fine-grained exponential weighting
to the cost function, we expect to observe more balanced mappings, avoiding
under-utilization or overloading of clusters.

Next, we present our proposed deployment logic, along with the CEAS
optimization method and associated algorithms. The cost functions presented
in this section are used in these algorithms to evaluate the deployment configu-
rations.

§3 The Deployment Logic
To solve the deployment mapping problem presented in Sec. 1.1, we use

the CEAS method introduced by Helvik and Wittner.18) CEAS is an agent-
based optimization framework, in which the agents’ behavior is inspired by the
foraging patterns of ants. The key idea in CEAS is to let many agents, denoted
ants, search iteratively for the solution to a problem taking into account the
constraints and a predefined cost function. Every iteration consists of two phases.
In the forward search phase, ants search for a possible solution, resembling the
search for food in real-world ants. The second phase is called backtracking,
in which ants – after evaluating the solution found during forward search –
leave markings, called pheromones, that are in proportion to the quality of the
solution. Pheromones are then distributed at different locations in the search
space and can be used by forward ants in their search for improved solutions.
Therefore, the best solution will be approached gradually. To avoid getting stuck
in premature and sub-optimal solutions, some of the forward ants explore the
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search space, ignoring the pheromones. There is a principal difference, however,
between the various existing ant-based systems and the approach taken in CEAS
in evaluating the solution and in pheromone updates. CEAS uses the Cross
Entropy (CE) method for stochastic optimization introduced by Rubinstein.32)

The CE method is applied during the pheromone updating process, gradually
changing the probability matrix pr according to the cost of the solution found
in iteration r. Then, the objective is to minimize the cross entropy between two
consecutive probability matrices pr and pr−1. For a tutorial on the method,32)

is recommended. Next we present the CEAS method in more detail, followed
by a generalized version of our deployment algorithm, which was applied in
the evaluations in Sec. 4. Minor algorithmic differences between the different
scenarios are also discussed.

3.1 The Cross Entropy Ant System
We apply CEAS to obtain efficient deployment mappings in the form

M : C → N between sets of components, C, and sets of nodes, N. Ants move
between nodes across network links in search for nodes with hosting capacities.
The cost of mappings is evaluated using the cost functions discussed in Sec. 2,
i.e. applying them as F (M) in every iteration of CEAS. The pheromone values,
τmn,r, in CEAS for deployment mapping are assigned to the component set m
deployed at node n at iteration r. The random proportional rule (rpr) in (12)
is used to select deployment mappings. That is, during normal forward search,
a set of components is selected according to the rpr matrix pmn,r

pmn,r =
τmn,r∑

l∈Mn,r
τln,r

(12)

A temperature parameter γr, controls the update of the pheromone values and
is chosen to minimize the performance function

H(F (Mr), γr) = e−F (Mr)/γr (13)

which is computed for all r iterations such that the expected overall performance
satisfies

h(pmn,r, γr) = Epr−1(H(F (Mr), γr)) ≥ ρ (14)

Epr−1(X) is the expected value of X s.t. the rules in pr−1, and ρ is a search
focus parameter close to 0 (typically 0.05 or less). Finally, a new updated set of
rules, pr, is determined by minimizing the cross entropy between pr−1 and pr

with respect to γr and H(F (Mr), γr).
To avoid centralized control and synchronized batch-oriented iterations,

the cost value F (Mr) is calculated immediately after each sample, i.e. when all
components are mapped, and an auto-regressive performance function, hr(γr) =
βhr−1(γr) + (1 − β)H(F (Mr), γr) is applied. This function is approximated by

hr(γr) ≈ 1 − β

1 − βr

r∑
i=1

βr−iH(F (Mr), γr) (15)
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where β ∈ 〈0, 1〉 is a memory factor, used for weighting (geometrically) the
output of the performance function. The temperature γr in turn is determined
by minimizing it subject to h(γ) ≥ ρ. The temperature furthermore is equal to

γr = {γ | 1 − β

1 − βr

r∑
i=1

βr−iH(F (Mi), γ) = ρ} (16)

which is a complicated (transcendental) function that is both storage and pro-
cessing intensive since all observations up to the current sample, i.e. the entire
mapping cost history {F (M1), · · · , F (Mr)} must be stored, and weights for all
observations have to be recalculated.18) This can be a prohibitively large resource
demand, especially in online nodes. As a resolution we assume, given a β ≈ 1,
that the changes in γr are typically small from one iteration to the next, which
enables a first order Taylor expansion of (16) as follows

γr =
br−1 + F (Mr)e−F (Mr)/γr−1

(1 + F (Mr)
γr−1

)e−F (Mr)/γr−1 + ar−1 − ρ 1−βr
1−β

(17)

where a0 = b0 = 0 and γ0 = −F (M0)/ ln ρ. Furthermore,

ar ← β(ar−1 + (1 +
F (Mr)

γr
)e−

F (Mr)
γr )

br ← β(br−1 + F (Mr)e−
F (Mr)

γr )
(18)

where the performance function, (13), is adopted. The pheromone values in
CEAS are a function of the entire history of mapping cost values, hence CEAS
has what is denoted a search history dependent quality function.42) Updates
to the pheromone values are made by applying the performance function, (13),
combining the last cost value F (Mr) and the temperature γr, calculated by (17).
Pheromones are updated as follows.

τmn,r =
r∑

k=1

I((m,n) ∈ Mk)β
Pr

x=k+1 I((m,·)∈Mx)H(F (Mk), γr) (19)

The memory factor, β, supplies geometrically decreasing weights to the output
of the performance function, enabling evaporation of pheromones. The exponent
of β is somewhat complex since ants during backtracking do not update all nodes
in the network, only those nodes that were visited during the preceding forward
phase. The exponent in (19) represents the number of ants that have updated
node n between time-step r and k when a mapping Mk was found, while r − k
is the total number of updates in the system, i.e. total number of ants that

returned between time-step r and k. Hence, r − k ≥
r∑

x=k+1

I((m, ·) ∈ Mx).

However, as for (16), excessive processing and storage requirements also apply



A Bio-inspired Method for Distributed Deployment of Services 199

for (19). A (second order) Taylor expansion of (19) is appropriate, giving

τmn,r ≈ I((m,n) ∈ Mr)e−
F (Mr)

γr +Amn +

⎧⎪⎨
⎪⎩

−Bmn

γr
+

Cmn

γ2
r

1
γr

<
Bmn

2Cmn

− B2
mn

4Cmn
otherwise

(20)

where

Amn ← β(Amn + I((m,n) ∈ Mr)e−
F (Mr)

γr (1 +
F (Mr)

γr
(1 +

F (Mr)
2γr

)))

Bmn ← β(Bmn + I((m,n) ∈ Mr)e−
F (Mr)

γr (F (Mr) +
F (Mr)2

γr
))

Cmn ← β(Cmn + I((m,n) ∈ Mr)e−
F (Mr)

γr (
F (Mr)2

2
))

(21)

The initial values for (21) are Amn = Bmn = Cmn = 0 for all (m,n). For a
stepwise explanation of the Taylor expansion and how it is applied, we refer
to Appendix A in 37). Further improvements in the scalability of CEAS are
described in 16).

3.2 The Deployment Algorithm
In this section, we present our general deployment algorithm and explain

how it is executed. First, the task of obtaining deployment mappings for a given
service is assigned a species – a given type – of ants via the service model that can
be interpreted by the logic. The service model contains the set of components, C,
to be mapped. Ants are emitted (cf. Algorithm 1) continuously and select nodes
to visit depending its type. There are two types of ants, explorer and normal
ants. Normal ants select a subset of C (can be ∅) at every node they visit
based on the content of the local pheromone table at the node, whereas explorer
ants select a subset based on a random decision, ignoring the pheromones. The
selections made by the ant are stored in M , and carried along with the ant; they
represent a deployment mapping made during one iteration of the algorithm.

Initially, only explorer ants are used to explore and cover a significant
portion of the mapping problem space by random sampling. The length of initial
exploration depends on the problem size, in terms of network size and number of
services. After initial exploration, the majority of ants are normal ants, while a
smaller fraction are explorers, typically 5-10 percent. This continued exploration
is meant to capture fluctuations in the network, e.g. new nodes connecting, and
thereby improve responsiveness to dynamism in the environment. The normal
ants try to find an optimal mapping.

We also distinguish between two phases in one iteration of the algorithm.
In every iteration, the ant starts with forward search and completes the iteration
with backtracking. During forward search, the ant obtains a mapping M , i.e. a
suggested deployment for the service, which can then be evaluated by F (M).
This ends the first phase and backtracking can start, which consists of revisiting
the nodes visited in the first phase – according to the hop-list H – and updating
the pheromone databases in those nodes. This ends an iteration and a new ant
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can be emitted, starting a new iteration of the algorithm, unless a stopping cri-
teria is met. Usually however, the algorithm will continue to explore the network
for improved mappings; enabling adaptation to changes (reconfiguration) in the
execution context.

Generally, we have a trade-off between convergence speed and solution
quality. Nevertheless, while deploying services in a dynamic environment, a pre-
mature solution that satisfies both functional and non-functional requirements
often suffices. ACO systems have been proven to find the optimum at least once
with a probability close to one, and after that convergence to the optimum is
secured in a finite number of iterations.34) Since CEAS can be considered as a
subclass of ACO, the optimal deployment mapping will eventually emerge.

Algorithm 1 Code for Nestk corresponding to service Sl at any node n ∈ N
1: Initialization:
2: r ← 0 {Number of iterations}
3: γr ← 0 {Temperature}
4: while ∞ {Stopping criteria can be applied here}
5: M ← antAlgo(l, k) {Emit new ant for service l from Nest k, obtain M}
6: update(availableClusters) {Check the number of available clusters}
7: if splitDetected() ∨ mergeDetected()
8: release(Sl) {Delete existing bindings for all instances ci ∈ Cl}
9: if Φ(M, availableClusters)

10: bind1(M) {Bind one of the still unbound instances in Cl}
11: r ← r + 1 {Increment iteration counter}

Improved dependability of the approach can be obtained by means of replicated
ant nests. The same ant species may be emitted from multiple nests, providing
resilience to node failures affecting the node hosting a nest. Note that, this nest
replication does not lead to flooding of the network with ants, as the rate of ant
emission in a stable network can be divided equally among nests. Moreover, ants
emitted from different nests, but associated with the same service, will operate
on the same pheromone table entries in the nodes they visit. During execution
of CEAS, synchronization between nests is not necessary. However, a primary
nest must make the final deployment decision, triggering physical placement of
the components.

In contrast to CEAS used for routing, where the temperature is stored
in the destination node, our CEAS implementation has no notion of destination
for the deployment mapping. Instead a mapping, M , is distributed over a set
of nodes. Yet, ants are able to find the same mapping M , while visiting the
same set of nodes, possibly in a different order, and making the same mapping
decision. To provision for this capability, ants returning to their nest at the
end of the backtracking phase, will pass on the temperature parameter to their
immediate successor ants.

We clearly distinguish between the notions of component mapping, bind-
ing and deployment. The mapping M is a variable list constantly optimized,
iteration by iteration by the logic only visible internally to the algorithm. When
an instance is bound to a node that means that the particular mapping for that
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Algorithm 2 Ant code for mapping service Sl

1: Initialization:
2: Hr ← ∅ {Hop-list; insertion-ordered set}
3: Mr ← ∅ {Deployment mapping set}
4: Dr ← ∅ {Set of utilized clusters}
5: Lr ← ∅ {Set of load samples}
6: function antAlgo(r, k)
7: γr ← Nestk.getTemperature() {Read the current temperature}
8: foreach ci ∈ C {Maintain bound mappings}
9: if ci.bound()

10: n ← ci.boundTo() {Jump to the node where this comp. is bound}
11: n.reallocProcLoad(Sl, ei) {Allocate processing power needed by comp.}
12: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
13: Lr ← Lr ∪ {ln,r} {Add to the list of samples}
14: while C 
= ∅ {More instances to map}
15: n ← selectNextNode() {Select next node to visit}
16: if explorerAnt
17: mn,r ← random(⊆ C) {Explorer ant; randomly select a set of comps.}
18: else
19: mn,r ← rndProp(⊆ C) {Normal ant; select comps. according to (12)}
20: if {mn,r} 
= ∅, n ∈ dk {At least one comp. mapped to this cluster}
21: Dr ← Dr ∪ dk {Update the set of clusters utilized}
22: Mr ← Mr ∪ {mn,r} {Update the ant’s deployment mapping set}
23: C ← C − {mn,r} {Update the set of replicas to be deployed}
24: ln,r ← n.getEstProcLoad() {Get the estimated processing load at node n}
25: Lr ← Lr ∪ {ln,r} {Add to the list of samples}
26: cost ← F (Dr, Mr, Hr, Lr) {Calculate the cost of this given mapping}
27: γr ← updateTemp(cost) {Given cost, recalculate temperature according to (16)}
28: foreach n ∈ Hr.reverse() {Backtrack along the hop-list}
29: n.updatePheromone(mn,r, γr) {Update pheromone table in n}
30: Nestk.setTemperature(γr) {Update the temperature at Nestk}

instance is not changed anymore by the ants until that binding is erased again.
Lastly, by deployment, we refer to the physical placement and instantiation of an
instance on a node, which is triggered after the mapping M for the given service
has converged to a satisfactory solution. The latter property ensures that there
is no undesirable fluctuation in the migration of replicas using our method.

Improving convergence is the concept of binding of components, which
allows nests to fix one instance in the latest mapping M obtained by the ants,
if some condition applies. For example, we have a condition that checks if the
mapping M satisfies Φ as condition of a bind event. After a bind, ants for
the same service do not change the fixed mapping in subsequent iterations and
new searches will be conducted for the remaining instances only. Importantly
however, bound instances are also taken into account when the cost of the total
mapping is evaluated. Should a split or a merge event occur in the network, these
bindings are erased in the ant nest and the total amount of instances will be taken
into consideration in the following searches. In Algorithm 1 and Algorithm 2,
we present the version of the deployment algorithm that uses binding as well as
guided random hopping (Algorithm 3), which we discuss next.

First, an ant visits the nodes, if any, that already have a bound instance
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mapped to, in order to maintain these mappings. These will also be taken
into account when the cost of the total mapping is evaluated. The pheromones
corresponding to bound mappings will also be updated during backtracking. Ants
allocate processing power corresponding to the execution costs of the bound
replicas, derived from the service specification. This first phase of an ant’s tour
is denoted maintenance. After this phase, ants turn to guided random hop-
selection.

The selection of the next node to visit, in contrast to e.g. ant-based rout-
ing algorithms, is independent from the pheromone markings laid by the ants.
Pheromone tables are used only for selecting components or replicas to map to
nodes. The advantage of using the guided selection shown in Algorithm 3 as
opposed to a pure random walk lies in that with the proper guidance, the fre-
quency of finding an efficient mapping is higher. In case of replica management,
for example, idea is that at first the next node is selected from a cluster that has
not yet been utilized until all visible clusters are covered, leading to better and
faster satisfaction of φ1 (see Sec. 2). Then, next hop selection continues with
drawing destinations from the set of nodes not yet used in the mapping. This
can be done by checking with the variable M , before reverting to totally random
drawing.

Algorithm 3 Next-hop selection procedure for an ant
1: function selectNextNode() {Guided random jump}
2: if H = N {All nodes visited}
3: n ← random(N) {Select candidate node at random}
4: else
5: if D = D {All available clusters utilized}
6: n ← random(N \ M) {Select a node that has not been used yet}
7: else
8: di ← random(D \ D) {Select a cluster not yet used}
9: n ← random(di) {Select a node within this cluster}

10: H ← H ∪ {n} {Add node to the hop-list}
11: return n

The guided hop-selection algorithm can be used to different extents, i.e. in case
of simple settings without replication management where the network is not
partitioned into clusters this function simply can be reverted to random drawing,
e.g. the scenarios presented in Sec. 4.1 and 4.2. Whereas when replication is
present and dependability rules, Φ, have to be satisfied, the guidance and taboo-
listing can be turned on. Next, we discuss how the data in pheromone tables
can be represented efficiently.

3.3 Encoding Pheromone Values
Optimization governed by the cost function starts with aligning pheromone

values with the sets of deployed components and defining the structure of the
pheromone database for the ants. With the underlying set of nodes, each ant
will form |N| discrete sets from the set of available components (C) that need to
be deployed and will evaluate the outcome of that deployment mapping at the
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end of each iteration. In the simplest encoding, we assign a flag to each of the
component instances and build a bitstring for a service of size 2|C|. This way a
single pheromone database instance located at a node becomes equal in size to
the number of possible combinations for forming a subset of C. After normal-
izing the pheromones in a node we can observe the probability distribution of
component sets mapped to that particular node by the ant system. Eventually,
after convergence the suggested solution emerges in the distributed pheromone
database with probability near to one.

In case of a normal ant, the selection process for selecting a set of instances
to map to a node depends on the form of the pheromone tables, in particular
on how the pheromone values are encoded. Appropriate solutions can be found
using different encodings, however, there are differences in terms of convergence
times and solution quality. Efficient encodings are required for scalability of the
logic as well. In 8), we proposed and evaluated three different pheromone en-
codings. Generally, pheromone tables can be viewed as a distributed database
with elements located in each node available in the network considered for de-
ployment. Entries in the database have to be able, on one hand to describe
arbitrary combinations of components or replicas. On the other hand, as the
distributed database consumes some memory in every node – and the required
memory grows both with the amount of services deployed (|S|) and with the sizes
of the services (C) –, the size of this database is crucial for scalability. We wish
to accommodate as many services as possible, thus we have to efficiently manage
the memory need, which we can directly influence by choosing an appropriate
pheromone encoding. Beside the storage needs, an individual ant agent has to
browse through the pheromone entries during its visit to a node. Clearly, a more
compact pheromone database helps speeding up execution of the tasks it has to
perform. The different encodings we proposed and their corresponding sizes are
shown in Table 2.

Table 2 Three Pheromone Encodings for a Service with |C| Instances

Encoding DB size in a node Encoding example w/ |Cl| = 4

bitstring 2|Cl| [0000]b . . . [1111]b
per comp. 2 · |Cl| [0/1]; [0/1]; [0/1]; [0/1]
# replicas |Cl| + 1 [0] . . . [4]

The first encoding, called bitstring, is the largest as it holds a single value
for all possible combinations of replica mappings in every node, which can result
in prohibitively large memory need. For example, in case of 20 components per
service, this encoding leads to 220 pheromone values, which by using 4 byte long
floating point numbers would require 4 MB of memory for each of such services
at every node. To reduce the table size, we can apply simpler bookkeeping tak-
ing into account solely the number of replicas mapped to a given node, shown in
# replicas. This is the most compact pheromone entry encoding, however, the
tradeoff is that it cannot distinguish between replicas in a service specification,
thus it can only be applied if there is no need to distinguish between component
replicas, e.g. due to equally sized replicas. As a good compromise in between, we
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have developed the per comp encoding that results in no information loss, while
still being linear in size. The per comp encoding uses one distinct pheromone
entry for every instance indicating whether or not to deploy them at a given
node. The slight disadvantage is that ants arriving at a node have to decide
on the deployment mapping of each replica, one-by-one reading the multiple
pheromone entries corresponding to the elements of the service (one separate
table element for each). Nevertheless, this encoding provides the necessary re-
duction in database structure size for allowing scaling up to larger amounts of
services and larger service sizes.

In the following, examples are presented where CEAS and the deployment
logic is applied in different scenarios.

§4 Example Scenarios
To demonstrate the deployment mappings that can be obtained using

our deployment logic, 4 different scenarios are presented in the subsequent sub-
sections, followed by a subsection on cross-validation of some of the results by
application of a centralized method.

4.1 Deployment of Collaborating Software Components
As a first example, we consider a scenario that has been introduced by

Efe, originally modeling clustering of modules and cluster assignment to nodes.12)

The same scenario has been investigated by several authors, including Widell et
al. who compared the related results in 36). This artificial clustering problem
is modeled as a collaboration of components and is used to test the deploy-
ment logic. We define Efe’s example as a collaboration of |C| = 10 components
(labelled c1 . . . c10) to be deployed and |K| = 14 collaborations between them
(k1, . . . k14), as depicted in Fig. 4(a). Besides, the execution and communication
costs, we have a restriction on components c2, c7, c9, regarding their location.
They must be placed in nodes n2, n1, n3, respectively.

(a) Collaborations and components in the
example

(b) Optimum with 3 nodes

Fig. 4 Simple Example Service



A Bio-inspired Method for Distributed Deployment of Services 205

In this example, the target environment consists of |N| = 3 identical, intercon-
nected nodes. To gather information continuously, the ants employed by the
logic sample the CPU load levels, l̂n. We target minimum remote communica-
tion, i.e. we take into account communication costs for collaborations between
two components if they are not collocated in the same node. At the same time,
we look for a globally balanced CPU load over all the nodes available. Further-
more, for this first example, we have T ∼= 68 (cf. (1)) as average target load in
the 3 nodes.

The optimum solution of the example is depicted in Fig. 4(b), with the
lowest possible cost value of 17 + 100 = 117 (cf. (3)). Finding an efficient
deployment with the lowest cost is illustrated in Fig. 5, with absolute values on
the Y-axis. After an initial 2000 explorer ants, optimization starts and the overall
cost is converging to the optimum value of 117. The size of the dynamically
allocated pheromone database – in which a threshold can be applied to regulate
the amount of significant entries – can also be observed in the bottom half of
the figure. The database size tops at 27 as the number of maximum available
components is 7 out of the total of 10, with 3 bound components. In case of
convergence to a single solution, like in the example at hand, solutions other
than the optimum can be evaporated from the database, thus reducing its size
if needed, as shown.

Fig. 5 Observed cost and pheromone database sizes

For more details and comparison of the results obtained with the CEAS and
other methods using this example, we refer the reader to 6). Accordingly, we
find that our distributed approach is capable of obtaining efficient mappings in
NP-hard deployment scenarios. Next, we continue with increasing complexity
by considering more services simultaneously in another example setting.
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4.2 Multiple Species
In 7), we introduced three service models for experimental use. The first

example has been introduced originally in 25). S1 operates a security door and a
card reader with a keycode entry panel using authentication and authorization
servers and databases. The second example models a video surveillance system.
A central control with a recording unit manages the system and uses a main
and a backup storage device for storing surveillance information. S3 is a model
of a process controller that consists of 4 main stages of processing, logging, a
user interface, and a generator component. The service models are presented in
Fig. 6.

An ant species is assigned to each of the services and deployment mappings
are obtained using a network of 5 nodes. This example has multiple optimal and
near-optimal solutions with different sets of components deployed on various
nodes. In 7), we tested the effectiveness (e.g. number of iterations required for
convergence, average cost of mappings found) of the approach considering that
in the multiplicative cost function, (4), we omitted any global knowledge, i.e. we
do not use the global shared knowledge T , (1), anymore. Instead, the parallel
species are aware of each other’ processing power demand through sampling, i.e.

(a) S1 (b) S3

(c) S2

Fig. 6 3 Service Examples
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L. We have found that the multiplicative function (4) allows the logic to deploy
multiple parallel species equally effectively. Synchronization of the separate ant
nests is not necessary, however, only one designated nest shall be allowed to
trigger placement.

To evaluate adaptation capabilities of the logic, we investigated two simple
scenarios, a single node failure and reparation, and the appearance of a new node
in the network. The new node is added after all the species have converged to
a solution with 5 nodes. The evolution of costs (Y-axis) – obtained by (4) – for
the 3 services in the example is shown in Fig. 7 as a function of the number of
iterations (X-axis). A node error is injected after iteration 12000 followed by
a repair approximately 4000 iterations later (Fig. 7(a) shows average and min-
max values). The first 2000 iterations represent the initial exploration phase.
Due to the abrupt change in the context – a previously used node disappears
– costs increase quickly after the failure. Service S2 suffers most, as indicated
by the highly increased costs, mostly due the large communication demand of
that service. Deployment costs return to normal again somewhat slower after
the node has been repaired and explorer ants discover the new, more useful
configuration.

In the second test, a new (6th) node is added to the network of 5 nodes
after around 5000 iterations, at which point the 3 species are already converged
to a stable solution. At this point, 5% of the emitted ants are explorers, which
eventually (approx. after 9500 iterations) discover the new node and a new,
more efficient deployment (Fig. 7(b)). It is also to be noted that the species
agree on a new configuration where services S1 and S3 suffer some degradation,
i.e. in terms of higher costs, but S2 has a high gain, thus the overall utility
of the new deployment is better. Regarding the number of iterations, we note
that using conventional exhaustive search methods, we would have needed to
explore |N||CSk

| possible configurations for a service Sk and we have to add up
the numbers for ∀Sk ∈ S to represent the problem size. So, first we gain on

(a) Node error/repair (b) New node appearing

Fig. 7 Costs for the 3 Services in Two Test Scenarios
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splitting the problem of deploying multiple services using one type of species for
each service simultaneously. Second, we increase computational effectiveness by
not having to explore the search space – e.g. of size 524 possible configurations
in this example with 3 services – exhaustively.

4.3 Deployment of Component Replicas
We focus next on dependability achieved by efficient replication manage-

ment. Fig. 8 depicts a simple example service model. A component is actively
replicated in 4 replicas, R1 to R4, with the continuous updating mechanism mod-
eled as collaborations between the replicas. Each replica in the service performs
according to the client requests, thus, replicas have the same execution cost.

Fig. 8 Replicated Components in Example Service S1

The example, furthermore, consists of 10 services (S1 . . . S10) that are be-
ing deployed, using 10 independent species of ants. Also, we use 20 ant nests
to be able to look at a simple cluster splitting and merging scenario, with one
nest remaining for each of the species in each of the regions formed after the
split. Each service Si, i = 1 . . . 10 has a redundancy level (amount of replicas)
of i + 1. The network of nodes for the experiment consists of 11 fully intercon-
nected nodes, partitioned into 5 clusters (Fig. 9(a)). Simulations of the scenario
were conducted in a discrete event simulator custom built and programmed in
Simula/DEMOS language.

First, we look at the objective of obtaining a balanced deployment map-
ping with respect to execution load. This objective has to be followed while
maintaining the dependability rules of Φ. In Fig. 9(b), we look at the average
number of replicas mapped to the 11 nodes in the test network. A total amount
of 65 identically sized component replicas are mapped, which – in a homoge-
nous, non-clustered network – would give an average of 5.91 replicas per node
(shown as a dotted horizontal line). As an effect of cluster disjointness (φ1),
smaller clusters, such as d3, d4, suffer from overloading, but generally replicas
are placed quite evenly across the available nodes, showing that cooperation be-
tween the species works. Furthermore, for a larger experiment with 50 nodes
and 275 replica instances we refer to 8).

In the same example setting, we conducted simulations to test adaptation
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(a) Test network of nodes clustered into
5 clusters

(b) Load-balancing over 11 nodes

(c) Splitting/merging of cluster d5

Fig. 9 Example Scenario with 10 Services

capabilities of the logic. Three different pheromone encodings are tested in this
example, more about the various encodings and their effects in Sec. 3.3. To
test capabilities to remedy cluster splitting and merging, cluster d1 containing 4
nodes is split from the rest of the network at the cluster boundary and some time
later, it merges back, thus restoring the original network scenario. For example,
the cost output in case of service S10 is displayed in Fig. 9(c). Cluster d1 splits
from the rest after iteration 4000 and we can observe how the swarm adapts and
obtains new mappings for a more expensive configuration (increased cost) due
to the reduced network. Similarly, after the merge of the two regions, around
approximately iteration 5000, mappings are adapted utilizing cluster d1 again,
thus resulting in a lower cost configuration again.

Regarding the number of iterations required for obtaining reasonable and
stable mappings, e.g. shown on the X-axis in Fig. 9(c), we conclude that they
are reasonably low and do not increase the overhead significantly, especially
compared to exhaustive search, which would require evaluation of 1165 possible
configurations. Mapping of replicas considering the dependability rules becomes
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harder when the number of replicas in a service is close to the amount of available
nodes. Instead of having hard-constraints that strictly cannot be violated, like
e.g. in traditional integer programming, we utilize soft-constraints incorporated
into the cost functions we use. The tradeoff might be that sometimes the algo-
rithm prefers a globally lower cost mapping with better overall load-balancing
that, however, violates some of the soft-constraints for one service, e.g. for a
large service that has as many replicas as many nodes exist, there might be a
single collocation (violation of φ2) due to the better utilization of an otherwise
under-utilized node.

Besides looking at adaptation, in Fig. 9(c), we also present how the costs
evolve using the three different encodings introduced in Sec. 3.3. After a split
and merge event the bitstring encoding converges to a solution with slightly
higher overall cost than before, whereas the lowest cost is obtained first by per
comp. and somewhat later by # replicas. The first 2000 iterations are not shown
as, initially, a random cost figure appears corresponding to exploration that is
omitted here. Every simulation starts with 2000 explorer iterations for the sake
of comparability, even though the amount of initial exploration was constrained
by the bitstring encoding. The more compact encodings require significantly
less iterations, e.g. one tenth of the amount used. The bitstring encoding in
this test case is unable to find exactly the same mapping and converges to a
somewhat more costly solution. per comp. is the fastest to obtain the lowest
cost mapping followed by the third encoding about 1000 iterations later.

Table 3 Success Rates of the Three Encodings in the Example Setting

wo/ splitting φ1 φ2 w/ splitting φ1 φ2

bitstring 100% 88% bitstring 100% 87%
per comp. 100% 100% per comp. 100% 100%
# replicas 100% 100% # replicas 100% 99%

Considering the dependability rules φ1 ∧ φ2, Table 3 shows the three different
pheromone encodings and the percentage of test cases, which succeeded in sat-
isfying the two rules. The results were obtained by executing the algorithm 100
times for each encoding, with different input seeds. The results indicate that
choosing per comp. not only provides the best compromise between scaling and
descriptiveness but gives more efficient results too.

4.4 VM Instance Placement in Private and Public Clusters
In this section, we look at how self-organizing techniques applied for sys-

tem (re)configuration can be used to improve scalability and dependability of
virtualized service systems. Specifically, we discuss deployment of virtual ma-
chine (VM) images to physical machines in a large scale network. Simulation
results with the decentralized deployment logic are presented for an example
cloud computing scenario. For additional details about the deployment scenario,
see 9).

To demonstrate the behavior of the logic, consider the scenario depicted
in Fig. 10. The network consists of 5 private clouds (Cloud C, . . . , G) connected
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to public cloud providers (Cloud A,B) via the Internet. The publicly available
capacities can be utilized on demand, but are subject to financial costs. Con-
versely usage of private clusters is free for a service with a home location in that
private cloud. Thus, deploying and hosting a VM instance on a node within one
of the clouds implies additional costs; namely, a cost of 10 for a node in Cloud A,
1 for Cloud B and 0 cost for the private clouds C . . . G. The scaling parameter,
cf. (11), we applied in the example was z = 0.1.

Fig. 10 Cloud Computing Example Scenario

Intuitively, this partitioning and cost assignment models a scenario where
organizations naturally execute VM instances within their privately owned clus-
ter as long as the requirements allow, i.e. satisfactory replication levels can
be achieved with the available resources in the private clusters. Accordingly,
hosting VMs in private clusters is considered free as opposed to hosting in pub-
lic clouds. Moreover, in the example, a trade-off exists between a large cloud
provider with several clusters and plenty of nodes available for placement, which
is more expensive to use than paying for hosting in the smaller cloud offering
less resources.

Simulations execute the deployment task of mapping 125 services, i.e. 25
in each private cloud, using public clouds for deployment on demand, without
allowing usage of resources in private clusters other than the originating ones.
This is practically achieved by assigning ∞ cost for neighboring private clouds.
Each of the 125 services consist of 5 VM instances – among others for depend-
ability reasons – that have to be deployed, thus resulting in the task of deploying
a total number of 625 VMs.

The target network of the private and public clouds offers 130 nodes in
different clusters. 5 and 10 nodes are available in each private and public cluster
respectively. Any single authority owning a private cloud administers two clus-
ters, which together with the 5 (cloud A) plus 3 (cloud B) clusters result in a
total of 18 clusters. Regarding the services one species is used for each, giving
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25 nests in each private cloud emitting ants. We investigate 2 combinations of
(10) and (11) with the above example setting:

1. no cloud costs, z = 0;
2. exponential weighting for cloud costs, z > 0.

We conducted simulations with the above variants of cost evaluation and checked
the resulting deployment mappings.

(a) VMs per node, z = 0, no weighting (b) VMs per node, z > 0, exponential
weighting

Fig. 11 Example Scenario with 10 Services

In Fig. 11(a), mapping of VM instances – after convergence – is shown
when z = 0, i.e. every node ni has zero financial cost for hosting a VM, error
bars show the deviation of the results. In case there are no financial costs of using
a node, we can observe that VMs are mapped evenly – while maintaining the
dependability requirements – over all the nodes resulting in an average of 2 VMs
per node in the private clouds, which leaves 625−(5·20) = 525 VMs for the public
clouds A and B. Further, the VMs in the public clouds are mapped quite evenly
too over the available 80 nodes around the average of 525/80 = 6.6. Moreover,
the logic does not distinguish between the two different public cloud offerings in
this case. The two extremes of mapping 3 VMs in public ((3 · 125)/80 = 4.7)
and 2 in private clusters; and mapping all 5 VMs in the services in the public
clusters ((5 · 125)/80 = 7.8) are shown by the dashed lines.

When z > 0, we present the average amount of VM instances per node in
case of the exponential cost function in Fig. 11(b). In this case, the deployment
logic finds mappings that successfully take into account the financial costs of
hosting in public clouds. The public cloud with plenty of resources but, thus,
higher costs (Cloud A, nodes n1...50) receives a low amount of instances, whereas
the lower cost public offering (Cloud B) is heavily loaded with VMs. Note that,
the requirements of node and cluster-disjointness are still satisfied. In the private
clusters, 5 VMs are mapped to each node on average, i.e. each one of the 25
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services places 1 VM in each of the two locally available clusters, which incur 0
additional cost. However, due to the cluster-disjointness criteria the 3rd, 4th and
5th VM instance has to be placed to a public cloud. To handle this overshoot, the
algorithm looks for the lowest possible increment in cost that gives the resulting
deployment. Differences in using the two variants of (11) lay in that with a more
complex cost evaluation (exponential instead of a simple linear) more balanced
deployment mappings are obtained, i.e. given the cost values assigned to cloud
A and B, the cheaper public cloud gets less overloaded with VMs, while the
number of mappings in the larger public cloud increases to take over some of the
execution load.9)

The number of iterations the algorithm requires to produce the results dis-
cussed above depends on the problem size. We used 2000 explorer ants followed
by an additional 3000 (10% explorer and 90% normal) ants for each species.
An increased amount of nodes in itself would not make the deployment problem
more difficult to solve. In fact, an increased network size actually allows the algo-
rithm to find better mappings, with lower costs, easier due to the larger amount
of available resources. Scalability is impacted to a larger extent by the amount
of services and the amount of VMs within the services executed simultaneously,
as the number of species executed in parallel is proportional to the number of
services and the complexity of the tasks an ant has to perform increases as the
number of instances grows.8)

With the example presented in this section, we have shown that the de-
ployment logic can be applied in a cloud computing scenario by carefully looking
at the cost functions driving the optimization and adjusting them to the per-
ceived utility of the various configurations. In this way, concepts of financial
costs in connection with resource usage can also be used in the evaluation of de-
ployment mappings, in addition to the traditional non-functional requirements
of performance and dependability.

4.5 Cross-validation of Deployment Mappings with ILP
Distributed execution of our deployment mapping algorithm has been an

important design criteria to avoid the deficiencies of existing centralized algo-
rithms, e.g. performance bottlenecks and single points of failure. In addition,
we intend to conserve resources by eliminating the need for centralized decision-
making and the required updates and synchronization mechanisms. In Sec. 4.1,
we presented an example – well-known in task assignment problems – converted
to our context of collaborating components (see Fig. 4 for the service and the
optimum mapping). In this section, we extend on this initial example with two
additional service models, present an Integer Linear Program (ILP) able to solve
component deployment problems with load-balancing and remote communica-
tion minimization criteria. We then compare simulation results obtained by
executing the deployment algorithm on the example models in this section with
the optimum cost solutions given by the ILP. Complexity of the deployment
examples remains NP-hard, even if we only deal with a single service at a time.

Beside the first model, the second example has an extended solution space,
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obtained by extending the first example into a larger service model (15 compo-
nents, 5 bound, additional collaborations) and increasing the number of nodes (4
nodes) available for deployment mapping. The third example leaves the cardi-
nality of C unchanged, while changing the model – the configuration of compo-
nents – and increasing the amount of collaborations, and the number of available
nodes is increased to 6 as well. The concrete amount of components, |C|, and
collaborations, |K|, in the service models and the amount of nodes, |N|, are
shown in Fig. 12. The ILP we have developed to validate our simulation results
will be presented next. We take into account the two counteracting objectives
of load-balancing and remote communication minimization and solve the ILP
using regular solver software, for further details we refer to 5).

We start with defining the solution variable mi,j representing the set of
mappings M .

mi,j =
{

1, if component ci is mapped to node nj ,
0, otherwise. (22)

that will indicate and efficient mapping of components to nodes; and we continue
with two parameters. First, bi,j

bi,j =
{

1, if component ci is bound to node nj ,
0, otherwise. (23)

which enables the model to fix some of the mappings, if any components are
bound in the model. Second, T , defined in (1) to approximate the ideal load-
balance among the available nodes in the network.

Beside the binary mi,j , we utilize two additional variables. The first for

(a) Mapping costs (b) Number of iterations

Fig. 12 Cross-validation of the Simulation Results



A Bio-inspired Method for Distributed Deployment of Services 215

checking collocations, in coli.

coli =
{

0, if cl, ck ∈ ki and cl is collocated with ck,
1, otherwise. (24)

Another variable, Δj , to indirectly calculate the deviation from the ideal load-
balance among the nodes hosting the components.

Δj ≥ 0,∀nj ∈ N (25)

The objective function used in the ILP is naturally very similar to the linear
cost function (3).

min

|N|∑
j=1

Δj +
|K|∑
i=1

fi · coli (26)

After having established the objective function, the constraints the solutions are
subjected to have to be defined. First, we stipulate that there has to be one and
only one mapping for all of the components.

|N|∑
j=1

mi,j = 1,∀ci ∈ C (27)

The ILP has to take into account that some component mappings might be
restricted (binding) to particular nodes. Thus, we restrict the variable mi,j

using bi,j .

mi,j ≥ bi,j ,∀ci ∈ C,∀nj ∈ N (28)

We introduce two additional constraints to implicitly define the values of the
variable Δj that we apply in the objective function. We use two constraints
instead of a single one to avoid having to use absolute vales (i.e. the abs()
function) and thus, we avoid non-linear constraints.

|C|∑
i=1

ei · mi,j − T ≤ Δj ,∀nj ∈ N (29)

T −
|C|∑
i=1

ei · mi,j ≤ Δj ,∀nj ∈ N (30)

Similarly, we define two additional constraints for implicitly building the binary
variable, coli, indicating collocation of components.

mi,j + mk,j ≤ (2 − coll), kl = (ci, ck) ∈ K,∀ci, ck ∈ C,∀nj ∈ N (31)

mi,j1 + mk,j2 ≤ 1 + coll, kl = (ci, ck) ∈ K,∀ci, ck ∈ C,∀nj1, nj2 ∈ N (32)

Using the above definitions, the ILP can be executed using an appropriate solver.
By submitting the appropriate data, defining the example services introduced
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above, we obtain the optimum mappings and their corresponding costs according
to the objective/cost function (26), subject to the constraints in (27) – (32).

As a result of the cross-validation, we obtain the absolute minimum cost
values (Optimum) in the three example settings SEx1...3. Simulation results are
generated by executing the algorithm 100 times for each example model. Average
costs (Average) and the maximum deviation (Max.) are shown in Fig. 12(a) as
well as the optimum obtained by ILP. Results show that our algorithm finds the
optimum 99% of the time in case of the first example. In the somewhat larger
scenario, SEx2, it is more difficult to find the absolute lowest cost mapping, thus
we observe larger deviations in mapping costs. However, it is to be noted that
by changing the mapping of a single component from the optimum configuration
to a near-optimal one increases the costs by values larger than 1, which is also
the reason for increased deviations in this case. In fact, the two most frequent
sub-optimal solutions, beside the optimum cost of 180, were configurations with
a cost of 195 and 200, giving an average of 193 in the end, shown in Fig. 12(a). In
case of the third example, SEx3, the algorithm managed to obtain solutions with
costs closer to the absolute optimum – obtained by the ILP – with less deviation
at the same time. The main reason for this is that communication costs in
SEx3 are relatively more fine grained, which resulted in finding near-optimum
solutions with slightly higher costs only. The average number (and deviation)
of normal ant iterations required by the algorithm to obtain the solutions are
shown in Fig. 12(b).

It is to be noted that the difference in complexity is significant between
the original example from Sec. 4.1 and the two extended models. Using the
simplest binary pheromone encoding (cf. Sec. 3.3), the first example requires
a pheromone database of size 3 · 27 in the network of 3 nodes, as the number
of unbound components is 7. In the larger examples, the pheromone database
size increases to 4 · 210 and 6 · 210 for CEAS. It is difficult to precisely compare
the computational effort required by the ILP and CEAS for solving the same
problems. One iteration of a centralized logic with global knowledge, e.g. an
ILP, can not really be compared to one iteration in the distributed CEAS, which
is a tour made by the ant.

The solver software for the ILP provides some information regarding the
iterations and cuts that were required during execution, i.e. 86, 495 and 1075
simplex iterations; and 0, 5 and 33 branch and cut nodes were reportedly required
for the examples SEx1, SEx2 and SEx3 respectively. The number of required (ex-
plorer and normal) iterations in CEAS is naturally higher than what is required
for the ILP with a global overview. However, we advocate that we gain more
by the possibility of a completely distributed execution of our algorithm and
also because of the capability of adaptation to changes in the context, once the
pheromone database is built up after the initial phase.

§5 Related Work
Influencing the software architecture by changing the deployment con-

figuration has been found to be an efficient way to improve utility of services.
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Deployment decision making requires an optimization method to function prop-
erly and autonomicity has to be built in as a basic functionality. An algorithm
has been devised in 26) that is based on calculating the usefulness of alterna-
tive configurations as weighted sums. Nevertheless, the resulting approach is
not computationally effective and serves as a trial to show that deployment de-
cision making is important and necessary to apply. Various other approaches
have been followed to tackle the problem of efficiently mapping instances to re-
sources, or hosts for adequate execution. Many authors start with centralized
observation and control, utilizing for example binary integer programming,3)

graph cutting,20) or some hybrid approach, e.g. proposed by the authors of 21),
where an optimizer and a model solver work together to find optimal mappings
specifically in the field of virtual machine technology. Computational complex-
ity, which in most unrestricted cases is NP-hard, often prohibits application of
centralized exhaustive methods above certain problem sizes, even as small as net-
works of only a handful of nodes. Other approaches try to restrict the solution
space to tractable sizes by capturing important constraints,24) but exhaustive
search is still ineffective in practical problems, especially if we consider more
than one QoS property of a configuration or more than one service at a time.
Heuristics and approximative algorithms manage practical problem sizes more
effectively. Malek et al. devised heuristic algorithms for software component de-
ployment, based on greedy search and genetic programming in 27), approaching
the problem from the user’s perspective instead that of the service providers’.
Besides, stochastic optimization appeared as an alternative first in 36), suggesting
the use of the Cross-Entropy method as well.

Regeneration of replicas to remedy crashed components was proposed first
by Pu 30) in the context of the Eden system. More recent systems, e.g. DARM,29)

provide automatic reconfiguration and regeneration of replicas in the context of
group communication systems, and Om 41) focus on regeneration in a peer-to-
peer wide-area storage system. Recently, with the advent of cloud computing,
standardized cloud interfaces propose similar mechanisms for placement, migra-
tion and monitoring of components in the cloud.13) Recent studies 4,19,21) show
that the duration of virtual machine migration is in the order of 60-90 seconds.
Service deployment support, that is intended to execute placement instructions
given by our deployment logic are provided by such systems, however, focus
is usually simply on failure recovery and improvement of availability without
trying to optimize the new configurations and mappings. Authors in 40) show
theoretically that replica placements of inter-correlated objects can impact sys-
tem availability significantly if not chosen appropriately. Our work, on the other
hand, focuses on improving both availability and overall performance.

Another centralized approach, namely group-finding algorithms to dis-
cover mappings in generic wide-area resource discovery is presented in 1). In
some way similar to the foraging behavior of our artificial ants, some approaches
rely on extensive measurement data collection, however, our deployment logic
does not store data centrally. Optimal placement of VMs under a variety of con-
straints has been focus of some research, e.g. in 35) and 21). The SmartFrog33)



218 M. J. Csorba, H. Meling and P. E. Heegaard

deployment and management framework from HP Labs describes services as
collections of components and applies a distributed engine comprised of dae-
mons running on every node in a network. Collections of components together
with their configuration parameters can be activated and managed to deliver
the desired services even in large-scale systems. The scale of these systems and
the execution framework is close to the environment we envisage for the suc-
cessful execution of autonomic component-based software services and which we
target with our deployment logic. Configuration management in similar server
environments based on fuzzy learning, targeting efficient resource utilization is
investigated by Xu et al. in 39). Biologically-inspired resource allocation algo-
rithms appear in 17) to tackle service distribution problems. This is the path we
too have chosen to follow while developing our deployment logic.

The basic method we built our deployment logic upon, the CEAS has
been applied successfully to a variety of studies of different path management
strategies, such as shared backup path protection, p-cycles, adaptive paths with
stochastic routing, and resource search under QoS constraints.15) Implementa-
tion issues and trade-offs, such as the management overhead imposed by addi-
tional traffic for management packets and recovery times are dealt with using
a mechanism called elitism and self-tuned packet rate control. Additional re-
duction in the overhead is accomplished by pheromone sharing, where ants with
overlapping requirements cooperate in finding solutions by (partially) sharing
information (see 16) for details). In CEAS applied to routing, a routing path,
from source to destination, is the target of the search. Instead of the cost of
mappings, a routing path is evaluated in each iteration, i.e. a corresponding
cost function is applied to the paths found. Furthermore, the pheromone values
for routing CEAS is given by, τij,r and represent an assignment between interface
i and a node j at iteration r. Selection of the next hop for each ant, in this case,
is based on the random proportional rule in the contrary to our algorithms.

§6 Conclusions
In this paper, we summarize our recent research towards obtaining an

intelligent solution, a decentralized logic that is capable of finding near-optimal
deployments for building blocks of services in a dynamic network environment.
We presented how our bio-inspired heuristic approach looks for an efficient map-
ping between software components and nodes iteratively. Example scenarios
were discussed ranging from the deployment of collaborating software compo-
nents and management of replicas to virtualization in hybrid cloud environments.
Additionally, an ILP model was shown that can be used to cross-validate the
solutions found by our algorithm in an offline, centralized manner.

Many interesting paths of future work are considered. The algorithms
presented are to be re-implemented in a scalable, Java-based simulator in order
to explore larger scale scenarios. Increasing problem sizes are anticipated with
the introduction of larger networks and, especially, larger amounts of parallel
services. Nevertheless, efficient pheromone encodings provide the necessary re-
duction in the size of database structures and allow controlled increase in com-
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plexity as problem sizes grow. Approximative methods, such as the heuristic
algorithms presented in this paper, will continue to dominate on-line deploy-
ment decision making due to their flexibility and faster convergence. Besides,
the core functions that describe the inner workings of the CEAS method, such
as the pheromone or the temperature updates can also be revisited. The new,
improved core functions in CEAS can possibly enhance the performance of the
deployment logic.

The ILP model presented shall be extended to capture all the example
scenarios. Regarding the scope of requirements, the next dimension to include
is power-saving. Also, service models can be extended to capture additional as-
pects, such as consistency protocol costs. Besides, quantifying migration related
costs is an interesting and difficult issue to look at in itself.
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Máté J. Csorba: He earned his M.Sc. degree in electrical engi-

neering at the Budapest University of Technology and Economics

(BME) in Budapest, Hungary in 2003. From 2001, he had been

working with test systems at Ericsson’s Test Competence Cen-

ter in Budapest. He joined the Norwegian University of Science

and Technology (NTNU) in 2007 as a research fellow, where he

is working towards his Ph.D. degree. His current research in-

terests include optimization, software architectures and service

deployment in distributed systems.

Hein Meling, Ph.D.: He is an Associate Professor of Computer

Science at the University of Stavanger, Norway. He received his

Ph.D. in 2006 from the Norwegian University of Science and Tech-

nology. His research interests include byzantine fault tolerance,

grid computing, distributed deployment configuration optimiza-

tion and distributed event-based systems. He is the principle

investigator on the IS-home and Tidal News projects funded by

the Norwegian Research Council.

Poul E. Heegaard, Ph.D.: He received his Siv.ing. (M.S.E.E. in

’89) and his Dr. Ing. (Ph.D. in ’98) degrees from the University

of Trondheim (now NTNU). Since 2006, he has been an Asso-

ciate Professor at the Department of Telematics, Norwegian Uni-

versity of Science and Technology (NTNU), where he has been

since 2009 the Head of Department. His research interests cover

performance, dependability and survivability evaluation of com-

munication systems.


	A Bio-inspired Method for Distributed Deployment of Services
	Abstract
	1 Introduction
	1.1 The Deployment Problem
	1.2 Problem Complexity and Scalability Issues
	1.3 Costs and Constraints
	1.4 System Model and Target Systems

	2 The Cost Function
	2.1 Load-balancing and Communication Costs
	2.2 Multiple Services and Eliminating Global Knowledge
	2.3 Dependability Rules
	2.4 Cluster Costs

	3 The Deployment Logic
	3.1 The Cross Entropy Ant System
	3.2 The Deployment Algorithm
	3.3 Encoding Pheromone Values

	4 Example Scenarios
	4.1 Deployment of Collaborating Software Components
	4.2 Multiple Species
	4.3 Deployment of Component Replicas
	4.4 VM Instance Placement in Private and Public Clusters
	4.5 Cross-validation of Deployment Mappings with ILP

	5 RelatedWork
	6 Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


